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Recombination Difference between Sexes:
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Why the autosomal recombination rate differs between female and male meiosis in most species has been a genetic
enigma since the early study of meiosis. Some hypotheses have been put forward to explain this widespread
phenomenon and, up to now, only one fact has emerged clearly: In species in which meiosis is achiasmate in one sex, it
is the heterogametic one. This pattern, known as the Haldane-Huxley rule, is thought to be a side effect, on autosomes,
of the suppression of recombination between the sex chromosomes. However, this rule does not hold for
heterochiasmate species (i.e., species in which recombination is present in both sexes but varies quantitatively
between sexes) and does not apply to species lacking sex chromosomes, such as hermaphroditic plants. In this paper,
we show that in plants, heterochiasmy is due to a male-female difference in gametic selection and is not influenced by
the presence of heteromorphic sex chromosomes. This finding provides strong empirical support in favour of a
population genetic explanation for the evolution of heterochiasmy and, more broadly, for the evolution of sex and

recombination.
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Introduction

Sex differences in recombination were discovered in the
first linkage studies on Drosophila [1,2] and Bombyx (Tanaka
[1914] in [3]) almost one century ago. However, this
observation remains today largely unexplained despite
several attempts. Based on very limited observations (see
Table 1), especially of Bombyx, in which the female is
heterogametic, Haldane [3] suggested, as far as “these facts
are anything more than a coincidence,” that the lower
autosomal recombination rate in the heterogametic sex may
reflect a pleiotropic consequence of selection against
recombination between the sex chromosomes. Later, Huxley
[4] showed that Gammarus males also recombined less than
females. He gave the same evolutionary explanation, although
he restricted it to cases of a marked sex difference.

This conjecture has now been confirmed for achiasmate
species (i.e., species in which only one sex recombines) and is
referred to as Haldane-Huxley rule: Nei [5] showed theoret-
ically that tight linkage should evolve on Y or W chromo-
somes, and Bell [6] compiled a large dataset showing that
achiasmy evolved 29-34 times independently, each time with
no recombination in the heterogametic sex.

However, for heterochiasmate species, three problems with
the Haldane-Huxley pleiotropy explanation were discovered
[7,8]. The first problem arose when substantial variation in
male-female differences in recombination rate was found
between pairs of autosomes within mice [8] and Tribolium
[9,10], and between genotypes for the same pair of autosomes
[11]. The second problem was the discovery that hermaph-
rodite species (the platyhelminth Dendrocoelum [12] and the
plant Allium [13]) may present strong heterochiasmy between
male and female meiosis despite having no sex chromosomes
or even sex-determining loci. The third problem was the
discovery of species in which the heterogametic sex recom-
bines more than the homogametic one (e.g., in some Triturus
species) [14]. Because of these contradictory observations,
variation in heterochiasmy has remained difficult to explain
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because of the absence of an alternative theory as well as the
lack of a clear pattern in the data.

In 1969, Nei [5] worked out the first “modifier” model to
study the evolution of sex differences in recombination, and
concluded for autosomes that “the evolutionary mechanism
of these sex differences is not known at present.” Surveying
an updated dataset, Bell [6] concluded that “female gametes
experience more crossing over among hermaphroditic plants
(and perhaps animals), but this is not invariably the case
among gonochoric animals (...) certainly (this) has never
received any explanation.” The idea that heterochiasmy may
be explained by a sex rather than by a sex chromosome effect,
which was ignored by Haldane because of Bombyx, was
reconsidered. This led Trivers [15] to suggest that, because
only males with very good gene combinations reproduce
(relative to females, for whom reproduction success is often
less variable), they should recombine less to keep intact these
combinations. He accounted for exceptions by variation in
the regime of sexual selection. The idea was criticized by Burt
with an

et al. [16], who also questioned the correlations
updated dataset—between heterochiasmy and either sex or
heterogamety. These authors tried to correlate the level of
heterochiasmy with the amount of “opportunity for sex-
specific selection,” but failed to find an effect. They were
tempted to advocate neutrality, but were puzzled by the
positive correlation between male and female recombination
rate and by evidence showing compensation (e.g., female mice
tend to recombine more on the X, as if they were
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Table 1. Data on Which the Haldane-Huxley Rule is Based

Species [ rP Heterogametic Sex Reference
Drosophila 0 +€ Male [1,2]
Bombyx + 0 Female [3]
Apotettix — 4F Male [37]
Paratettix - + Male [38]
Mus/Rattus = AF Male [39]

Listed are the data available to Haldane [4] when he proposed the Haldane-Huxley rule.

2 r,, represents recombination in males.

® r; represents recombination in females.

 Plus and minus symbols indicate the direction of heterochiasmy, and zero indicates achiasmy.
DOI: 10.1371/journal.pbio.0030063.t001

compensating for no recombination in males; similarly, no
species is known with achiasmy in both sexes [16]). In 1994,
Korol et al. [17] insisted on a possible role for gametic
selection but did not give evidence in favour of this claim.
Recently, Lenormand [18], using Nei’s modifier approach,
showed that it is very difficult to explain heterochiasmy by
sex-specific diploid selection. Rather, a sex difference in
selection during haploid phase, or a sex difference in diploid
selection on imprinted genes, is a more likely explanation. He
predicted that, as far as haploid selection is concerned, the
sex experiencing the more intense haploid selection should
recombine less. Indeed, when allelic effects interact to
determine fitness (i.e., when there is “epistasis,” either
negative or positive), recombining decreases mean fitness in
the population of the next generation [19]. This effect occurs
because recombination breaks up combinations of genes that
have previously been built up by selection. For a given
average recombination rate between sexes and for a given
average epistasis between male and female haploids, it is
always advantageous for the haploid population (male or
female) with the greatest absolute value in epistasis to be
produced with the lowest amount of recombination. In this
way, the “recombination load” that the haploid population is
exposed to is minimized.

In this paper, we would like to come up with a more
quantitative evaluation of the possible role of haploid
selection in shaping heterochiasmy. For that purpose, we
first updated the dataset of Burt et al. [16] on heterochiasmy,
focusing on genetic maps that have become available over the
last 15 years. We then determined how fast heterochiasmy
evolves, in order to measure the amount of phylogenetic
inertia on this trait. Finally, we determined whether variables
such as gender, heterogamety, or the opportunity for
selection in the haploid phase, could explain variation in
heterochiasmy. If there is selection with substantial epistasis
on some genes during the haploid phase, we expect the sex
with the greater opportunity for haploid selection to show
less recombination. Alternatively, if selection during the
haploid phase is weak or without substantial epistasis, we do
not expect it to produce a directional bias in the amount of
recombination displayed by either sex.

Results/Discussion

Sex Chromosomes
Heterochiasmy is a fast-evolving trait, and phylogenetic
inertia does not satisfactorily explain its distribution. In
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contrast to achiasmy, we found that heterochiasmy is not
influenced by the nature of the sex chromosomes. This is
interesting, because it suggests that achiasmy and hetero-
chiasmy are influenced by qualitatively different evolutionary
forces, although they seem to differ only quantitatively. It
would be useful to determine whether achiasmy evolved to
reduce the average recombination rate or to change the
relative amount of recombination between the sexes. The two
situations may be discriminated by determining whether the
homogametic sex in achiasmate species tends to recombine
more than in closely related chiasmate species. Evidence for
such compensation would indicate that achiasmy did not
evolve to reduce the average recombination rate. In the
absence of such compensation, however, achiasmy may simply
reflect selection for tight linkage. In such a situation, we
propose that Haldane-Huxley rule may be caused by the
converse argument to the one previously considered: The
presence of achiasmy only in the heterogametic sex may
reflect selection to maintain nonzero recombination rate on
X or Z chromosomes in the homogametic sex. In species in
which the average autosomal recombination rate is selected
against (i.e., towards a lower equilibrium value), loss-of-
function (recombination) mutations with an effect restricted
to one sex may spread only if they affect the heterogametic
sex, because mutations suppressing recombination in the
homogametic sex completely suppress recombination on the
X or Z chromosome. The same argument applies to XO
species and may explain why achiasmy is associated only with
the heterogametic sex. In addition, this hypothesis does not
require the existence of genes suppressing recombination
between the sex chromosomes with autosomal pleiotropic
effects. Under this hypothesis, there is no reason to find an
effect of the presence of heteromorphic sex chromosome on
the amount of heterochiasmy, as originally envisioned by
Haldane and Huxley. Overall, this hypothesis would explain
why heterochiasmy and achiasmy differ qualitatively and why
we do not observe any effect of sex chromosomes on
heterochiasmy.

Heterochiasmy in Animals

In animals, male-female dimorphism in haploid selection
may also contribute to heterochiasmy. In general, there is no
female haploid phase in animals, because meiosis is com-
pleted only at fertilisation. As far as at least some genes are
expressed and under selection during the male haploid
phase, this would tend to bias towards tighter linkage in
males. Sets of genes responsible for male-specific meiotic
drive systems would be good candidates and are often found
in tight linkage. Measuring the opportunity for haploid
selection in animals may be possible within some groups.
Imprinting may, however, act as a confounding effect in
many groups of animals while trying to measure the
opportunity for “haploid” selection. Within-species compar-
isons of imprinted regions or of regions with sex-specific
recombination using high-resolution maps [20] may be more
fruitful to discriminate among potential causes of hetero-
chiasmy in animals. In particular, there is evidence in
humans that the reduction in crossing-over associated with
imprinting is in the direction that theory predicts, even if
this pattern is consistent with other explanations [21]. Finally,
understanding exceptions within groups (e.g., male marsu-
pials, contrarily to most mammals, recombine more than
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Table 2. Dataset Pooled by Species with Levels of Phylogenetic Grouping Used in the Analysis

K* PP C° Order Family Genus Species Data® Male® Female®* Ratio’ V,° Reference
1 2 8 Diprotodontia Potoroidae Bettongia penicillata CcC 28 27.9 1.00 —0.5 [40]
1 2 8 Cetartiodactyla Bovidae Bos taurus LM 3,567 3,765 0.95 -1 [41]
1 2 8 Carnivora Canidae Canis familiaris LM 1,290 1,822 0.71 -1 [42]
1 1 6 Orthoptera Acrididae Chorthippus brunneus cC 13.6 13.1 1.04 —0.5 [16]
1 1 6 Orthoptera Acrididae Chorthippus jucundus CcC 12.66 12.65 1.00 —0.5 [43]
1 1 6 Orthoptera Acrididae Chorthippus parallelus ccC 13.38 11.81 1.13 —0.5 [43]
1 1 6 Orthoptera Acrididae Chorthippus vagans CcC 11.25 10.56 1.07 —0.5 [43]
1 1 6 Orthoptera Acrididae Chortoicetes terminifera cC 13.1 11.6 1.13 —0.5 [16]
1 1 6  Orthoptera Acrididae Chrysochraon dispar CcC 12,6 12.1 1.04 —0.5 [16]
1 2 1 Cypriniformes Cyprinidae Danio rerio LM 999.9 2,852.7 0.35 —0.5 [44]
1 4 1 Tricladida Dendrocoelidae Dendrocoelum lacteum cC 11.8 20.4 0.58 0 [16]
1 2 8 Perissodactyla Equidae Equus caballus LM 62.4 79.9 0.78 -1 [45]
1 1 6 Orthoptera Acrididae Euchorthippus chopardi CcC 11.62 10.48 1.11 —0.5 [43]
1 1 6 Orthoptera Acrididae Euchorthippus pulvinatus CcC 11.81 11.06 1.07 —0.5 [43]
1 1 6  Orthoptera Acrididae Eyprepocnemis plorans CcC 14.1 12 1.18 —0.5 [16]
1 2 4 Galliformes Phasianidae Gallus domesticus LM 3,062.1 3,026.8 1.02 1 [46]
1 4 1 Rhabdocoela Polycystididae Gyratrix hermaphtoditus ~ CC 5.2 4.5 1.16 0 [16]
1 2 8 Primates Hominidae Homo sapiens LM 2,730 4,435 0.62 -1 [47]
1 2 8 Primates Cercopithecidae ~ Macaca mulatta cC 39.6 31.7 1.25 -1 [16]
1 2 8 Diprotodontia Macropodidae Macropus eugenii LM ND ND 1.28 -0.5 [48]
1 1 6 Orthoptera Acrididae Melanoplus femur-rubrum cc 135 14 0.96 —0.5 [16]
1 2 8 Rodentia Muridae Mus musculus cc 20.9 289 0.72 -1 [16]
1 1 6 Orthoptera Acrididae Myrmeleotettix maculatus CcC 14.4 13.2 1.09 —0.5 [16]
1 4 1 Polycladida Leptoplanidae Notoplana igiliensis CcC 12.5 18.6 0.67 0 [16]
1 1 6 Orthoptera Acrididae Omocestus panteli CcC 11.8 11.26 1.05 —0.5 [43]
1 2 1 Salmoniformes Salmonidae Oncorhynchus mykiss LM 467.5 1,034.9 0.45 -1 [49]
1 2 8  Cetartiodactyla Bovidae Ovis aries LM 3,875.8 3,2534 1.19 -1 [50]
1 2 8 Primates Cercopithecidae  Papio hamadryas LM 243 79.2 0.31 -1 [51]
1 2 8 Primates Cercopithecidae Papio papio CcC 41.5 39.6 1.05 -1 [16]
1 4 10 Plagiorchiida Dicrocoeliidae Paradistomoides  orientalis CcC 323 323 1.00 0 [16]
1 1 6 Orthoptera Acrididae Parapleurus alliaceus CcC 123 129 0.95 —0.5 [16]
1 2 2 Anura Ranidae Rana esculenta cC 25.2 45.7 0.55 -1 [16]
1 2 2 Caudata Salamandridae Salamandra salamandra cC 24 36.8 0.65 —1 [16]
1 4 1 Tricladida Dugesiidae Schmidtea polychroa LM 0.07 0.23 0.30 0 [52]
1 2 8 Dasyuromorphia Dasyuridae Sminthopsis crassicaudata CcC 13.6 10.2 1.33 —0.5 [16]
1 1 6 Orthoptera Acrididae Stethophyma grossum CcC 1.3 13.7 0.82 —-0.5 [16]
1 2 8 Cetartiodactyla Suidae Sus scrofa LM 5,452.1 7,6149 0.72 —1 g

1 2 2 Caudata Salamandridae Triturus alpestris cC 323 245 1.32 -1 [16]
1 2 2 Caudata Salamandridae Triturus cristatus cc 36.5 24 1.52 -1 [16]
1 2 2 Caudata Salamandridae Triturus helveticus ccC 22 25 0.88 -1 [16]
1 2 2 Caudata Salamandridae Triturus marmoratus CcC 25.7 29 0.89 —1 [16]
2 3 9 Fabales Fabaceae Acacia mangium LM 1,561 1,537 1.02 0 [55]
2 3 3 Ericales Actinidiaceae Actinidia species LM 1,104.1 1,758.5 0.63 —0.5 [56]
2 3 7 Asparagales Alliaceae Allium cepa cC 224 17.9 1.25 0 [16]
2 3 7 Asparagales Alliaceae Allium consanguineum  CC 21.9 17.5 1.25 0 [16]
2 3 7 Asparagales Alliaceae Allium flavum ccC 14.9 18.8 0.79 0 [16]
2 3 7 Asparagales Alliaceae Allium macranthum CcC 423 58.7 0.72 0 [16]
2 3 7 Asparagales Alliaceae Allium nigrum ccC 21.9 16.9 1.30 0 [16]
2 3 7 Asparagales Alliaceae Allium pallens CcC 15 19.4 0.77 0 [16]
2 3 7 Asparagales Alliaceae Allium paniculatum ccC 14.6 16 0.91 0 [16]
2 3 7 Asparagales Alliaceae Allium ursinum CcC 13.8 14.1 0.98 0 [16]
2 3 9 Brassicales Brassicaceae Arabidopsis thaliana LM 417.29 216.23 1.93 0 [57]
2 3 9 Brassicales Brassicaceae Brassica napus LM 1,544 1,577 0.98 0 [58]
2 3 9 Brassicales Brassicaceae Brassica nigra LM 418 401 1.04 0 [59]
2 3 9 Brassicales Brassicaceae Brassica oleracea LM 1,050.8 1,749.4 0.60 0 [60]
2 3 9 Fagales Fagaceae Castanea sativa LM 1,054 947 1.11 0 [61]
2 3 3 Gentianales Rubiaceae Coffea canephora LM 211 217 0.97 0 [62]
2 3 7 Asparagales Orchidaceae Cypripedium cordigerum ccC 16.4 19.7 0.83 0 [16]
2 3 7 Dioscroreales Dioscoreaceae Dioscorea alata LM ND ND 1.00 -1 [63]
2 3 7 Dioscroreales Dioscoreaceae Dioscorea rotundata LM 852 891 0.96 -1 [64]
2 3 7 Dioscroreales Dioscoreaceae Dioscorea tokoro LM 570.9 489.4 1.17 =il [65]
2 3 7 Liliales Liliaceae Endymion nonscriptus CcC 17.7 18.2 0.97 0 [16]
2 3 7 Asparagales Orchidaceae Epipactis consimilis CcC 25.8 271 0.95 0 [16]
2 3 7 Asparagales Orchidaceae Epipactis latifolia ccC 30.7 29.1 1.05 0 [16]
2 3 9 Myrtales Myrtaceae Eucalyptus grandis LM 1,415 1,551 0.91 0 [66]
2 3 9  Myrtales Myrtaceae Eucalyptus urophylla LM 1,101 1,331 0.83 0 [66]
2 3 7 Liliales Liliaceae Fritillaria meleagris CcC 24.8 37.8 0.66 0 [16]
2 3 9 Malpighiales Euphorbiaceae Hevea species LM ND ND 0.83 0 [67]
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Table 2. Continued

K* P° C° Order Family Genus Species Data® Male® Female® Ratiof V.2 Reference
2 3 7 Poales Poaceae Hordeum bulbosum LM 1,203.7 1,016.9 1.18 0 [68]
2 3 7 Poales Poaceae Hordeum vulgare cC 13.9 13.7 1.01 0 [16]
2 3 9 Rosales Canabaceae Humulus lupulus LM 2274 346.7 0.66 -1 [69]
2 3 7 Liliales Liliaceae Lilium hansonii CcC 40 49 0.82 0 [16]
2 3 7 Liliales Liliaceae Lilium henryi cc 41.2 444 0.93 0 [16]
2 3 7 Liliales Liliaceae Lilium longiflorum cC 27.3 315 0.87 0 [16]
2 3 7 Liliales Liliaceae Lilium martagon cCc 36.3 41 0.89 0 [16]
2 3 7 Liliales Liliaceae Lilium pardalinum cC 31.2 36.9 0.85 0 [16]
2 3 7 Liliales Liliaceae Lilium regale cCc 41.8 45 0.93 0 [16]
2 3 7 Liliales Liliaceae Lilium sargentiae cc 31.2 42 0.74 0 [16]
2 3 7 Liliales Liliaceae Lilium speciosum cC 264 339 0.78 0 [16]
2 3 7 Asparagales Orchidaceae Listera ovata CcC 26.9 303 0.89 0 [16]
2 3 9 Rosales Rosaceae Malus pumila LM 559 447 1.25 0 [70]
2 3 9 Malpighiales Euphorbiaceae Manihot esculenta LM 49.1 40.8 1.20 0 [71]
2 3 7 Asparagales Orchidaceae Neottia listeroides CcC 29.3 31.1 0.94 0 [16]
2 3 9 Malpighiales Passifloraceae Passiflora edulis LM 783.5 727.7 1.08 0 [72]
2 3 7 Poales Poaceae Pennisetum glaucum LM 267 234 1.14 0 [73]
2 3 5 Coniferales Pinaceae Picea abies LM 1,557 1,381 1.13 0 G. Besnard,
pers. comm.

2 3 5 Coniferales Pinaceae Pinus pinaster LM 1,538.8 1,169.4 1.32 0 [74]
2 3 5 Coniferales Pinaceae Pinus sylvestris LM 2,437 1,885 1.29 0 [75]
2 3 5 Coniferales Pinaceae Pinus taeda LM 1,983.7 1,339.5 1.48 0 [76]
2 3 9 Malpighiales Salicaceae Populus species LM 1,063.6 1,071.7 0.99 -1 [77]
2 3 9 Fagales Fagaceae Quercus robur LM 921.7 893.2 1.03 0 [78]
2 3 3 Ericales Ericaceae Rhododendron sp. LM 164 171 0.96 0 [79]
2 3 7 Commelinales Commelinaceae Rhoeo discolor cCc 10.2 11.4 0.89 0 [16]
2 3 9 Rosales Rosaceae Rosa species LM 287.3 2384 1.21 0 [80]
2 3 7 Poales Poaceae Secale cereale CcC 10.7 10.6 1.01 0 [16]
2 3 3 Solanales Solanaceae Solanum peruvianum LM ND ND 0.72 0 [81]
2 3 3 Solanales Solanaceae Solanum species LM 1,097 1,299 0.84 0 [82]
2 3 3 Solanales Solanaceae Solanum chacoense LM 514 709 0.72 0 [83]
2 3 3 Solanales Solanaceae Solanum tuberosum LM 382.9 525.1 0.73 0 [84]
2 3 9 Fabales Fabaceae Trigonella foenum cC 21.3 21.1 1.01 0 [16]
2 3 7 Poales Poaceae Triticum aestivum LM 378 328 1.15 0 [85]
2 3 7 Asparagales Alliaceae Tulbaghia acutiloba cC 14.4 15.8 0.91 0 [16]
2 3 7 Asparagales Alliaceae Tulbaghia leucantha Ccc 124 15.5 0.80 0 [16]
2 3 7 Asparagales Alliaceae Tulbaghia pulchella CcC 12.2 13.7 0.89 0 [16]
2 3 7 Asparagales Alliaceae Tulbaghia violacea cCc 1 143 0.77 0 [16]
2 3 9 Fabales Fabaceae Vicia faba CcC 20.6 16 1.29 0 [16]
2 3 9 Rosids incertae sedis Vitaceae Vitis vinifera LM 816 767 1.06 0 [86]

Note that references given in Burt et al. [17] were not repeated here.
2 K, kingdom. Numeric indicators in this column are: 1, Animalia; 2, Plantae.
b P, phylum. Numeric indicators in this column are: 1, Arthropoda; 2, Chordata; 3, Embryophyta; 4, Platyhelminthes.

€ C, class. Numeric indicators in this column are: 1, Actinopterygii; 2, Amphibia; 3, Magnoliopsidae (subclass asterids); 4, Aves; 5, Coniferopsida; 6, Insecta; 7, Liliopsida; 8, Mammalia; 9, Magnoliopsidae (subclass rosids); 10, Trematoda; 11,

Turbellaria.

9 Data refers to linkage map (LM) or chiasma count (CC).

¢ Male and female indicate the value for the chiasma count or map length for each sex.
" Ratio refers to male/female recombination rate.

9 V. refers to the presence or absence of sex chromosome (see Materials and Methods, “Sex chromosome effect”).

" Data were obtained from maps DBNordic2 and NIAlJapan (http://www.genome.iastate.edu/pig.html) [54,55].
ND, no data.
DOI: 10.1371/journal.pbio.0030063.t002

females of the species [22]) may also shed light on the
different hypotheses.

Heterochiasmy in Plants

We found that plant heterochiasmy is correlated with the
opportunity for male and female haploid selection. Female
meiosis tends to exhibit lower recombination rates relative to
male meiosis when selection is intense among female
gametophytes (e.g., in Pinaceae) or mild among male
gametophytes (e.g., in highly selfing species). This pattern is
expected if heterochiasmy is determined by the relative
magnitude of haploid selection in male and female individ-
uals. Finding a pattern consistent with this general population
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genetic prediction is, of course, not firm evidence that male-
female dimorphism in haploid selection is the evolutionary
force generating heterochiasmy. Other correlates of selfing
rates might have to be closely examined [23]. However, we
consider this explanation the most parsimonious so far. Our
finding provides, therefore, the first empirical evidence for a
theory explaining male-female differences in the amount of
recombination and contributes to our understanding of
contradictory observations that have puzzled geneticists for
almost a century. It also indicates that the amount of
recombination may be shaped by indirect selection, and,
therefore, corroborates theories based on selection and
variation for the evolution of sexual reproduction.
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Materials and Methods

An extended dataset. We measured heterochiasmy as the log of the
male/-to-female ratio (p) of autosomal recombination rate measured
either with chiasma number or map length. We log-transformed the
ratio to avoid bias due to measurement error in the denominator.
Chiasma-count data for different species were compiled by Burt et al.
[16], and we used their dataset, adding a few recent studies. We
compiled genetic map data and linkage studies in animals and plants
for which both a male and a female map were available. Only
homologous fragments (i.e., between shared markers) in male and
female maps were considered (especially in low-resolution maps).
Heterochiasmy data were available for 107 species, with 46 sets of
data based on genomic maps (Table 2).

Phylogenetic inertia. Heterochiasmy may evolve so slowly that
there is important phylogenetic inertia. Alternatively, it may be so
fast-evolving that the amount of heterochiasmy takes on nearly
independent values among related species. In the same way,
heterochiasmy may be so variable between genotypes within a species
that it may be difficult to measure and irrelevant to analyse species
specific effects. In order to get a picture of phylogenetic inertia on
heterochiasmy, we estimated the phylogenetic autocorrelation of p
using Moran’s [ spatial autocorrelation statistic [24]. When stand-
ardized, values of Moran’s I vary from —1 to 1. Positive values indicate
that heterochiasmy is more similar than random within a taxonomic
level, whereas negative values indicate that it is more different.
Because a few species had multiple estimates of heterochiasmy, we
also estimated the within-species correlation. The resulting correlo-
gram is shown in Figure 1. We found that heterochiasmy is a fast-
evolving trait: Genotypes tend to be correlated within a species (I/,,,,
= 0.38,p = 7.9%), but this correlation is lower among species within
genera (Il;,,x = 0.18, P-value = 13%), and very low when comparing
genera within families (I/l,,x = 0.039, p = 63%). This pattern is very
different from the one observed for highly autocorrelated traits using
the same method (for instance, mammalian body size [25]). This
analysis indicates that there is very little phylogenetic inertia overall
on heterochiasmy, but that the species level is appropriate for our
dataset. However, this low level of inertia may nevertheless inflate
type-1 error while testing the effect of independent variables on
heterochiasmy. In order to avoid this problem, we tested the

03 =
02 -
x
©
E 01 -
=
0.0 - L
0.1 — -

T T T T T
5 S/G G/F F/O o/iC C/P P/K K
Phylogenetic level

Figure 1. Phylogenetic Correlogram of Heterochiasmy and Selfing Rate

The y-axis represents Moran’s I rescaled to enable comparisons
between each taxonomic level for heterochiasmy (p, solid line) and
selfing rate (V,,, dashed line). The x-axis represents the taxonomic
level: IS is the correlation within species, S/G is the correlation of
species within genera, etc. F, family; O, order; C, class; P, phylum; K,
kingdom. Filled points indicate significance at p = 0.05.

DOI: 10.1371/journal.pbio.0030063.g001
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association between different variables and heterochiasmy using a
generalized estimating equations linear model correcting for the full
phylogeny (see below) [26].

Sex chromosome effect. For each species, we reported the presence
of sex chromosomes. We defined the variable V,, with the following
values: —1 for XY/XX species, —1/2 for XO/XX or XY/XX without
pseudoautosomal regions (marsupials), 0 for species without sex-
chromosomes, and +1 for ZZ/ZW species. We distinguished the —1 and
—1/2 cases to reflect the fact that, in the latter, recombination does
not occur between sex chromosomes, so we expect a lower current
selection pressure to suppress recombination. Under the Haldane-
Huxley hypothesis, the presence of sex chromosomes is supposed to
favour reduced recombination rate in the heterogametic sex. We
therefore expect a positive effect of the variable V,, on p. We did not
find such an effect in animals or plants (the linear effect of V,, on p is
not significantly different from zero [p = 0.75 in animals and p =
0.52 in plants], assuming species were independent), and this result is
unchanged if the —1 and —1/2 cases are not distinguished. Given this
negative result, there was no need to do a phylogenetic correction.

Gametic selection. In animals from our dataset, there is no female
haploid phase because the completion of meiosis occurs only at
fertilisation (sperm triggers the end of meiosis). In male gametes, very
few genes are expressed, and sperm phenotype is determined mostly
either by the diploid genotype of the paternal tissue or by its
mitochondrial genome. Imprinted genes, which can also affect the
evolution of heterochiasmy [18,21], may be as numerous as haploid-
expressed genes and act as a confounding factor while evaluating the
“opportunity” for male or female gametic selection. As a conse-
quence, we did not attempt to evaluate the opportunity for haploid
selection in animals. Rather, we focused on plants, in which there is
both a male (pollen) and female (ovule) haploid phase and during
which many genes are expressed (e.g., as many as 60% of genes may
be expressed in the male gametophyte [27,28]).

In order to evaluate the effect of the “opportunity for selection”
for male haploid phase on p, we used selfing rate as an indirect
variable estimating the degree of pollen competition. We assume that
with high selfing rates, there is less genetic variation among
competing pollen grains and, therefore, less scope for haploid
selection. We defined V,, (the degree of male gamete competition
in plants) using three values depending on the amount of selfing: 0
for dioecious, self-incompatible or largely outcrossing (less than 5%
selfing reported) species; 1 for species exhibiting low selfing rates (less
than 30% reported); and 2 for other species. We used these three
broad categories to reflect the fact that selfing rate is often variable
within species and that it is often measured indirectly and with low
precision. We therefore expect a positive effect of the variable V,, on
p if the opportunity for male gametic selection favours smaller p
values, as predicted by the modifier model [18]. We tested this effect
using the 57 species for which we were able to estimate V,, (Table 3).
We used a linear model in R [29] assuming that all species are either
independent or phylogenetically related. In the latter case, we used a
generalized estimating equations linear model [26] with a plant
phylogenetic tree to the family level using data from Davies et al. [30],
and several calibration points, including the PicealPinus divergence
approximately 140 million years ago [31], that are not included in the
Davies et al. dataset. We found an effect in the right direction with or
without correcting for the phylogeny (linear effect of p on V,,, p <
0.0002 in both cases, Figure 2). The fact that selfing plants exhibit
higher recombination rates than their outcrossing relatives has been
mentioned previously in the literature [32,33]. However, in most
cases, recombination was measured only in male meiosis. It would be
valuable to reexamine this trend in the light of our results that
recombination in male meiosis is typically greater than in female
meiosis among selfers.

In order to evaluate the effect of the “opportunity for selection”
during the female haploid phase on p in plants, we contrasted
angiosperms with gymnosperms. In angiosperms, ovules do not
compete much with each other on a mother plant, because resource
accumulation starts after fertilisation (i.e., during fruit development
in the diploid phase). In Pinus (three species in our dataset; see
Table 2), male meiosis, female meiosis, and pollination occur in the
year prior to fertilisation, but the pollen tube stops growing until the
next spring, while the female gametophytes continue to accumulate
resources and compete with each other over the course of the year.
The same situation occurs in Picea, although the period between
female meiosis and fertilisation is only 2-3 mo [34]. Perhaps more
importantly, the endosperm (which is the organ managing resources
for the zygote) is haploid in Pinaceae, in contrast to the double
fertilisation that occurs in angiosperms to produce at least a diploid
(typically triploid) endosperm [35,36]. We therefore expect that p
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Table 3. Plant Species Used to Test the Effect of Male and
Female Opportunity for Selection

Genus Species Data n Ratio® /% V¢
Arabidopsis thaliana LM 5 1.93 2 -1
Vicia faba cC 6 1.29 2 -1
Hordeum bulbosum LM 7 1.18 2 -1
Triticum aestivum LM 21 1.15 2 —1
Vitis vinifera LM 19 1.06 2 -1
Hordeum vulgare CcCc 7 1.01 2 -1
Allium macranthum cC 14 0.72 2 -1
Allium cepa cC 8 1.25 1 -1
Rosa sp. LM 7 1.21 1 —1
Manihot esculenta LM 18 1.20 1 -1
Pennisetum glaucum LM 7 1.14 1 -1
Trigonella foenum CcC 16 1.01 1 -1
Secale cereale cC 7 1.01 1 -1
Brassica napus LM 19 0.98 1 -1
Rhododendron sp. LM 13 0.96 1 -1
Allium paniculatum cC 8 0.91 1 -1
Rhoeo discolor CcCc 6 0.89 1 -1
Lycopersicon species LM 12 0.84 1 —1
Hevea species LM 18 0.83 1 -1
Eucalyptus urophylla LM 1 0.83 1 -1
Solanum tuberosum LM 12 0.73 1 -1
Malus pumila LM 17 1.25 0 -1
Dioscorea tokoro LM 9 1.17 0 -1
Castanea sativa LM 12 1.1 0 -1
Passiflora edulis LM 9 1.08 0 -1
Brassica nigra LM 8 1.04 0 -1
Quercus robur LM 12 1.03 0 -1
Acacia mangium LM 13 1.02 0 -1
Dioscorea alata LM 20 1.00 0 -1
Populus species LM 19 0.99 0 -1
Allium ursinum («@ 7 0.98 0 -1
Coffea canephora LM 1 0.97 0 -1
Dioscorea rotundata LM 20 0.96 0 -1
Lilium regale CcC 12 0.93 0 -1
Lilium henryi cC 12 0.93 0 -1
Eucalyptus grandis LM 1 0.91 0 -1
Tulbaghia acutiloba CcC 6 0.91 0 -1
Tulbaghia pulchella cc 6 0.89 0 -1
Lilium martagon CcC 12 0.89 0 -1
Lilium longiflorum cc 12 0.87 0 -1
Lilium pardalinum Ccc 12 0.85 0 -1
Lilium hansonii Ccc 12 0.82 0 -1
Tulbaghia leucantha cC 6 0.80 0 -1
Allium flavum cc 8 0.79 0 -1
Lilium speciosum cc 12 0.78 0 -1
Allium pallens cc 8 0.77 0 -1
Tulbaghia violacea («@ 6 0.77 0 -1
Lilium sargentiae CcC 12 0.74 0 -1
Solanum chacoense LM 12 0.72 0 -1
Lycopersicon peruvianum LM 12 0.72 0 -1
Fritillaria meleagris CcC 12 0.66 0 -1
Humulus lupulus LM 9 0.66 0 -1
Actinidia species LM 29 0.63 0 -1
Brassica oleracea LM 9 0.60 0 -1
Picea abies LM 12 1.13 0 1
Pinus taeda LM 12 1.48 0 1
Pinus sylvestris LM 12 1.29 0 1
Pinus pinaster LM 12 1.23 0 1

? Ratio refers to male-to-female recombination rate.

LM, linkage map; CC, chiasma count; n, haploid number of chromosomes; V,,, measure of male opportunity for
haploid selection; V;, measure of female opportunity for haploid selection.

DOI: 10.1371/journal.pbio.0030063.t003

should be greater in Pinaceae, compared to angiosperms. We
assigned V; (the degree of female gamete competition in plants) the
values 1 for gymnosperms and —1 for angiosperms. We expected a
positive effect of the variable V; on p according to the modifier
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Figure 2. Logarithm of Male-Female Ratio in Recombination Rate in
Plants

Mean and 95% confidence interval of p is shown for different groups
of plants, assuming normality and independent data points The
number of species in each group is indicated next to the mean.
DOI: 10.1371/journal.pbio.0030063.g002

model. An effect in the right direction was indeed detected (linear
effect of Vf on p, p = 0.011 and p = 0.0001, with and without
correcting for the phylogeny as above, respectively; see Figure 2).
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