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ABSTRACT
Objectives: This study aimed to establish and evaluate the efficacy of a prediction 

model for colorectal cancer T-staging.
Results: T-staging was positively correlated with the level of carcinoembryonic 

antigen (CEA), expression of carbohydrate antigen 19-9 (CA19-9), wall deformity, 
blurred outer edges, fat infiltration, infiltration into the surrounding tissue, 
tumor size and wall thickness. Age, location, enhancement rate and enhancement 
homogeneity were negatively correlated with T-staging. The predictive results of 
the model were consistent with the pathological gold standard, and the kappa value 
was 0.805. The total accuracy of staging improved from 51.04% to 86.98% with 
the proposed model.

Materials and Methods: The clinical, imaging and pathological data of 611 
patients with colorectal cancer (419 patients in the training group and 192 patients 
in the validation group) were collected. A spearman correlation analysis was used to 
validate the relationship among these factors and pathological T-staging. A prediction 
model was trained with the random forest algorithm. T staging of the patients in the 
validation group was predicted by both prediction model and traditional method. The 
consistency, accuracy, sensitivity, specificity and area under the curve (AUC) were 
used to compare the efficacy of the two methods.

Conclusions: The newly established comprehensive model can improve the 
predictive efficiency of preoperative colorectal cancer T-staging.

INTRODUCTION

Colorectal cancer is the third most common 
cancer worldwide, and the incidence and mortality 
rates of colorectal cancer continue to increase in China. 
Approximately 376.3 thousand new cases of colorectal 
cancer were diagnosed in 2015, and 191 thousand 

patients died from this cancer in China [1]. Therefore, 
the early detection of colon cancer and the selection of 
optimal treatment are particularly important, especially 
the prediction of tumor stage because it determines 
the administration of adjuvant therapy. At present, the 
treatment of colorectal cancer is mainly radical surgery 
and adjuvant therapy. The development of treatment 
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strategies rely on patients’ TNM staging. Accurate 
preoperative staging can provide an objective basis for 
the adjuvant treatment of colorectal cancer, the choice 
of surgical protocols and prognosis [2]. Therefore, 
preoperative staging of colorectal cancer is particularly 
important.

Recent advances and continued progress in cross-
sectional radiologic imaging of the colorectum have 
improved the noninvasive evaluation of colorectal tumors 
[3]. Moreover, computed tomographic colonography 
(CTC) permits additional image reconstruction techniques. 
Currently, CTC is the most common radiological 
examination method for suspected colorectal disease 
because of its high sensitivity for colorectal cancer [4, 5]. 
Specifically, CTC provides imaging information for the 
primary tumor, local lymph node metastasis and distant 
metastasis [6]. In the clinical routine radiologists usually 
solely use the AJCC tumor TNM system to predict the 
preoperative staging of colorectal cancer base on CT 
images. However, the traditional method for colorectal 
tumor T-staging used by radiologists maybe overestimated 
or underestimated due to individual subjectivity in the 
assessment.

The random forest (RF) algorithm is based on a 
popular statistical learning theory that uses the bootstrap 
resampling method to extract multiple samples from the 
original sample. Compared with traditional classification 
methods, such as linear regression analysis and logistic 
regression analysis, RF has no restrictions on the number 
of predictor variables, no collinearity, and deals with 
complex nonlinear relationships. Therefore, this study 
aimed to develop a comprehensive model by random 
forest that accurately predicts the T-staging of colorectal 
cancer.

RESULTS

Clinical characteristics

This study included 611 patients with 611 colorectal 
cancer lesions confirmed by pathology. All patients 
underwent conventional CTC or water enema MDCT 
prior to surgery. The characteristics of 611 colorectal 
cancer patients are given in Table 1. The average age 
of the patients was 60.8 ± 10.8 (28–93) years old, and 
the male to female ratio was 1.24:1. Tumors were more 
common in the left colon (76.92%), and the predilection 
sites were the rectum (38.8%) and sigmoid colon (29.0%). 
Tumor staging was stratified as follows: ≤ T2 stage in 212 
(34.7%) patients, T3 stage in 221 (36.17%) patients, and 
T4 stage in 178 (29.13%) patients. Thirteen factors from 
the clinical information and preoperative CTC images 
and one dependent variable from the pathological results 
were counted in this study. Except gender, T-staging 
correlated with twelve independent variables. T-staging 
positively correlated with the CEA level (ρ = 0.423,  

p < 0.001), expression of CA19-9 (ρ = 0.305, p < 0.001), 
wall deformity (ρ = 0.642, p < 0.001), blurred outer edge 
of the intestine (ρ = 0.486, p < 0.001), fat infiltration (ρ = 
0.597, p < 0.001), infiltration into the surrounding tissue 
(ρ = 0.296, p < 0.001), tumor size (ρ = 0.547, p < 0.001), 
and wall thickness (ρ = 0.335, p < 0.001). Conversely, 
age (ρ = −0.111, p = 0.006), tumor location (ρ = −0.28,  
p < 0.001), enhancement rate (ρ = −0.103, p = 0.011) and 
enhancement homogeneity (ρ = −0.354, p < 0.001) were 
negatively correlated with T-staging.

The cohort is divided into the training group (419 
patients) and validation group (192 patients), and the basic 
clinical information of the two groups is provided below 
(Table 2). The training group and validation group did not 
differ in gender, age or T-stage (p = 0.23–0.573). The model 
can be validated using this validation group’s data set.

Validation of the prediction model performance

The results of the model-predicted colorectal cancer 
T-staging were highly consistent with the results of the 
pathological gold standard and much more accurate 
than traditional methods (Table 3). The model correctly 
predicted the T-stage of the validation cohort for 167 of 
192 (86.98%) patients, whereas the traditional method 
correctly predicted the T-stage for only 98 patients 
(51.04%), this difference was significant (χ2 = 57.974, p < 
0.001). Moreover, the prediction of the model for ≤ T2 and 
T3 disease was more accurate than that of the traditional 
method (χ2 = 24.738, 39.6; p < 0.001, < 0.001), there 
is no statistical differences for T4 disease (χ2 = 3.316, 
p = 0.069). The model incorrectly overestimated and 
underestimated the stage for 17 of 25 patients (68%) and 8 
patients (32%), respectively. Specifically, 10 patients with 
≤ T2 disease were predicted to have stage T3 disease, and 
7 patients with stage T3 disease were predicted to have 
T4 disease. Conversely, 5 patients with stage T3 disease 
were predicted to have ≤ T2 disease, and 3 patients with 
T4 disease were predicted to have T3 disease. Using 
the traditional method, the staging was incorrectly 
overestimated and underestimated for 81 of 94 patients 
(86.17%) and 13 patients (13.83%), respectively. Figure 1 
shows a pathologically confirmed T3 colorectal cancer 
lesion that was misdiagnosed as a T4 lesion by traditional 
method because the tumor exhibited a strip-like, high-
density appearance in the peripheral adipose tissue. The 
model classified this lesion as T3 stage correctly. Thus 
the opacity of the tumor surrounding fat is not a tumor 
infiltration, but an inflammatory response. 

The sensitivity and specificity of colorectal cancer 
staging predicted by the model and conventional methods 
are shown in the table below (Table 4). The sensitivity, 
specificity and accuracy of the model are higher than 
traditional method which has certain significance in 
accurate preoperative classification and treatment options 
for colorectal cancer.
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The ROC curves and AUC values of the two 
prediction methods are shown below in Figure 2. The 
AUC for the accuracy of prediction result was significantly 
higher in the model than in the traditional method.

DISCUSSION

Colorectal cancer has a high incidence and mortality 
[7]. With the continuous development of colorectal cancer 
treatment methods, many strategies are available for the 
treatment of colorectal cancer, including local excision, 
radical resection, and multimodal therapy [8, 9]. The rapid 
development of surgical techniques has placed surgery as 
the leading treatment for colorectal cancer. But a specific 
treatment plan strongly depends on accurate pretreatment 
staging [2, 10, 11]. In surgical treatment, stage T1 tumors 
are recommended for local excision and radical resection 
for stage T2-4 tumors. Surgical procedures include open 

and laparoscopic colorectal cancer surgery. Laparoscopic 
surgery has been shown to improve short-term clinical 
and oncologic outcomes [12, 13], including shortened 
hospital stays, fewer postoperative complications and 
accelerated rehabilitation [14]. Thus, laparoscopic-
assisted colectomy has been widely accepted for the 
treatment of mucosal or submucosal carcinoma, whereas 
open surgery is preferably used to treat advanced cancer 
[15, 16]. In the medical treatment, it is recommended 
stage T3 and T4 tumor patients with neoadjuvant therapy. 
Neoadjuvant radiotherapy and chemotherapy can shrink 
T4 stage colorectal tumors to allow sphincter-preserving 
surgery, which reduces the recurrence rate and improves 
the survival rate [17]. But, adjuvant therapy is not 
recommended for patients with stage ≤T2 without lymph 
node metastasis and distant metastasis. In addition, tumor 
T-staging is the strongest prognostic factor for colorectal 
cancer survivors [18]. Therefore, precise staging of 

Table 1: Characteristics of all included patients
Independent variables ≤ T2 T3 T4 pa

Gender, No. (%) Male 114(53.8) 130(58.8) 94(52.8) 0.929
Female 98(46.2) 91(41.2) 84(47.2)

Age, year, mean ± SD 62.2 ± 10 60.6 ± 10.7 59.2±11.7 0.006*

CEA, ng/ml, M(P25-P75) 2.18(1.17–3.34) 3.82(2.14–9.22) 6.26(2.79–21.17) < 0.001*

CA19–9, ng/ml, M(P25-P75) 9.6(5.88–14.25) 12.47(7.03–23.26) 19.63(9.01–81.44) < 0.001*

Location, No. (%) Right 23(10.8) 45(20.4) 73(41) < 0.001*

Left 189(89.2) 176(79.6) 105(59)
Deformity, No. (%) 1 18(8.5) 1(0.4) 0 < 0.001*

2 74(34.9) 25(11.3) 0
3 82(38.7) 28(12.7) 9(5.1)
4 38(17.9) 167(75.6) 169(94.9)

Blurred outer edge, No. (%) Absent 123(58) 35(15.8) 9(5.1) < 0.001*

Present 89(42) 186(84.2) 169(94.9)
Fat infiltration, No. (%) Absent 189(89.2) 81(36.7) 28(15.7) < 0.001*

Present 23(10.8) 140(63.3) 150(84.3)
Infiltration into the surrounding 
tissue, No. (%)

Absent 212(100) 208(94.1) 141(79.2) < 0.001*

Present 0 13(5.9) 37(20.8)
Size, cm, M(P25-P75) 2.6(1.8–3.8) 4.3(3.5–5.7) 5.3(4.1–7) < 0.001*

Wall thickness, cm, M(P25-P75) 0.8(0.6–1.2) 1(0.8–1.2) 1.3(1–1.6) < 0.001*

Enhancement rate, %, M(P25-P75) 0.89(0.66–1.14) 0.9(0.69–1.17) 0.82(0.55–1.01) 0.011*
Enhancement homogeneity, No. (%) inhomogeneous 21(9.9) 47(21.3) 88(49.4) < 0.001*

homogeneous 191(90.1) 174(78.7) 90(50.6)
NOTE. Abbreviations: CEA, carcinoembryonic antigen. CA19-9, carbohydrate antigen 19-9.
Enumeration data is expressed as a percentage. Normal distribution of measurement data is expressed as mean ± SD. Non-
normal distribution of measurement data is expressed as M(P25-P75).
p value is derived from univariate association analyses between each of the independent variables and pathological T-staging. 

aSpearman correlation analysis. * p value < 0.05.
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colorectal cancer is used to determine the most appropriate 
treatment strategy and evaluate the outcome of therapy.

Several diagnostic tools are available for 
the diagnosis and evaluation of colorectal cancer. 
Colonoscopy and biopsy are the gold standard for the 

diagnosis of colorectal cancer. However, it also has some 
limitations. For the incomplete colonoscopy due to distal 
obstruction, the proximal colorectal segment cannot be 
effectively detected. It is also not able to detect extra 
intestinal conditions and is deficient in the evaluation of 

Table 2: Clinicopathologic information of patients in the training and validation groups
Training group Validation group p

Gender, No. (%) male 235 (56.1) 103 (53.6) 0.573a

female 184 (43.9) 89 (46.4)

Age, year, mean ± SD 61.1 ± 10.9 60 ± 10.7 0.23b

T-stage ≤ T2 149 (35.6) 63 (32.8)
0.399aT3 155 (37) 66 (34.4)

T4 115 (27.4) 63 (32.8)

NOTE. p value < 0.05 illustrates a significant difference between two groups.
a chi-square test. b t-test.

Figure 1: Axial (A), coronal (B) and sagittal (C) images of a colon cancer lesion located in the hepatic flexure of the colon of a 72-year-old 
male who presented with a change in defecation habits. Conventional methods preoperatively predicted the T-stage as T4 because of evident 
serosa thickening, increased surrounding fat gap density, a blurred neighboring peritoneal border, and adjacent peritoneal thickening on the 
CT image. Conversely, the model predicted T3 disease, which was consistent with the pathological staging.
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colorectal cancer TNM staging. In non-invasive imaging 
methods, magnetic resonance (MR) techniques feature a 
higher soft tissue resolution and can clearly distinguish 
rectal intestinal wall stratification [19]. However the 
diagnostic efficacy for the colon is low because this 
technique is time-consuming and cost-ineffective. 
Thus, multi-slice spiral CT remains one of the best 
methods for the preoperative staging of colorectal cancer  
[20, 21]. Advances in hardware and post-processing 
software technology have improved the accuracy of 
colorectal cancer screening, staging and monitoring and 
provide a wealth of information for the preoperative 
assessment of colorectal cancer T-staging [19, 20, 22]. 
Therefore, the use of MDCT for accurate preoperative 
staging can effectively help physicians to select 
appropriate therapeutic regimen, which has important 
reference value to clinical practice.

A number of studies have correlated wall 
deformations in the CT image with T-staging, and the 
accuracy of this approach ranges from 73%–83% [19]. 
However, a uniform criterion for determining tumor 
T-staging is lacking. Radiologists identify the T-stage 
of colorectal cancer using a traditional method based 
on the 7th edition of the AJCC tumor TNM system[23]. 
In clinical practice, the diagnosis of stage depends on 
the doctors’ experience in medical image knowledge 
and disease diagnosis, the results lack of quantitative 
analysis and objectivity. Thus, due to limitations in CT 
resolution and doctors’ subjectivity, radiologists cannot 
accurately identify tumors that surround connective tissue 
hyperplasia, inflammation and peritumoral fat infiltration 
[24]. Because of these shortcomings, the staging of many 
tumors was always incorrectly classified. In this study, 
the accuracy rate of tumor staging was only 51%. In 
particular, the accuracy rate of stage T2 and T3 is very 

low, only 39% and 27%. Therefore, it is very important to 
establish a new stage prediction model.

In recent years, the development of medical imaging 
technology has increased the amount of information 
provided by these images. However, general medical 
statistical analyses are not satisfactory, and the demand 
for data mining is growing. The RF method is based on a 
popular statistical learning theory that uses the bootstrap 
resampling method to extract multiple samples from 
the original sample. The forecast of multiple decision 
trees is then combined, and the final prediction result is 
obtained by voting. RF predictions are highly accurate 
and tolerant to exception values and noise without being 
prone to over-fitting. Thus, RF has been widely applied 
in medicine, bioinformatics, management and other fields 
[25, 26]. RF can be used for multivariable classification 
and prediction. Its biggest feature is suitable for analyzing 
data with complex nonlinear relationships. In this study 
we used the random forest method to establish a model to 
preoperatively predict the T-staging of colorectal cancer. 
The external validation method is used to evaluate the 
classification effect of the prediction model. The results 
showed that the overall accuracy of the prediction was 
87%, whereas the accuracy for the prediction of each 
stage was 84%, 82%, and 95%, which was higher than the 
73%–83% accuracy values reported in previous studies. 
The accuracy of the traditional method was lower than 
that reported in previous studies, whereas our model 
significantly improved the accuracy of the prediction for 
tumor T-staging. The model developed in this study could 
successfully and accurately predict preoperative colorectal 
cancer T-staging. 

Nevertheless, this study was subject to the following 
limitations. Firstly, not all patients included in the study 
underwent CTC examination; some patients underwent 

Table 3: Model’s and traditional method’s prediction results

Model, No. (%)
Pathological staging

≤ T2 T3 T4 Total
consistency

Kappa p
≤ T2 53 (84.1) 5 (7.6) 0 58 (30.2) 0.819a < 0.001*
T3 10 (15.9) 54 (81.8) 3 (4.8) 67 (34.9) 0.712 < 0.001*
T4 0 7 (10.6) 60 (95.2) 67 (34.9) 0.884a < 0.001*
Total 63 (100) 66 (100) 63 (100) 192 (100) 0.805a < 0.001*

Traditional method, No. (%)
Pathological staging

≤ T2 T3 T4 Total
consistency

Kappa p
≤ T2 26 (41.3) 4 (6.1) 1 (1.6) 31 (16.1) 0.434 < 0.001*
T3 31 (49.2) 18 (27.3) 8 (12.7) 57 (29.7) –0.038 0.596
T4 6 (9.5) 44 (66.7) 54 (69.6) 104 (54.2) 0.403 < 0.001*
Total 63 (100) 66 (100) 63 (100) 192 (100) 0.266 < 0.001*
NOTE. *p value < 0.05. aKappa value > 0.8.
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MDCT water enema examination. In our analysis, we 
classified these two methods as one method. Although 
the research objective was independent of the two CT 
examination methods, the reconstruction technologies 

of these methods differ, which may have resulted in 
differences in the final experimental results. Specifically, 
CTC examination relies on ray sum imaging, which more 
accurately measures the tumor angle. Secondly, this study 

Figure 2: Receiver operating characteristic (ROC) curves and area under the curve (AUC) of the model and 
conventional method by stage. (A, C, E) The ROC curves of model (a: ≤ T2 and T3 stage; c: T3 and T4 stage; e: T2 and T4 stage).  
(B, D, F) The ROC curves of the conventional method (b: ≤ T2 and T3 stage; d: T3 and T4 stage; f: T2 and T4 stage). 

Table 4: Sensitivity and specificity of the model and traditional method for predicting the T-stage
model traditional method

Sensitivity (%) Specificity (%) Sensitivity (%) Specificity (%)
≤ T2 84.1 96.1 41.3 96.3
T3 81.8 89.7 27.3 69
T4 95.2 94.6 85.7 61.2
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only considered T-staging and established a T-staging 
model. We did not examine N and M staging, which may 
have biased the discussion of tumor treatment. We hope 
to improve the TNM staging system in future studies to 
establish a complete tumor stage prediction model. 

MATERIALS AND METHODS

Patients

This retrospective study was approved by the ethics 
committee of our institution and did not require informed 
consent. From January 2016 to April 2017, a total of 2482 
patients underwent CTC and multidetector CT (MDCT) 
with water enema at our hospital. Of these patients, 611 
patients who were suspected to have colorectal cancer 
(338 men, 273 women; mean age, 60.8 ± 10.8 years; 
range, 28–93 years) accepted the surgical procedures and 
provided postoperative pathological results. All patients 
were randomly divided into two groups at a ratio of 
approximately 2:1. Specifically, 419 patients (235 men, 
184 women; mean age, 61.1 ± 11.9 years; range, 28–
93 years) were enrolled in the training group, and 192 
patients (103 men, 89 women; mean age, 60 ± 10.7 years; 
range, 28–91 years) were enrolled in the validation group.

CT scanning

All patients ate a semi-liquid dinner containing 
750 ml of polyethylene glycol electrolyte powder 
(Shutaiqing, Staidson biological pharmaceutical Limited 
by Share Ltd, Beijing, China) in the evening on the day 
before the examination. The patients received another 
1,500 ml of polyethylene glycol in the morning on the 
day of the examination. Smooth muscle relaxation was 
achieved with an intramuscular injection 15 minutes 
before the examination. Thereafter, room air was infused 
through a latex tube placed in the rectum with a manual 
insufflation device to distend the colon for patients who 
underwent CTC; patients who underwent MDCT received 
a water enema to expand the bowel.

Patients undergoing CTC were subjected to a double 
position scan. In the prone position, the patients underwent 
a low-dose scanning protocol (120 kVp, 25 mAs), whereas 
in the supine position plain and enhanced scan were 
performed by routine dose (120 kVp, 150 mAs). The 
patients undergoing MDCT after a water enema underwent 
a routine CT scanning protocol (120 kVp, 150 mAs) in 
the supine position with contrast-enhanced scanning. The 
following scan parameters were employed: pitch, 0.8; 
gantry rotation time, 0.5 s; slice thickness, 3.0 mm; tube 
voltage, 120 kVp; tube current, 25 mAs (prone) and 150 
mAs (supine); and matrix, 512 × 512. CT images acquired 
in both the supine and prone positions were reconstructed 
at an interval of 1 mm, using iDose4 level-6 for the prone 
position and filtered back projection (FBP) for the supine 

position. Technologists reconstructed the CTC images 
using a Raysum reconstruction technique at a workstation 
(Ziostation; Ziosoft2, Tokyo, Japan). All images were 
transferred to a PC-based communication system (PACS).

Data acquisition

A total of 13 predictive variables (clinical and 
imaging data) and one dependent variable (pathological 
results) needed to be collected from the model and 
validation cohorts of patients. The clinicopathologic data 
of patients, including gender, age, carcinoembryonic 
antigen (CEA) level, expression of carbohydrate antigen 
19-9 (CA19-9), and pathological results were collected 
from case database. We reviewed the following nine 
imaging data from CT images: tumor location (left colon, 
right colon), tumor size, intestinal wall thickness of the 
lesion, wall deformity, contrast enhancement rate of the 
lesion, enhancement homogeneity, blurred outer edge of 
the intestine, pericolonic fat infiltration, and infiltration 
into the surrounding tissue. 

According to the classification method previously 
reported by Kazuhito Sato et al. [27], the wall deformity 
was scored from 1–4 as follows: 1 – lesions smaller than 1 
cm and 2–4 – lesions with lengths equal to or greater than 
1 cm. Specifically, a score of 2 represented an angle less 
than 90° formed by the outline of the lesion and the outer 
edge of the intestinal tract, whereas a score of 3 indicated 
an angle that was equal to or greater than 90°. The apple 
core sign was classified as a score of 4 (Figure 3). The 
ray sum images were used to show the best angle for 
measurement. In conventional CT images, we identified 
the largest dimension of the tumor by reconstruction of 
the original images and then measured the desired angle.

The contrast enhancement rate (CER) was 
calculated using the following formula (1). We selected 
the maximum dimension of the lesion from the plain 
phase and portal venous phase images to draw the region 
of interest (ROI) while avoiding cystic and necrotic zones 
and the transition zone between lesions and the normal 
intestinal canal. We measured the CT value of the ROI 
three times and calculated the average of the three results 
as follows. 

100%
plainlesion  CTN

plainlesion  CTN - portallesion  CTN= CER ×
  (1)

Abbreviations: CER, contrast enhancement rate. 
CTN, CT number.

Based on a comprehensive review of the literature 
and tumor’s evaluation by the 7th edition of the AJCC 
tumor TNM system, three radiological signs were 
reviewed: blurred outer edge of the intestine, pericolonic 
fat infiltration, and infiltration into the surrounding tissue. 
The above radiological signs were evaluated for given 
segments as follows: The presence and absence of any sign 
in a given segment was rated as ‘1’ and ‘0’, respectively. 
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Similarly, enhancement homogeneity of a lesion was rated 
as ‘1’ and ‘0’, respectively. These clinicopathologic and 
imaging parameters are summarized in Supplementary 
Table 1. Table 5 shows the coding instructions for the 
predictor variables.

Development and validation of a predictive 
model

In this study, random forest algorithm was used 
to establish the preoperative staging model of colorectal 
cancer. Traditional statistical classification methods 
such as linear regression analysis and logistic regression 
analysis have great limitation in the classification research. 
The traditional classification model is often not accurate 
enough and is prone to overfitting problems. Thus, many 
scholars raised the prediction accuracy by aggregating 

multiple models, which is called ensemble or classifier 
combination. Random forest is a machine learning and an 
integrated algorithm including multiple decision trees, the 
output of which is determined by the decision tree model 
[28, 29]. This method combines Breiman’s thought of 
“Bootstrap Aggregating” and “Random Subspace Method” 
introduced by Ho [30].

The calculation process of the random forest 
classification model referred to literature [28, 31]. 
The basic idea of establishing random forest model is 
to continue to generate the training samples and test 
samples through the bootstrap resampling technique, 
and a number of classification trees are generated from 
the training samples to form a random forest. Then, the 
final classification results are obtained by combining 
the voting results of sub classifiers. The important 
parameter of random forest is the number of trees — 

Figure 3: Four types of wall deformations revealed using MDCT following a water enema (A, B) and ray sum images (C, D). A: a score 
of 1 indicates a lesion smaller than 1 cm; B: a score of 2 indicates a lesion angle less than 90°; C: a score of 3 indicates a lesion angle greater 
than 90°; D: a score of 4 indicates the apple core sign intestinal wall deformation.
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ntree, in this study ntree = 100. The calculation process 
is as follows:

(1) The original training set is N (N = 419). Nx 
samples are randomly taken as a bootstrap sample, the 
size of which is the same as the input (Nx = N). Out-of-
bag (OOB) consists of untaken samples. This is repeated 
S times to create S classification trees. 

(2) There are ma variables, mtry variables are 
randomly selected at each node of each tree (mtry < ma), 
in accordance with the principle of minimum impurity of 
the node to filter out the best splitting points for branch 
growth. In the entire forest establishing process mtry 
remains constant.

(3) RF is composed of the classification trees. The 
test data are discriminated and classified by RF classifier. 
The classification result depends on the number of voting 
by tree classifiers.

Prediction of colorectal cancer staging using 
conventional method

The traditional colorectal cancer imaging staging 
method evaluates the deformation of the bowel wall at the 
lesion based on the AJCC tumor TNM system. Because 
of the low resolution of CT [32], T1 and T2 tumors 
were collectively referred to as ≤ T2 stage. According 
to previous studies [6, 18], CT images containing ≤ T2 
tumors showed lesions with smooth outer edges of the 

intestinal wall, whereas T3 tumors exhibited rough serous 
layers with the presence of speculation. T4 tumors had 
infiltrated the peritumoral fat plane, as evidenced by 
streaks and nodules, or had infiltrated adjacent organs 
(Figure 4). According to this conventional method, three 
experienced radiologists staged the tumors of patients in 
the validation cohort independently. If their diagnosis was 
inconsistent, we adopted the result of their agreement or 
the conclusion of the radiologist with more experience. 

Statistical analysis

Univariate analyses were used to analyze the 
correlation between the dependent variable (pathological 
T-staging) and the independent variables (gender, age, CEA, 
CA19-9, tumor location, tumor size, intestinal wall thickness 
of lesion, wall deformity, contrast enhancement rate of the 
lesion, enhancement homogeneity, and tumor invasion sign). 
All data were analyzed using Spearman correlation analysis. 
A Chi-squared test and group t-test were used to analyze 
differences between the training and validation groups.

This study used the package random forest (RF) in 
MATLAB (2016a, MathWorks, USA) to train the T-stage 
classification model of colorectal cancer. The accuracy 
of the model and traditional method for predicting 
T-staging was evaluated based on a percentage, and the 
differences in these percentages were compared with the 
Chi-squared test. Pathological results were consistent 

Figure 4: Axial images of tumors of various stages obtained using a traditional method. (A) T2 stage, lesions exhibited a 
smooth outer edge; (B) T3 stage, the edge of the intestinal wall shows sharp corners; (C) T4 stage, the lesion had invaded the inferior margin 
of the adjacent liver.

Table 5: Predictive variables, dependent variable and coding descriptions of model
number variable variable descriptions number variable variable descriptions

1 Gender 0 = man; 1 = woman 1 Fat infiltration 0 = absence; 1 = presence

2 Age continuous 2 Infiltration into the surrounding tissue 0 = absence; 1 = presence

3 CEA, ng/ml continuous 3 Size, cm continuous

4 CA19-9, ng/ml continuous 4 Wall thickness, cm continuous

5 Location 0 = right; 1 = left 5 Enhancement rate, % continuous

6 Deformity 1 = ≤ 1 cm; 2 = < 90°; 3 = > 90°; 4 = 
apple core

6 Enhancement homogeneity 0= inhomogeneous; 1= homogeneous

7 Blurred outer edge 0 = absence; 1 = presence 7 T stage* 1 =≤ T2; 2 = T3; 3 = T4

* Dependent variable; The rest were predictor variables.
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with the models and the traditional methods. k < 0.4 is 
poor consistency, 0.4 ≤ k < 0.8 is medium consistency,  
k ≥ 0.8 is good consistency. The sensitivity and specificity 
of two method’s predictive results were calculated. The 
area under the curve (AUC) of the receiver operating 
characteristic (ROC) curve for the proposed model 
and traditional method was calculated in terms of the 
preoperative prediction of colorectal cancer T-staging. 

All data were analyzed with SPSS 18.0.0 software. 
Significance was set at p < 0.05. 
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