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Abstract

Background

Deep tissues and their afferents have unique responses to various stimuli and respond to

injury distinctively. However, the types of receptors and endogenous ligands that have a key

role in pain after deep tissue incision are unknown. TRPA1 has been shown to mediate

pain-related responses in inflammation- and nerve injury-induced pain models. We hypothe-

sized that TRPA1 has an important role in pain behaviors after deep tissue incision.

Methods

The effect of various doses of intraperitoneal (i.p.) TRPA1 antagonist, HC-030031, on pain

behaviors after skin + deep tissue incision of the rat hind paw was measured. In vivo reactive

oxygen species (ROS)-imaging and hydrogen peroxide (H2O2) levels after incision were

also evaluated. Separate groups of rats were examined for H2O2-evoked pain-related

behaviors after injections into the deep tissue or the subcutaneous tissue.

Results

Guarding pain behavior after skin + deep tissue incision was decreased by i.p. HC-030031.

However, HC-030031 did not affect mechanical or heat responses after incision. Treatment

either before or after incision was effective against incision-induced guarding behavior.

ROS increased after skin + deep tissue incision in both the incised muscle and the skin. Tis-

sue H2O2 also increased in both skin and muscle after incision. H2O2 injection produced

pain behaviors when injected into muscle but not after subcutaneous injection.

Conclusions

This study demonstrates that TRPA1 antagonist HC-030031 reduced spontaneous guard-

ing pain behavior after skin + deep tissue incision. These data indicate that TRPA1 recep-

tors on nociceptors are active in incised fascia and muscle but this is not evident in incised

skin. Even though endogenous TRPA1 agonists like ROS and H2O2 were increased in both
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incised skin and muscle, those in skin do not contribute to nociceptive behaviors. This study

suggests that endogenous TRPA1 ligands and the TRPA1 receptor are important targets

for acute pain from deep tissue injury.

Introduction

Postoperative pain continues to be a significant problem following surgery. To better under-

stand the mechanisms for pain caused by surgery, we previously have generated a rat model of

postoperative pain [1]. Using this model, we demonstrated that incision in skin + deep tissue

caused greater guarding behavior and more spontaneous activity in nociceptors and dorsal

horn neurons, compared to skin incision alone [2–4]. Various tissues and the afferents inner-

vating these tissues have unique responses to injuries. Both preclinical and clinical studies sug-

gest that deep tissue injury has an important role in postoperative pain [2, 5, 6]; however, the

types of receptors and endogenous ligands that have a key role in incisional pain from deep tis-

sues are currently unknown.

The Transient Receptor Potential Ankyrin 1 (TRPA1) channel is a member of the TRP

channel family, and it has been shown to mediate pain-related responses in inflammation- and

nerve injury-induced pain models [7]. TRPA1 is expressed in a subset of nociceptors express-

ing Transient Receptor Potential Vanilloid 1 (TRPV1) [7]. TRPA1 can be activated by noxious

cold temperature, naturally occurring exogenous compounds, such as allyl isothiocyanate, cin-

namaldehyde, and allicin and reactive oxygen species (ROS). [8–12]. ROS levels serve impor-

tant signaling roles, including an adaptive response to stressful conditions. ROS are by-

products of aerobic metabolism, and the most common ROS include superoxide anions (�O2
-),

hydroxyl radical and hydrogen peroxide (H2O2) [13]. ROS have an important role in wound

healing and may contribute to postsurgical pain via the TRPA1 receptor.

Previously, we have shown that TRPV1-expressing nociceptors generate spontaneous

guarding pain behavior after skin + deep tissue incision [14, 15]. However, pharmacological

blockade or genetic knockout of TRPV1 did not suppress the guarding behavior [16, 17].

Therefore, TRPV1-containing nociceptors but not necessarily TRPV1 receptors play a major

role in guarding behavior. We hypothesized that TRPA1 activation in wounds by ROS includ-

ing H2O2 could contribute to pain behavior after incision. We examined the effect of the

TRPA1 antagonist, HC-030031, on pain behaviors after skin + deep tissue incision. We also

examined in vivo ROS-imaging and measured the levels of H2O2, an endogenous TRPA1

receptor ligand, in skin and deep muscle after incision.

Materials and Methods

Procedures in this study were approved by The University of Iowa Animal Care and Commit-

tee (Approval number: 5011267), Iowa City, Iowa, USA and conformed to the NIH guide for

the Care and Use of Laboratory Animals. Adult male Sprague-Dawley rats (200–320 g, Harlan,

Indianapolis, IN) were housed in groups of 2 in clear plastic cages (40 x 60 x 30 cm) on fresh

bedding with free access to food and water. The environment was controlled with a 12 hour

light-dark cycle and a room temperature of 22.0 ± 2.0˚C. The physical conditions of the ani-

mals were carefully monitored every weekday during the experiments. The clinical signs of ill-

ness included sustained weight loss, self-destructive behavior, abnormal reaction of the central

nervous system, and any obvious functional injury. The animals did not show any signs of

stress (except pain-related behavior) or illness throughout the experiment. One hundred and
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four rats were assigned for pain behavior after incision, 54 rats were assigned for in vivo ROS

imaging, 18 rats were assigned for the H2O2 assay, and 37 rats were assigned for nociceptive

behavior after H2O2 injection. Altogether, 213 rats were used in this study.

Surgical incisions

This study used two types of incisions: (1) skin + deep tissue incision of the hind paw, which

involves incision of the skin, underlying fascia, and the plantar flexor digitorum brevis muscle

and (2) skin + deep tissue incision at the gastrocnemius muscle, which incised skin, underlying

fascia, and divided one head of the gastrocnemius muscle. Detailed methods for performing

these incisions were described in previous studies [1, 2, 18] Briefly, anesthesia was induced by

placing the animal in a sealed plastic box containing 5% isoflurane mixed with air. During sur-

gery, anesthesia was maintained with 1.5–2% isoflurane delivered through a nose cone. The

skin of the surgical site was prepared with 10% povidone-iodine immediately before incision.

For skin + deep tissue incision of the hind paw, a 1-cm longitudinal incision was made and

the underlying fascia and the plantar flexor digitorum brevis muscle were incised with a #11

surgical blade. Blunt curved forceps were then inserted through the incision into the muscle to

further divide and retract the muscle. The muscle origin and insertion remained intact. The

wound was then closed with two subcutaneous mattress sutures with 6–0 nylon on a P-1 nee-

dle (Ethicon, Somerville, NJ, USA).

For the skin + deep tissue incision at the gastrocnemius muscle, beginning 1 cm from the

edge of the heel, a 2-cm longitudinal incision was made through the skin, underlying fascia,

and the gastrocnemius muscle with a # 11 surgical blade. Grasping forceps were then inserted

through the incision into one head of the gastrocnemius muscle to divide and retract the mus-

cle. The muscle origin and insertion remained intact. The wound was then closed with three

subcutaneous mattress sutures with 6–0 nylon. For the skin incision group, beginning 1 cm

from the edge of the heel, a 2-cm longitudinal incision was made only through the skin overly-

ing gastrocnemius muscle. The incised skin was then closed with three subcutaneous mattress

sutures of 6–0 nylon.

Incision-induced pain behaviors

Detailed methods for these behavioral tests were described previously [1, 2, 18]. Briefly, rats

were first acclimated to the testing environment for 3 days. Then a baseline test was performed

1 day before incision. After hind paw incision, pain behaviors were measured up to 2 days

after incision. The person performing the behavioral test was blinded to drug injected.

For guarding behavior, rats were placed individually on a small plastic mesh floor (grid

8 × 8 mm) covered with a clear plastic cage top (21 × 27 × 15 cm). Both incised and non-

incised hind paws were closely observed during a 1-minute scoring period, and a score of 0, 1,

or 2 was given. Zero was scored when the incised area (or corresponding area in the non-

incised hind paw) was touching the mesh, and the area was blanched or distorted by the mesh;

1 was scored when the incised area touched the mesh without blanching or distortion; 2 for

the position when the incised area was completely off of the mesh. We scored once every 5

minutes for 1 hour after incision. Therefore, a cumulative score was obtained by adding the 12

scores during the 1-hour testing period (0–24) for each hind paw. The guarding score was

then obtained by subtracting the score of the incised hind paw from that of the non-incised

hind paw.

For mechanical withdrawal threshold, rats were placed on a plastic mesh floor with 12 × 12

mm openings. Calibrated Semmes-Weinstein monofilaments (Stoelting, Wood Dale, IL, USA)

were used for mechanical testing. The filaments were carefully applied from underneath the
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mesh to an area adjacent to the incision or a corresponding area in the non-incised hind paw.

Starting with 13 mN, each filament was applied once until a withdrawal response was pro-

voked. If the force of 228 mN was reached and there was still no withdrawal response, then

673 mN, the bending force of the next filament, was recorded as the withdrawal threshold.

This test was performed for three times with at least a 5-minute interval between tests. The

lowest force that elicited a response from the three tests was defined as the mechanical with-

drawal threshold.

For heat withdrawal latency, rats were placed individually on a glass floor covered with a

clear plastic cage. The experimental room temperature was maintained at 22 ± 2˚C. Radiant

heat from a 50-W projector lamp was applied to the incised hind paw from underneath the

glass floor. The latency to evoke withdrawal was determined with a cutoff value of 20 seconds.

Each rat was tested three times with an interval of at least 10 minutes. The average of the three

trials was recorded as the heat withdrawal latency.

Experimental protocols for incision-induced pain behaviors. We evaluated the effect of

various doses of intraperitoneal (i.p.) HC-030031 (75, 150 and 300 mg/kg) on the pain-related

behaviors at several time points after skin + deep tissue incision of the hind paw. The control

group received i.p. vehicle instead of HC-030031.

First, the effect of HC-030031, injected after hind paw incision, on guarding behavior was

evaluated. Pre-incision baseline guarding was measured 1 day before incision. Plantar incision

was made and guarding was measured 2 hours after incision. Then the animals received an i.p.

injection of HC-030031 or vehicle. Guarding behavior was evaluated at multiple time points

following drug administration up to postoperative day (POD) 2.

Then, the effect of HC-030031 on mechanical and heat hyperalgesia after skin + deep tissue

incision of the hind paw was evaluated in one separate group of rats. After baseline responses

were measured, incision was made and post-incision mechanical and heat responses were

recorded. Then HC-030031 or vehicle was administered. Mechanical withdrawal threshold

and heat withdrawal latency were measured at multiple time points through POD 2. The effect

of HC-030031 on heat and mechanical responses was not further studied.

Two more sets of experiments were performed to further examine the effect of HC-030031

on guarding behavior after hind paw incision. First, we examined the effect of HC-030031,

injected both on POD 0 and POD 1, on guarding behavior. After the baseline measurement,

incision was made and guarding was measured 2 hours later. Then HC-030031 (vehicle, 75,

150 or 300 mg/kg) was injected and guarding measured twice. On the next day, pre-drug

guarding was measured and drug administration was repeated followed by two more

measurements.

Next, we evaluated the effect of HC-030031, injected immediately before the incision.

Because there were little differences among doses in the second protocol, 300 mg/kg dose was

not administered in this protocol. After the baseline measurement, rats were anesthetized, and

HC-030031 (vehicle, 75 or 150 mg/kg) was injected immediately prior to hind paw incision.

Guarding was measured several times on the day of incision through POD 2.

In vivo reactive oxygen species imaging

In order to image skin and deep tissue for ROS-induced luminescence, we used gastrocnemius

incision. The greater thickness of the leg region allowed us to study a superficial image that

included skin and a deeper image that included muscle. This was not possible with the hind

paw incision. Rats were assigned to three separate groups: (1) the gastrocnemius muscle inci-

sion group had a skin + deep tissue incision on their left leg, and the contralateral leg under-

went sham incision and served as a control; (2) one group underwent gastrocnemius incision,
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and catalase was injected (1,000–2,500 IU) locally into the gastrocnemius incision before imag-

ing; and (3) the skin-only incision group had the skin incision only on the left leg.

L-012-mediated in vivo ROS imaging was performed on POD 0, POD 1, and POD 7 in sep-

arate groups of rats for each day, thus, rats were imaged only once. During in vivo imaging, the

rats were immobilized with anesthesia using isoflurane (1.5–2.5%) and injected with L-012 (25

mg/kg) administered subcutaneously. The imaging system (IVIS 200, Xenogen, CA, USA)

consisted of a light-tight chamber equipped with a cooled CCD camera. The luminescent

images were captured 5 minutes after L-012 injection. Catalase was injected locally 2 minutes

before L-012 injection. Data acquisition was accomplished with Living Image1 software

(Xenogen, CA, USA). Image exposure times were 1 minute. Light emission from the region of

interest was quantified as photons/second � cm2 in a single plane (steradian, sr).

Hydrogen peroxide assay

The H2O2 levels in gastrocnemius muscle and skin overlying the gastrocnemius muscle in

incised and non-incised tissue were determined using a commercial fluorescence Amplex1

Red Hydrogen Peroxide assay kit (Invitrogen, OR, USA) [19]. Briefly, rats were studied on

POD 0, POD 1 and POD 7 after incision of the gastrocnemius muscle or skin overlying the

gastrocnemius muscle. Under deep anesthesia with isoflurane, the incised gastrocnemius mus-

cle and skin were removed. Contralateral, non-incised muscle and skin were also removed as

controls. The samples were rapidly frozen on an aluminum plate, which had been chilled in

dry ice. After freezing the tissue, the samples were trimmed and homogenized in 50 mM phos-

phate buffer (pH 7.4) containing 5 mM sodium azide at 4˚C for 60 seconds. Before the homog-

enate was centrifuged, a portion was saved for protein measurement. The homogenate was

centrifuged at 4000 rpm at 4˚C for 15 minutes. The supernatant obtained was frozen at -80˚C

until assayed for H2O2 levels. Samples and H2O2 standards were assayed spectrophotometri-

cally at 560 nm using EnVision Multilabel Plate Reader (Perkin Elmer, MA, USA). The H2O2

levels were calculated using a standard curve and were normalized to tissue protein as deter-

mined by the DC Protein Assay Kit (Bio-Rad, CA, USA).

Nociceptive behavior after injection of hydrogen peroxide

In order to evaluate H2O2-evoked pain-related behaviors in skin and deep tissue, we used

injections into the gastrocnemius muscle or the subcutaneous tissue overlying gastrocnemius

muscle. Rats were acclimated individually on a small plastic mesh floor covered with a clear

plastic cage top for 1 hour per day for at least 2 days before testing. On the testing day, injec-

tion of H2O2 (100 mM, 0.6 ml) into the left gastrocnemius muscle or subcutaneous tissue over-

lying the gastrocnemius muscle was made using a 1-ml syringe with a 30-gauge needle. We

observed that volumes of at least 0.8 ml of Evan’s Blue dye remained in the gastrocnemius

muscle of injections. The control group was injected with intramuscular synthetic interstitial

fluid (SIF, 0.6 ml) instead of H2O2. Rats were returned to the testing cage and observed for 1

hour. H2O2-induced nociceptive behavior in rats was recorded as total time spent flinching,

lifting and licking of the hind leg.

The effect of locally-injected HC-030031 on H2O2-induced nociceptive behavior was also

evaluated. Sequential injections of HC-030031 (50 mM, 0.3 ml) or vehicle (0.3 ml), followed by

H2O2 (100 mM, 0.3 ml), were made into the gastrocnemius muscle. Therefore, the total injec-

tion volume was 0.6 ml, and the final concentration of H2O2 was 50mM. Immediately after

injection, nociceptive behavior was recorded for 1 hour as described above.

The person performing the behavioral test was blinded to drug and dose. The person pre-

paring drugs assigned these in an informal, random manner.
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Drugs

HC-030031, supplied by Hydra Biosciences (Cambridge, MA, USA), was suspended in 0.5%

methylcellulose and administered i.p. in a volume of 10 ml/kg. L-012 was purchased from

Tocris Bioscience (Avonmouth, Bristol, UK) and dissolved in ultra pure H2O for subcutaneous

injection. Catalase from bovine liver (2,000–5,000 IU/mg protein) supplied as a range of activ-

ity, was purchased from Sigma-Aldrich (St Louis, MO, USA) and dissolved in phosphate-buff-

ered saline (PBS; Gibco, Grand Island, NY, USA) for local injection at 1 mg/ml and pH 7.0.

For local injections of HC-030031, drug was dissolved in 10% dimethylsulfoxide (DMSO;

Molecular probes, Eugene, OR, USA) in PBS. H2O2 was purchased from Sigma-Aldrich

(St. Louis, MO, USA), and diluted in SIF or PBS.

Statistics

For continuous data, the Kolmogorov-Smirnov test of normality was used to determine

whether the data values had normal distributions. Two-way ANOVA with repeated mea-

sures on one factor followed by Bonferroni’s post hoc test was used to analyze the guarding

pain behavior, withdrawal latency to heat and the H2O2 detection assay. Non-parametric

Friedman’s test followed by Kruskal-Wallis test with Dunn post hoc test was used to

analyze the withdrawal threshold to mechanical stimulation. Two-way ANOVA with Bon-

ferroni’s post hoc test was used to analyze the ROS-imaging. Unpaired t-test and one-way

ANOVA with Bonferroni’s post hoc test were used to analyze the nociceptive behavior after

injection of H2O2. Values of P < 0.05 were considered significant. Data were presented as

mean ± standard error of the mean (SEM) or as median with range. All tests were conducted

using GraphPad Prism (version 5.04, Graphpad Software, Inc., CA, USA).

Results

Incision-induced pain behaviors

Skin + deep tissue incision of the hind paw induced guarding pain behavior one hour after

incision in all groups of rats prior to the injection of HC-030031 or vehicle (Fig 1A). Compared

with the vehicle group, rats treated with 75 mg/kg of HC-030031 showed less guarding pain

behavior at 3 hours after drug injection (8.8 ± 1.7, P = 0.0192). Rats administered with 300

mg/kg of HC-030031 showed less guarding pain behavior at 1 hour (6.4 ± 1.9, P = 0.0007),s

(5.0 ± 1.2, P < 0.0001) after drug injection and again on POD 1 (3.3 ± 0.9, P = 0.0003), com-

pared to the vehicle group (Fig 1A).

We tested these same doses in separate groups of rats for heat and mechanical responses

after incision. Skin + deep tissue incision induced mechanical hyperalgesia in all groups (Fig

1B). Compared to the vehicle group, no difference in withdrawal threshold was present in all

three dose groups of rats treated with HC-03003, at any time after drug administration.

For heat responses, skin + deep tissue incision reduced the heat withdrawal latency in all

groups (Fig 1C). No differences in heat withdrawal latency were evident in the three groups

treated with HC-030031 compared to vehicle at any time after drug administration.

We treated rats twice with HC-030031, after incision and on POD 1, and tested only

against guarding behaviors. As shown in Fig 2A, 75 mg/kg of HC-030031 attenuated guard-

ing behavior at 1 hour (9.2 ± 1.2, P = 0.0130) and 3 hours (7.3 ± 1.8, P = 0.0022) after the first

injection, before the second injection on POD 1 (6.8 ± 2.3, P = 0.0004) and 1 hour after sec-

ond injection (0.7 ± 2.7, P < 0.0001). The 150 mg/kg group had less guarding behavior at 1

hour (5.8 ± 1.4, P < 0.0001) and 3 hours (6.0 ± 0.6, P = 0.0002) after the first injection, before

injection on POD 1 (5.2 ± 1.5, P < 0.0001) and 1 hour after second injection (1.7 ± 0.7,
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Fig 1. Effect of intraperitoneal (i.p.) administration of HC-030031 on pain behaviors of rats after skin

+ deep tissue incision. (A) Guarding pain behavior. The results are presented as mean and standard error of

the mean (SEM) for eight rats in each group. Two-way ANOVA with repeated measures on one factor

Muscle ROS Contribute to Post-Incisional Guarding via the TRPA1
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P = 0.0002). The 300 mg/kg group exhibited less guarding behavior at 1 hour (9.0 ± 1.9,

P = 0.0102) and 3 hours (3.8 ± 1.4, P < 0.0001) after the first injection, before injection on

POD 1 (6.5 ± 0.8, P = 0.0002) and 1 hour after the second injection (1.7 ± 0.7, P = 0.0002)

(Fig 2A).

We also administered HC-030031 against guarding once immediately prior to the skin +

deep tissue incision of the hind paw. Because drug effect was similar among doses in Fig 2A,

only 75 and 150 mg/kg were administered. Compared with the vehicle group, rats treated

with 75 mg/kg of HC-030031 had less guarding behavior at 1 hour (5.4 ± 0.9, P = 0.0199),

and 3 hours after incision (5.3 ± 0.9, P = 0.0159) and also on POD 1 (5.0 ± 0.9, P = 0.0014).

Rats administered 150 mg/kg group showed less guarding behavior at 1 hour (5.3 ± 1.7,

P = 0.0159), 3 hours (4.4 ± 1.5, P = 0.0030), POD 1 (5.3 ± 1.0, P = 0.0023) and POD 2

(5.0 ± 1.0, P = 0.0463) (Fig 2B).

In vivo reactive oxygen species imaging

A prominent luminescent signal could be detected at the incised leg in both a superficial scan

of skin and a deeper scan of muscle. Almost no signal was detected from contralateral, sham-

operated, non-incised tissue (Fig 3A). Compared to the sham group, chemiluminescence

intensity from the gastrocnemius muscle incision was increased to 46,000 ± 4,400 photons/s �

cm2 � sr on POD 0 (P< 0.0001), and 17,000 ± 2,200 photons/s � cm2 � sr on POD 1

(P< 0.0001) (Fig 3B). The luminescent probe signal from the skin-only incision group was

increased to 15,000 ± 2,300 photons/s � cm2 � sr on POD 0 (; P< 0.0001) and 10,000 ± 700 pho-

tons/s � cm2 � sr on POD 1 (P = 0.0166), compared with sham group (Fig 3B). Scanning deeper

layers that included muscle produced a greater signal than scanning superficially at skin on

POD 0 and POD 1. Injection of catalase into the incised muscle before deep tissue imaging

reduced the luminescent probe signal from the gastrocnemius incision on POD 0 and POD 1;

the signal was 27,000 ± 2,000 photons/s � cm2 � sr (P < 0.0001) on POD 0, and 8,000 ± 1,000

photons/s � cm2 � sr (P = 0.0159) on POD 1 (Fig 3B). In summary, both the skin and muscle

incision increased the luminescent probe signal on POD 0 and POD 1 compared to sham and

these signal were not different from sham on POD 7 (Fig 3B).

Hydrogen peroxide assay

Spectrophotometric analysis of the H2O2 levels in gastrocnemius muscle and skin homoge-

nates revealed a significantly higher content of the H2O2 in the incised tissues (Fig 4). The

H2O2 levels in incised gastrocnemius muscle was 284% greater on POD 0 (P< 0.0001), 226%

greater on POD 1 (P = 0.0074), and 151% greater on POD 7 (P = 0.5612), compared to non-

incised muscle (Fig 4A). The H2O2 levels after incision in skin overlying the gastrocnemius

muscle were 165% greater on POD 0 (P = 0.0105), 148% greater on POD 1 (P = 0.0373), and

136% greater on POD 7 (P = 0.1819), compared to non-incised skin (Fig 4B).

(interaction factor: F24, 210 = 1.64, P = 0.0360) followed by Bonferroni’s post hoc test for comparing the mean

cumulative pain score at each time point among groups. (B) Withdrawal threshold to punctate stimuli applied

to the hind paw. The results are presented as median with range for six rats in each group. Non-parametric

Friedman’s test (Fr = 17.02, P = 0.0019) followed by Kruskal-Wallis test with Dunn post hoc test for between-

group comparisons at each time point. (C) Withdrawal latency to heat stimulation. The results are presented

as mean and SEM. Two-way ANOVA with repeated measures on one factor (interaction factor: F24, 150 =

1.163, P = 0.2855) followed by Bonferroni’s post hoc test for comparing the mean withdrawal latency at each

time point among groups. * P < 0.05, ** P < 0.01, † P < 0.001 compared with the vehicle group at each time

point. POD = postoperative day.

doi:10.1371/journal.pone.0170410.g001
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Fig 2. Additional studies on effect of intraperitoneal (i.p.) administration of HC-030031 on guarding pain. (A) HC-

030031 was injected two times, once on postoperative day (POD) 0 and POD 1. The results are presented as mean and

SEM for six rats in each group. Two-way ANOVA with repeated measures on one factor (interaction factor: F24, 160 = 3.026,

Muscle ROS Contribute to Post-Incisional Guarding via the TRPA1
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Nociceptive behavior after injection of hydrogen peroxide

Intramuscular injection of H2O2 (100 mM, 0.6 ml) produced greater nociceptive behavior

(1,675 ± 378 sec) compared to control (7 ± 3 sec; P = 0.0004) and subcutaneous H2O2 injection

(83 ± 74 sec; P = 0.0010) (Fig 5A). Pre-treatment with locally injected TRPA1 antagonist HC-

030031 (50 mM, 0.3 ml) significantly reduced nociceptive behavior induced by H2O2 (100

mM, 0.3 ml) (P< 0.0001 vs. vehicle + H2O2 group) (Fig 5B).

Discussion

In the present study, we have demonstrated that guarding pain behavior after skin + deep tis-

sue incision was decreased by parenterally administered HC-030031, a TRPA1 antagonist.

However, HC-030031 did not affect mechanical or heat responses after incision. Treatment

either before or after surgery was effective against guarding. In some cases, the effect to reduce

guarding persisted after a single dose into POD 1. A second dose of HC-030031 on POD 1 also

reduced guarding. We showed that ROS increased after skin + deep tissue incision in both the

gastrocnemius muscle and the skin. The increase in ROS in the gastrocnemius muscle after

incision was reduced by local injection of catalase, suggesting that the increase in ROS was in

part attributable to an increase in H2O2. Furthermore, we demonstrated that tissue H2O2

increased in both skin and muscle after incision. However, H2O2 injection produced pain

behaviors when injected into muscle but not after subcutaneous injection.

1. Effect on guarding, not on heat and mechanical hyperalgesia

We have demonstrated that guarding pain behavior, but not mechanical and heat hyperalgesia,

was decreased by the TRPA1 antagonist HC-030031 (Fig 1). We have previously characterized

guarding pain behavior after plantar incision and shown that guarding was evident only when

incision of deep muscle tissue was included [2, 3]. Skin incision alone was insufficient to pro-

duce significant guarding behavior. In addition, deep muscle and fascia injury produced spon-

taneous activity in nociceptors and nociceptive dorsal horn neurons, but this was much less

apparent after skin incision [2, 3]. Finally, we suggested that guarding and spontaneous activity

in nociceptive pathways are a correlate to the pain at rest in postoperative patients [2, 3]. HC-

030031 did not affect heat and mechanical responses for which skin incision is sufficient for

the full, early hypersensitivity after incision [20, 21].

In previous studies, guarding was inhibited by local anesthetic infiltration, administration

of clinically relevant doses (0.03–0.1 mg/kg) of parenteral morphine, nerve growth factor

(NGF) sequestration and capsaicin-induced nociceptor desensitization (administered by infil-

tration or proximal perineural application) [15–17, 22–24].

2. ROS, H2O2 and wounds

H2O2 is a major ROS and is a relatively stable ROS that can diffuse into tissues and cross cell

membranes [25]. H2O2 is an early signal of incisional tissue injury and functions as an oxidant

with antibacterial and cytotoxic effects [26]. H2O2 has been shown to be generated by skin

incision but has not been studied in injured deep tissues. ROS including H2O2 have several

P < 0.0001) followed by Bonferroni’s post hoc test for comparing the mean cumulative pain score at each time point among

groups. (B) HC-030031 was injected immediately prior to plantar incision. The results are presented as mean and SEM for

eight rats in each group. Two-way ANOVA with repeated measures on one factor (interaction factor: F10, 105 = 2.95,

P = 0.0026) followed by Bonferroni’s post hoc test for comparing the mean cumulative pain score at each time point among

groups. * P < 0.05, ** P < 0.01, † P < 0.001 compared with vehicle-injected rats at each time point.

doi:10.1371/journal.pone.0170410.g002
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Fig 3. In vivo reactive oxygen species (ROS)-imaging with L-012 after incision in rats. (A) Examples of in vivo imaging after gastrocnemius muscle

incision. (B) Average luminescence intensity in in vivo ROS-imaging on gastrocnemius muscle incision, gastrocnemius incision with catalase (1,000–

2,500 IU), skin-only incision, and sham. The results are presented as mean and SEM for 6 rats in each group. * P < 0.0001 compared with sham, †

P < 0.0001 compared with gastrocnemius incision with catalase, ‡ P < 0.0001 compared with skin-only incision, # P < 0.0001 compared with sham, §

P = 0.0159 compared with gastrocnemius incision with catalase, & P = 0.0490 compared with skin-only incision, ¶ P = 0.0166 compared with sham. Two-

way ANOVA (interaction factor: F6, 30 = 22.56, P < 0.0001) followed by Bonferroni’s post hoc tests.

doi:10.1371/journal.pone.0170410.g003
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Fig 4. Effects of the incision of skin and muscle on tissue hydrogen peroxide (H2O2) levels in rats. (A) H2O2

content after incision in gastrocnemius muscle using the Amplex® Red Hydrogen Peroxide assay kit. The results are

presented as mean and SEM for 6 rats in each group. Two-way ANOVA with repeated measures on one factor

(interaction factor: F2, 15 = 2.328, P = 0.1317, Time factor: F2, 15 = 3.890, P = 0.0436, Group factor: F1, 15 = 22.58,

P = 0.0003) followed by Bonferroni’s post hoc test. * P < 0.0001 compared with non-incised muscle on POD 0, †

P = 0.0074 compared with non-incised muscle on POD 1. (B) H2O2 content after incision of skin overlying the

gastrocnemius muscle. The results are presented as mean and SEM for 6 rats in each group. Two-way ANOVA with

repeated measures on one factor (interaction factor: F2, 15 = 0.5907, P = 0.5663, Time factor: F2, 15 = 0.2134,
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roles in skin including recruiting leukocytes and supporting wound healing [27, 28]. Recent

studies have shown that TRPA1 acts as a molecular detector of cellular stress, including ROS

[29, 30].

This study indicates that H2O2 and likely other ROS, previously identified in cutaneous

wounds and shown to contribute to wound healing, are factors producing deep tissue pain

after incisions. Intramuscular Injection of H2O2 causes nociceptive pain but no such behaviors

were evident after subcutaneous injection (Fig 5). Studies by others using another TRPA1 ago-

nist, formalin, have not specified cutaneous versus deep tissue differences in nociception after

injection [31, 32]. Intraplantar injection of H2O2 caused brief nociceptive pain [19], but spe-

cific subcutaneous versus deep tissue injections were not studied and would be difficult in

such small spaces like the hind paw. In other previous studies, after intraplantar injection of

H2O2, nociceptive behavior was short-lasting (< 5 min), which is consistent with our finding

after subcutaneous injection over the gastrocnemius [30, 33, 34]. In humans, cutaneous

wounds are frequently flushed or rinsed with much higher concentrations of H2O2 (880 mM

concentration of commercially-available 3% H2O2).

Malin et al. demonstrated that functional expression of TRPA1 using TRPA1 agonist-

induced Ca2+ transients was significantly greater in cultured dorsal root ganglia neurons

innervating muscle compared to those innervating skin [35]. In addition, TRPA1 responses in

dorsal root ganglia neurons were potentiated by growth factors but changes in responsiveness

varied depending upon the organ. and Dorsal root ganglia neurons innervating muscle were

more likely to exhibit NGF-induced potentiation of TRPA1 responses compared to dorsal root

ganglia neurons innervating skin.

3. The role of TRPA1 in other incisional pain studies

Our study indicates that TRPA1 has a substantial role on guarding behavior after incision of

deep tissue not subcutaneous tissue. This is because TRPA1 probably has different roles in var-

ious organs. In previous studies, pharmacological blockade of TRPA1 reversed mechanical

hypersensitivity and on-going pain-related behavior in different models of inflammatory and

neuropathic pain [17, 36, 37].

Barabas et al. studied the contribution of TRPA1 to mechanical hypersensitivity following

skin incision of the hind paw in TRPA1 knockout and wild-type mice [38]. In their study, skin

incision produced mechanical hypersensitivity in TRPA1-knockout mice to similar levels mea-

sured in wild-type mice. Thus, they concluded that TRPA1 did not mediate mechanical hyper-

sensitivity following cutaneous surgical incision in mice. Our data are in agreement.

Wei et al. examined local and spinal TRPA1 after skin + deep tissue incision of the hind

paw in the rat [39]. In their study, i.p. or ipsilateral intraplantar treatment with TRPA1 antago-

nists reduced guarding and mechanical hypersensitivity after skin + deep tissue incision. Intra-

thecal drug treatment attenuated mechanical responses but not guarding. They concluded that

TRPA1 contributed to guarding behavior and mechanical hyperalgesia after incision. We did

not observe an effect of HC-030031 on mechanical responses. However, the increased ROS

after deep tissue incision in our study (Fig 3), and the nociceptive effect of H2O2 after injection

into muscle but not skin, explains and connects the contribution of TRPA1 to behaviors

dependent on incised deep tissue. This is in part agreement with Wei et al. [39].

P = 0.8103, Group factor: F1, 15 = 31.71, P < 0.0001) followed by Bonferroni’s post hoc test. # P = 0.0105 compared

with incised skin on POD 0, ‡ P = 0.0373 compared with incised skin on POD 1.

doi:10.1371/journal.pone.0170410.g004
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Fig 5. H2O2-induced nociceptive behavior in rats as total time spent flinching, lifting and licking of the

hind leg. (A) Spontaneous nociceptive behavior after intramuscular (n = 6) or subcutaneous (n = 5) injection

of H2O2 (100 mM, 0.6 ml), or intramuscular injection of synthetic interstitial fluid (0.6 ml) (n = 6). * P = 0.0004

compared with control group, † P = 0.0010 compared with subcutaneous H2O2 injection group by one-way
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Conclusion

This study demonstrates that TRPA1 antagonist HC-030031 reduced spontaneous guarding

pain behavior after skin + deep tissue incision, but did not reduce mechanical and heat

responses. These data indicate that TRPA1 receptors are contributing to incisional pain in

incised fascia and muscle but not in incised skin. Endogenous TRPA1 agonists like ROS and

H2O2 were increased in both incised skin and muscle, however, injection of H2O2 into muscle

caused nociceptive behaviors but not injection into skin. Together, this study suggests that

endogenous TRPA1 ligands and the TRPA1 receptor are important targets for acute pain from

deep tissue injury.
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