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Casein kinases are involved in a variety of signaling pathways, and also in

inflammation, cancer, and neurological diseases. Therefore, they are

regarded as potential therapeutic targets for drug design. Recent studies

have highlighted the importance of the casein kinase 1 superfamily as well

as protein kinase CK2 in the development of several neurodegenerative

pathologies, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s

disease, and amyotrophic lateral sclerosis. CK1 kinases and their closely

related tau tubulin kinases as well as CK2 are found to be overexpressed in

the mammalian brain. Numerous substrates have been detected which play

crucial roles in neuronal and synaptic network functions and activities. The

development of new substances for the treatment of these pathologies is in

high demand. The impact of these kinases in the progress of neurodegenerative

disorders, their bona fide substrates, and numerous natural and synthetic

compounds which are able to inhibit CK1, TTBK, and CK2 are discussed in

this review.
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Introduction

Due to the fact that the world population is getting progressively older, the risk of

neurodegenerative disorders (NDDs) is increasing. Those disorders occur when neurons

lose their structure and function which finally leads to their death. Noteworthy, by 2000 it

was estimated that the number of patients suffering from dementia in developed countries

reached 13.5 million and will rise up to 36.7 million in 2050 (Zheng and Chen, 2022).

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most prevalent NDDs

worldwide.

NDDs are classified according to their major clinical symptoms, altered proteins, and

cellular/subcellular pathology. On the molecular level, typical features include protein

misfolding and the formation of protein aggregates. The exact mechanisms for that are

still unknown. These aggregates are the result of protein modification, like

phosphorylation, sumoylation, and ubiquitination (Kovacs et al., 2010).

Typical characteristics of AD are senile plaques of amyloid-beta (Aβ) peptide

precipitated in the space between neurons and the neurofibrillary tangles (NFTs) of

fibrillar hyperphosphorylated tau protein (Glenner andWong, 1984; Grundke-Iqbal et al.,
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1986). The Aβ peptide is the product of the proteolytic cleavage

by β- and γ-secretases of the amyloid precursor protein (APP)

(Vassar et al., 1999). In AD patients typical clinical features are

the progressive loss of mental abilities, e.g., increasing

forgetfulness, changes in personality, and cognitive difficulties.

Additionally, as result of an immune response in the brain, nerve

cells lose their function and die.

Huntington’s disease (HD) is caused by an autosomal

dominant genetic defect. Mutations in the huntingtin gene

(HTT) encoding huntingtin are responsible for the onset of

HD. Typical features of this disease are movement disorders,

like chorea and loss of coordination, as well as cognitive decline.

Furthermore, common psychiatric symptoms are psychosis,

depression, and obsessive-compulsive disorder (Rosenblatt,

2007). In HD patients a degeneration of the striatum and

general shrinkage of the brain can be observed (Reiner et al.,

1988). Loss of cortical mass is regionally selective and proceeds

from posterior to anterior cortical regions during HD

progression. Other symptoms are weight loss, cardiac failure,

and skeletal-muscle wasting (Arenas et al., 1998; Aziz et al.,

2008).

PD is a neurodegenerative disease characterized by

progressive loss of neuromelanin containing dopaminergic

neurons in the substantia nigra pars compacta. There is

evidence for the relation between a small volume of this brain

region and the weaker or less controlled motor movements of PD

patients resulting in the often observed tremors (Menke et al.,

2010). The pathological picture of PD includes motor

impairments, like resting tremors, bradykinesia, postural

instability, and rigidity. Due to the loss of norepinephrine

non-movement related symptoms, like psychiatric problems,

low blood pressure, and constipation, are seen. The cause of

PDmight be a combination of environmental and genetic factors.

Amyotrophic lateral sclerosis (ALS) is a fast progressive

NDD affecting lower and upper neurons in the brain stem,

spinal cord, and the motor cortex (Robberecht and Philips,

2013). It is the most common motor neuron disease in adults

and the third most NDDworldwide (Renton et al., 2013). Typical

features of ALS are atrophy and paralysis of skeletal muscles

resulting from neuron loss and lack of communication between

voluntary muscles of the body and the nervous system. Besides

these symptoms, in most cases also cognitive and behavioral

dysfunctions are present. ALS patients generally die within

3–5 years after first symptoms (Regal et al., 2006). The great

majority of cases are classified as sporadic ALS, whereas only 10%

are familial. Abnormal aggregations of transactive response

DNA-binding protein 43 (TDP-43) are detected in almost all

ALS cases (Neumann et al., 2006; Mackenzie et al., 2010).

Mutations in the TARDBP gene encoding TDP-43 are

associated with ALS (Sreedharan et al., 2008).

Protein kinases are encoded by about 2% of all human genes

and are capable of phosphorylating up to 20% of all proteins. The

counterplay of protein kinases and phosphatases regulates many

processes in living cells through modification of serine, threonine

and tyrosine residues (Hunter, 1995, 2012; Cohen, 2002;

Schwartz and Murray, 2011; Nishi et al., 2014). As a result of

phosphorylation protein activities, their stability, localization and

interaction with other proteins are controlled. This

posttranslational modification is capable of changing protein

functions either by allosteric interaction or binding to

regulatory domains (Jin and Pawson, 2012; Ardito et al.,

2017). It has an important impact on processes, such as DNA

replication, transcription and translation, cell metabolism,

apoptosis, as well as stress and immunological response

(Hunter, 1995; Cohen, 2002; Tarrant and Cole, 2009; Karve

and Cheema, 2011). Proteins mainly undergo phosphorylation

in the cytosol or in the nucleus (Duan and Walther, 2015).

Currently, there are no drugs available which cure or prevent

NDDs, only acute disorders and symptoms are treated.

Numerous protein kinases have been described to play an

important role in NDDs (Benn and Dawson, 2020).

Unfortunately, most kinase inhibitors are not able to cross the

blood-brain-barrier and are, therefore, only suitable for non

central nervous disorders. During last decades, there is an

increasing interest in the field to develop brain penetrant

kinase inhibitors using the approaches from cancer research.

CK2 and protein kinases of the
CK1 superfamily

Human protein kinases have been divided into 10 groups,

9 of them contain an eukaryotic kinase domain (ePK) and the last

group is classified as atypical kinases. The majority of protein

kinases phosphorylate serine and threonine residues (Ser/Thr

kinases), others phosphorylate tyrosine (Tyr kinases). Few

kinases are able to modify all three amino acids (dual-

specificity kinases). Eukaryotic protein kinases share

similarities in the primary sequences and structural features

(Hanks and Hunter, 1995; Taylor et al., 1995; Taylor and

Kornev, 2011).

CK1 isoforms together with the closely related vaccinia-

related kinases (VRKs) and tau tubulin kinases (TTBKs) are

classified in a separated group within the Ser/Thr kinase

superfamily, whereas CK2 isoforms constitute a subclass of

the CMGC group (Knippschild et al., 2005; Perez et al., 2011;

Venerando et al., 2014; Fulcher and Sapkota, 2020). Protein

kinases of the CK1 group and CK2 completely differ in their

structure. At the beginning, they were named according to the

phosphorylated in vitro protein substrate, casein. They were

purified for the first time from soluble extracts of lactating

bovine mammary (Waddy and Mackinlay, 1971). Natively

isolated enzymes were purified on DEAE-cellulose and called

casein kinase 1 and 2 depending on their elution profile

(Hathaway and Traugh, 1979). G-CK or Fam20C shows high

similarity to the casein kinase found in lactating mammary
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glands. It has been found in rat liver and brain and

phosphorylates casein in the Golgi bodies (Bingham and

Farrel, 1974; Lasa et al., 1997). Fam20C is characterized as a

secretory kinase phosphorylating secreted proteins, from milk to

bone proteins. This is important in the process of

biomineralization of bones and teeth (Tagliabracci et al., 2015).

The role of CK1 in NDDs

CK1 is an evolutionarily conserved and ubiquitously

expressed protein kinase. It belongs to second-messenger-

independent and constitutively active kinases. CK1 exists in

monomeric form with seven isoforms (α, β, γ1, γ2, γ3, δ, and
ε) and their alternative splicing forms, which are encoded by

different genes (Fulcher and Sapkota, 2020). The CK1 isoforms

differ in their kinase activities, functions, subcellular localization,

and biochemical properties (Zhang et al., 1996; Burzio et al.,

2002; Takano et al., 2004; Xu et al., 2019). They vary in their

molecular weights between 37 and 51 kDa with CK1α being the

smallest and CK1γ3 the largest protein. The analysis of the

substrate specificity of CK1 isoforms initially determined pS/

pT-X1-2-S/T as their consensus sequence. This led to the

assumption that phosphorylation by CK1 depends on the

prior phosphorylation of position −2 or −3 (Meggio et al.,

1991; Meggio et al., 1992). Further studies have shown that

this hypothesis did not hold true when proteins were

efficiently phosphorylated without prephosphorylated residues

(Flotow and Roach, 1991; Marin et al., 1994; Pulgar et al., 1999).

Later, novel substrates were described containing a non-

canonical motif (S-L-S) with acidic residues downstream of

the phosphorylation site. Over 140 substrates are described for

CK1. Most of them are involved in various cell processes, e.g.,

membrane transport and trafficking, microtubule-associated

dynamics, apoptosis, and cell cycle progression (Yang et al.,

2017; Xu et al., 2019). In diverse studies the important role of

CK1 in NDDs was shown, emphasizing on tauopathies, such as

AD. A distribution study of all CK1 isoforms comparing AD and

control brains revealed that CK1 can be found in fibrillar lesions

and, additionally, within the matrix of granulovacuolar

degeneration bodies (Ghoshal et al., 1999; Kannanayakal et al.,

2006). Contrary to CK1αwhich is linked to fibrillar lesions, CK1δ
is linked to granulovacuolar degeneration bodies (Kannanayakal

et al., 2006). It is possible that alteration of CK1δ function is

aligned with dysregulation of circadian rhythms in AD. Elevated

expression levels of CK1δ (33-fold) and CK1ε (9-fold) has been
described in AD post-mortem brain tissue and ALS (Ghoshal

et al., 1999; Yasojima et al., 2000; Salado et al., 2014; Palomo et al.,

2020; Carter et al., 2021). Many proteins related to neurological

disorders are modified by CK1α, e.g., β-secretase (Walter et al.,

2001), α-synuclein (Mbefo et al., 2015), and parkin (Yamamoto

et al., 2005). Similarly, it has been discovered that CK1δ
phosphorylates several proteins that are associated with

different NDDs in vitro. CK1δ phosphorylates the tau protein

leading to its aggregation and finally the formation of

neurofibrillary tangles (Li et al., 2004). Increased CK1 activity

is associated with tau aggregation (Schwab et al., 2000). CK1δ-
dependent phosphorylation has been also shown for other

proteins connected with neurodegenerative diseases, e.g.,

presenilin-2, β-secretase, parkin, TDP43, α-synuclein, LRRK2,
and tau (Okochi et al., 2000; Walter, 2000; Rubio de la Torre

et al., 2009; Alquezar et al., 2016; Nonaka et al., 2016; Morales-

Garcia et al., 2017; De Wit et al., 2018). Therefore, inhibition of

CK1δ/ε has been described to possess favorable effects on ALS,

frontotemporal dementia (FTD), and PD phenotypes in vivo

(Perez et al., 2011; Salado et al., 2014; Alquezar et al., 2016; Cozza

and Pinna, 2016; Jiang et al., 2018; Palomo et al., 2020).

The role of TTBK in NDDs

Within the CK1 superfamily a small family of brain-specific

kinases phosphorylating microtubule-associated proteins tau and

tubulin is classified (Ikezu and Ikezu, 2014). TTBK is a Ser/Thr

and Tyr dual-kinase conducting multiple functions inside the

cell. It comprises two isoforms: TTBK1 and TTBK2. TTBK1 was

characterized as a neuron-specific kinase phosphorylating tau

which leads to its aggregation, while TTBK2 was purified from

the bovine brain (Takahashi et al., 1995; Sato et al., 2006). Both

isoforms are encoded by distinctive genes, and furthermore, their

localization in tissues is diverse (Nozal and Martinez, 2019). The

sequence of TTBK1, consisting of 1321 amino acids, can be

divided into kinase domain (residues 34-297), and a regulatory

domain, which contains a characteristic 39 amino acids poly-Glu

motif (Ikezu and Ikezu, 2014). The comparison of the

TTBK1 and CK1δ kinase domain sequences revealed a 38%

identity and 52% similarity (Sato et al., 2006). TTBK1 is

primarily expressed in the human brain, notably in the adult

brain cortex, cerebellum, and fetal brain. When mouse brain was

analysed, TTBK1 was also detected in the frontal cortical layers,

the hippocampus, and the granular layer of the cerebellum.

Studies using antibodies confirmed the colocalization with

tubulin in neurons (Sato et al., 2006). TTBK1 is upregulated

in AD cases (Takashima et al., 1993).

TTBK2 consists of 1244 amino acids, and contrary to

TTBK1, is ubiquitously expressed in the whole body. Highest

TTBK2 mRNA expression levels are monitored in cerebellum

Purkinje cells, granular cell layer, hippocampus, midbrain, and

substantia nigra, whereas lower levels were found in the cortex of

human, rat, and mouse brains (Houlden et al., 2007). In analyses

of the protein expression in the brain and testis higher amounts

of TTBK2 were found which correlates with higher activities of

TTBK2 in these tissues (Bouskila et al., 2011). Mutations in the

TTBK2 gene are responsible for the onset of spinocerebellar

ataxia type 11, an NDD characterized by progressive ataxia and

atrophy of the cerebellum and brainstem.
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Both isoforms contain highly similar catalytic domains (88%

identity and 96% similarity), but diverse C-terminal domains of

43% identity and 58% similarity (Ikezu and Ikezu, 2014; Nozal

and Martinez, 2019). TTBK1/2 were described as kinases which

show higher phosphorylation activity in case of a

prephosphorylated substrate at position -3 (S/T-X-X-S/T/Y).

On the surface of TTBK1 two positive sequences have been

identified, which might act as putative binding sites for the

prephosphorylated substrate (Xue et al., 2013; Kosten et al.,

2014). Phosphorylation of tau was shown at Y197, S198, S199,

S202, and S422, the critical sites in paired helical filaments

(Grundke-Iqbal et al., 1986; Sato et al., 2006; Tomizawa et al.,

2001). Interestingly, both isoforms differ in the aa sites which

they phosphorylate. Due to tau phosphorylation in neurons at

S422, TTBK1 is responsible for neurofibrillary pretangle

formation and subsequent tau aggregation (Sato et al., 2008;

Vazquez-Higuera et al., 2011; Yu et al., 2011; Lund et al., 2013). In

knock-down experiments it has been demonstrated that TTBK1,

not TTBK2, is the main isoform responsible for tau

phosphorylation at S422 (Bao et al., 2021). Overexpression of

TTBK1 in mice resulted in increased phosphorylation and

oligomerization of tau in the brain (Xu et al., 2010).

Besides the phosphorylation of tau and tubulin by TTBK2,

further substrates include centrosomal proteins CEP164 and

CEP97, SV2A as well as neurodegeneration-associated protein

TDP-43 (Takahashi et al., 1995; Tomizawa et al., 2001; Ikezu and

Ikezu, 2014; Liachko et al., 2014; Liao et al., 2015; Zhang et al.,

2015). Additionally, TTBK2 is crucial for the regulation of the

growth of axonemal microtubules in ciliogenesis (Liao et al.,

2015).

Especially TTBK1 is a promising candidate as target for

NDDs treatment. It is mainly expressed in brain tissue, and

therefore, possesses limited off-pathway roles. The

phosphorylation of tau and TDP-43 makes it an ideal kinase

in the case of these two proteinopathies.

The role of CK2 in NDDs

Together with CK1, CK2 was identified as phosphotranferase

using casein as protein substrate for enzymes able to catalyse

phosphate transfer from ATP to proteins (Burnett and Kennedy,

1954). Native protein kinase CK2 exists as a heterotetrameric

holoenzyme consisting of two catalytic subunits, α and α′, and a

dimer of regulatory subunits β (Hathaway and Traugh, 1979).

The two isoforms of the CK2 catalytic subunit are highly

homologous, but they are products of two different genes

(Wirkner et al., 1994; Yang-Feng et al., 1994; Ackermann

et al., 2005). CK2 subunits may build different active

holoenzymes in three different conformations (αα′, α2, or α′2)
or exist as free catalytic subunits. Each CK2 isoform possesses

characteristics common for CK2, but differences in their

substrate specificity and sensitivity to inhibitors have been

described. They may also regulate different cellular processes

(Pinna, 2002; Domańska et al., 2005; Janeczko et al., 2012).

CK2 is a constitutively active protein kinase, independent

from second messengers, and is able to use both, ATP and GTP,

as phosphoryl donors (Litchfield, 2003). Analysis of the

eukaryotic phosphoproteome revealed that CK2 is responsible

for the phosphorylation of almost one-quarter of

phosphoproteins (Meggio and Pinna, 2003; Salvi et al., 2009;

Franchin et al., 2015).

The minimal consensus sequence of CK2 was estimated as S/

T-X-X-D/E/pS/pY, which is present in numerous proteins

(Meggio et al., 1994; Venerando et al., 2014).

After the detection of the critical role in various disease states,

like cancers and neurodegenerative disorders research groups

worldwide focussed their attention on CK2 as a potential

therapeutic target (Blanquet, 2000; Perez et al., 2011; Castello

et al., 2017; Borgo et al., 2021a).

Several CK2 targets in NDDs were described. α-synuclein is

phosphorylated at S129 that leads to aggregates which are the

main component of Lewy bodies. In 90% of PD samples this

phosphorylation is found, whereas in only 4% of normal tissue.

As shown, this site is affected by several kinases and dependent

on which one the biological effects might differ (Oueslati, 2016).

In different reports the diverse role of CK2 in AD is

described. CK2 phosphorylates presenilin-2 at S7 and

S9 in vitro while not altering APP cleavage by γ-secretase
(Walter et al., 1996; Sannerud et al., 2016). Additionally, it

was shown that CK2 phosphorylates SET, a phosphatase

PP2A inhibitor, at position S9 which leads to its translocation

to the cytoplasm (Zhang et al., 2018).

Numerous reports reveal that CK2 possesses a protective role

in HD. The phosphorylation of huntingtin at S13 and S16 alters

its location. Phospho-huntingtin is found in the nucleus which

reduces its cellular toxicity (Atwal et al., 2011). Similarly, TDP-43

phosphorylation may prevent protein aggregation of truncated

forms (Li et al., 2011).

Proteins involved in
neurodegenerative diseases

A lot of NDD-associated proteins playing an important role

in the onset of these disorders were identified (Kovacs et al.,

2010): (1) the tubulin-associated unit (tau) protein; (2) amyloid-β
(Aβ), peptides which result from cleavage of a large

transmembrane precursor protein (Aβ-precursor protein or

APP); (3) α-synuclein; (4) prion protein; (5) TDP-43 (Ou

et al., 1995); (6) fused in sarcoma protein, Ewing’s sarcoma

RNA-binding protein 1, and TATA-binding protein-associated

factor 15, also known as FET proteins (Neumann et al., 2011).

Other proteins are associated with neurological disorders caused

by mutations leading to trinucleotide repeats (e.g., huntingtin,

ataxins, atrophin-1).
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Neurodegenerative proteinopathies can be classified

according to the major protein involved in the disease:

tauopathies, α-synucleinopathies, TDP-43 proteinopathies,

FUS/FET proteinopathies, prion diseases, trinucleotide repeat

diseases, neuroserpinopathy, ferritinopathy, and cerebral

amyloidoses.

Several of these proteins were identified as substrates for

CK1, TTBK, and CK2 and are further described below. Table 1

summarizes information about these proteins phosphorylated by

CK1, TTBK, and CK2 and their respective phosphorylation sites.

α-synuclein

The name of this protein is derived from synaptic vesicles

(syn-) and the nuclear envelope (-nuclein), both places where α-
synuclein was first identified (Maroteaux et al., 1988). As we

know now, this was probably the effect of a contaminated

antibody that was used in this study. It is involved in PD,

dementia with Lewy bodies, and multiple system atrophy

(Spillantini et al., 1997; Wakabayashi et al., 1997; Gai et al.,

1998). α-synuclein is a ubiquitously expressed protein with the

highest levels in neurons, especially in presynaptic terminals.

Other localizations for α-synuclein have been also identified,

mainly based on overexpression experiments, but its function

there remains unclear.

α-synuclein is a protein built of 140 amino acids that undergo

posttranslational modification, especially at its C-terminus, e.g.,

phosphorylation, oxidation, ubiquitination, acetylation, and

glycosylation. The major phosphorylation sites are S87 and

S129 (Okochi et al., 2000; Fujiwara et al., 2002; Ishii et al.,

2007). It was also shown that tyrosine residues are

phosphorylated: Y125, Y133, and Y136 (Ellis et al., 2001;

Nakamura et al., 2001; Negro et al., 2002). In pathological

TABLE 1 Selected proteins involved in neurodegenerative diseases and their phosphomodifications by casein kinases.

Protein Disease Protein
kinase

Phosphorylated residue References

α-synuclein Parkinson’s disease, Alzheimer’s
disease, Lewy Body Dementia

CK1δ S87, S129 Okochi et al. (2000)

CK2 S129 Okochi et al. (2000); Fujiwara et al. (2002);
Ishii et al. (2007); Paleologou et al. (2008);
Waxman and Giasson, (2008); Xu et al.
(2015)

Amyloid-beta
precursor
protein (APP)

Parkinson’s disease, Alzheimer’s
disease

CK1δ/ε, CK2 S198, S206 Walter et al. (2000); Sundaram et al. (2019)

β-Secretase Alzheimer’s disease CK1δ/ε S498 Walter et al. (2000)

Tau protein Alzheimer’s disease, Parkinson
dementia syndrome, Pick disease
of the brain

CK1δ/ε T17, S46, T50, T95, T101, T102, S113, S131, T149,
T169, S184, S198, S208, S210, S212, S237, S238,
S262, T263, S285, S289, S293, S305, S341, S352,
S356, S361, S373, S386, S396, S404, S412, S413,
T414, S416, S433, S435

Chen G et al. (2017); Oliveira et al. (2017)

TTBK1/2 Y197, S198, S199, S202, S205, S208, S210, S416,
S422, T427

Tomizawa et al. (2001); Sato et al. (2006);
Oliveira et al. (2017); Taylor et al. (2018);
Ikezu et al. (2020)

CK2 T39, T52, S56, S199, S386, S396, S400, S404, S412,
S413, S414, S416

Hanger et al. (2007); Greenwood et al.
(1994); Oliveira et al. (2017)

TDP-43 Amyotrophic lateral sclerosis
(ALS), Frontotemporal lobar
degeneration

TTBK1/2 S409/410 Hasegawa et al. (2008); Liachko et al. (2014);
Taylor et al. (2018); Taylor et al. (2019)

CK1δ, CK2 S379, S403/404, S419/410 Kametani et al. (2009); Taylor et al. (2019)

Parkin Parkinson’s disease CK1δ S101, S127, S378 Chakraborty et al. (2017); Yamamoto et al.
(2005); Rubio Rubio de la Torre et al. (2009)

Huntingtin Huntington’s disease CK2 S13, S16 Atwal et al. (2011)

Ataxin-3 Spinocerebellar ataxia 3 (SCA3) CK2 S340, S352 Mueller et al. (2009)

Presenilin -2 Alzheimer’s disease CK2 S7, S9 Walter et al. (1996); Sannerud et al. (2016);
Borgo et al. (2021b)

CK1 S19 Walter et al. (1996); Sannerud et al. (2016)

I2
PP2A Alzheimer’s disease CK2 S9 Zhang et al. (2018)
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states, α-synuclein adopts a β-sheet conformation, which

consequently leads to α-synuclein aggregation, fibril

formation, and deposition into Lewy bodies (Conway et al.,

1998; El-Agnaf et al., 1998; Narhi et al., 1999; Uversky, 2007;

Yonetani et al., 2009). In PD, Lewy bodies, point mutations, and

duplications/triplication of α-synuclein gene are the main

pathological hallmark (Burré et al., 2018). Lewy bodies

containing α-synuclein were also deteced in samples from

familial AD patients (Lippa et al., 1998). Furthermore, in senil

plaques in AD a short fragment of α-synuclein (aa residues 61-

95) was found and termed non-Aβ-amyloid component, a region

that is necessary for α-synuclein aggregation and fibrillogenesis

(Ueda et al., 1993). Phosphorylation prevents or at least decreases

the aggregation and toxicity of α-synuclein (Waxman and

Giasson, 2008). Within all identified phosphorylation sites in

vivo and in vitro only S87 lies in the non-Aβ-amyloid component

(El-Agnaf et al., 1998).

Amyloid-beta precursor protein

APP was isolated and purified from cerebral Aβ deposits in

1984 (Glenner and Wong, 1984). It is found in different tissues,

particularly in the brain, as a type I transmembrane protein

located predominantly in the endoplasmic reticulum (Zheng and

Koo, 2006). In 1992, Hardy and Higgins presented the amyloid

cascade hypothesis as their theory of AD pathophysiology

(Hardy and Higgins, 1992). Proteases from the secretase

family (β-secretase and γ-secretase) cleave APP into Aβ
peptides of different lengths, mainly Aβ38, Aβ40, and Aβ42,
whereas α- and γ-secretases produce P3 peptides (LaFerla et al.,

2007; O’Brien and Wong, 2011). Although the most abundant

form is Aβ40 (80%–90%), Aβ42 is mainly responsible for protein

aggregations and the formation of oligomers, amyloid fibrils, and

amyloid plaques (Chen C et al., 2017). Those amyloid plaques are

the cause of neurotoxicity in AD progression (Citron et al., 1996;

Murphy and LeVine, 2010). Effects of Aβ40/Aβ42 aggregation,

especially Aβ oligomers, are calcium dishomeostasis, disturbance

of ion channels, alteration of glucose regulation and oxidative

damage (Tiwari et al., 2019). Furthermore, it was described that

Aβ aggregation promotes tau phosphorylation and aggregation.

Out of 30mutations described in theAPP gene, 25 are involved in

the deposition of insoluble Aβ, like KM670/671NL (Swedish),

V717I (London), V717F (Indiana).

Tau protein

The tau protein was firstly discovered in porcine brain and

isolated as heat-stable protein. The function of tau is the

stabilization of internal microtubules (Weingarten et al.,

1975). It is particularly highly expressed in axons of neuronal

cells of the central nervous system (Binder et al., 1985). Studies

have shown that tau is a phosphoprotein that then negatively

influences the microtubule assembly by changes of the molecule

shape (Jameson et al., 1980; Lindwall and Cole, 1984).

Phosphorylation of tau is often accompanied by other

posttranslational modifications, e.g., O-glycosylation,

ubiquitination, and methylation. Tau inclusions occur in AD,

Pick’s disease, progressive supranuclear palsy, corticobasal

degeneration, argyrophilic grain disease, Parkinsonism-

dementia complex of Guam, and FTD (Lee et al., 2001).

Tau primary transcript generates six isoforms by

alternative splicing resulting in proteins of 352-441 amino

acids and MW of 45–65 kDa (Boyarko and Hook, 2021). Tau

protein possesses 80 S/T and 5 Y residues of which at least

46 have been found to be phosphorylated in AD (Hanger et al.,

2009). The total phosphorylation level of tau in AD and other

tauopathies is several times higher than in control samples

(Gong and Iqbal, 2008). The ability of tau to polymerize

tubulin and to promote microtubule assembly is reduced

through hyperphosphorylation (Yoshida and Ihara, 1993).

A correlation between the level of hyperphosphorylation at

multiple sites and the severity of NFT pathology was found

which also correlates with the degree of neuronal loss and

cognitive deficit (Grundke-Iqbal et al., 1986; Braak and Braak,

1991; Augustinack et al., 2002).

TDP-43

TDP-43 is a ubiquitous protein belonging to the

ribonucleoprotein family and is normally localized in the

nucleus where it takes part in RNA regulation (Nakielny and

Dreyfuss, 1997; Geuens et al., 2016). Firstly, it was identified

as a transcrptional repressor of HIV-1 transactivator

response (TAR) long terminal repeats (Ou et al., 1995).

Later, it was demonstrated that it is the major component of

ubiquitinated inclusions in ALS and frontotemporal lobar

degeneration (FTLD). Posttranslational modifications, such

as cleavage, hyperphosphorylation, and ubiquitination lead

to cytoplasmic accumulation and aggregation of TDP-43

(Arai et al., 2006; Neumann et al., 2006; Hasegawa et al.,

2008). The sequence of TDP-43 is divided into three parts:

an N-terminal domain (residues 1–103), two RNA

recognition motifs (residues 104–200 and 191–262), and a

C-terminal domain (residues 274–413). TDP-43 possesses

64 potential phosphorylation sites. Phosphorylation at

S403/404 and S409/410 at the C-terminus results in

pathological inclusions (Hasegawa et al., 2008; Inukai

et al., 2008; Zhang et al., 2009). The N-terminus contains

a nuclear localization sequence that is prone to mutations

leading to cytoplasmic localization of TDP-43 and

aggregation, whereas the C-terminus is necessary for

solubility and cellular localization (Ayala et al., 2008;

Barmada et al., 2010).
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Parkin

Parkin possesses an activity of an E3 ubiquitin ligase (Shimura

et al., 2000). Insoluble parkin, resulting frompointmutations, plays a

major role in the inactivation of the protein in PD (Cookson et al.,

2003; Sriram et al., 2005; Hampe et al., 2006). Phosphorylation of

S101, S127, and S378 was identified using CK1 in vitro and in vivo

with HEK293T cells transiently transfected with parkin (Yamamoto

et al., 2005; Rubio de la Torre et al., 2009). Treatment of those cells

with IC261, a selective CK1 inhibitor, significantly decreased the

phosphorylation level of parkin (Mashhoon et al., 2000; Bain et al.,

2007; Rubio de la Torre et al., 2009). Another potent CK1 inhibitor,

D4476, was used, which confirmed the hypothesis that S101 and

S378 are phosphorylated in vivo. Besides CK1, parkin is

phosphorylated by CDK5 at S121 (Avraham et al., 2007).

Experiments in vivo and in vitro have shown that the interplay

of CK1 and CDK5 is necessary for efficient phosphorylation by both

kinases. A phospho-mimetic mutant on the phosphorylation site of

one kinase increased the phosphorylation level by the second kinase.

Supporting evidence is the finding that roscovitine, a selective

CDK5 inhibitor, reduced the phosphorylation of parkin by

CK1 resulting from inhibition of S121 phosphorylation (Meijer

et al., 1997; Rubio de la Torre et al., 2009). In further experiments,

the influence of parkin phosphorylation on its activity and its effect

on the formation of inclusions was examined. The results indicate

that the phospho-mimetic mutant for compound phosphorylation

possesses slightly enhanced enzymatic activity and showed a

significantly higher tendency for aggregation (Rubio de la Torre

et al., 2009).

Huntingtin

Huntingtin is a ubiquitously expressed protein with a molecular

weight of 350 kDa. It possesses a poly-Glu sequence at theN-terminus

containing up to 35 CAG repeats in wild-type, whereas HD patients

carry 36 or more repeats (Rubinsztein et al., 1996). There is evidence

for an inverse correlation between the age of onset of symptoms and

the number of CAG repeats (Andrew et al., 1993). In 65%–71% of

cases, larger CAG repeats led to earlier ages of onset. Genetic and

environmental factors are also playing an important role in the age of

onset. Huntingtin is localized in the cytoplasm, partially in the

nucleus. Its nuclear localization sequence is also found in the

N-terminus and in the C-terminus a nuclear export sequence is

found (Xia et al., 2003; Desmond et al., 2012). The prolongated poly-

Glu sequence in HD patients inhibits the interaction between the

N-terminus with the nuclear pore protein translocated promotor

region which is involved in nuclear export. As a result, huntingtin is

accumulated in the nucleus (Cornett et al., 2005). Noteworthy, toxic

fragments of huntingtin present in the nucleus are mainly from the

mutated protein due to their higher concentration in the nucleus than

in the cytoplasm (Hackam et al., 1998; Lunkes et al., 2002). One

therapeutic strategy is the inhibition of the formation of these

fragments by modification of huntingtin (e.g., phosphorylation) to

prevent the cleavage of the protein (Atwal et al., 2011).

Ataxin-3

Ataxin-3 is a ubiquitin protease involved in transcriptional

regulation and the disease protein in spinocerebellar ataxia type 3

(Burnett et al., 2003; Evert et al., 2006). It possesses nuclear and

cytoplasmic functions. Its subcellular distribution is regulated

through phosphorylation. As in the case of huntingtin, the

nuclear presence of ataxin-3 represents a key element in the

accumulation of toxic fragments (Bichelmeier et al., 2007).

Analysis of 15 putative serine phosphorylation site mutants

revealed that S236 in the first ubiquitin-interacting motif

(UIM), S256 and S260/261 in the second UIM, as well as

S340 and S352 in the third UIM, are the major

phosphorylation sites of CK2 (Mueller et al., 2009).

Phosphorylation of those serines determines the subcellular

location of ataxin-3. Modulation of S340, S352, and

S236 increases the nuclear presence of ataxin-3, while

phosphorylation of S256 and S260/261 provides preferential

cytoplasmic localization (Mueller et al., 2009). Apart from the

influence on the cellular distribution of ataxin-3,

phosphorylation plays also an important role in the solubility

of the protein. As shown in vivo experiments phospho-mimetic

mutants formed aggregates in the nucleus (Mueller et al., 2009).

The effect of two selective CK2 inhibitors (DMAT and TBB) on

the localization and presence of inclusions was examined in cell

culture (Pagano et al., 2008). Inhibition of CK2 resulted in lower

nuclear localization of ataxin-3 and less formation of protein

aggregates (Mueller et al., 2009).

Presenilin-2

PSEN1 and PSEN2 genes, containing 10 exons, encode

presenilin-1 and presenilin-2, respectively, which play

important roles in AD pathogenesis. Presenilin is a part of the

γ-secretase complex responsible for the cleavage of APP to

generate Aβ peptides. Mutations in PSEN1/2 and deletions

leading to alternative transcripts are associated with AD and

FTD (Raux et al., 2000; Evin et al., 2002; Marcon et al., 2009).

Incorrect transcripts, like PS2V lacking exon 6, are related to

different diseases, e.g., AD (Braggin et al., 2019). PS2V produces

truncated presenilin-2 containing 124 amino acids and only 1 of

9 transmembrane domains. This isoform was identified in the

brain of AD patients with elevated levels leading to an increased

amount of Aβ peptide (Sato et al., 1999; Smith et al., 2004). Two

phosphorylation sites for CK2 (S7 and S9) and one for CK1 (S19)

were identified (Walter et al., 1996). S19 phosphorylation

elevated the binding of AP-1 protein to presenilin-2, whereas

S7 and S9 phosphorylation did not show any change in the

Frontiers in Molecular Biosciences frontiersin.org07

Baier and Szyszka 10.3389/fmolb.2022.916063

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.916063


TABLE 2 Inhibitors of CK1, TTBK, and CK2.

Inhibitor name and structure Biological activity References

CK1 inhibitors

- heterocyclic, central nervous system (CNS)-penetrating, and
ATP-competitive inhibitors of CK1δ (IC50 values of 23 nM and
47 nM)

Alquezar et al. (2016); Martínez-González et al. (2020);
Morales-Garcia et al. (2017); Posa et al. (2019); Salado et al.
(2014)

. - selective over a 456 kinases panel

- decrease of TDP-43 phosphorylation in cell culture assays

IGS-2.7
- able to prolongate the Drosophila lifespan by inhibition of
TDP-43 neurotoxicity

.

- IGS-2.7 possesses protective activity on dopaminergic neurons
induced by 6-hydroxy dopamine (6-OHDA) and reduces the
lipopolysaccharide inflammatory activation in primary cell
cultures of astrocytes and microglia

IGS-3.27
- effect on cell proliferation, TDP-43 phosphorylation, and
subcellular localization

- effect on TDP-43 dependent repression of CDK6 expression

- progranulin-deficient cells treated with 5 μM IGS-2.7 led to a
potent inhibition of TDP-43 phosphorylation and normalization
of the abnormal cytosolic TDP-43 accumulation

- expression of CDK6 mRNA and the amount of TDP-43 was
decreased by IGS-2.7

- IGS-2.7 prevented cytosolic TDP-43 accumulation in a human
neuroblastoma SH-SY5Y cell model through CK1δ inhibition

- able to reduce TDP-43 phosphorylation in human cells derived
from FTD and ALS patients

- IGS-2.7 is active in a TDP-43 transgenic mouse (A315T) model
and in a human cell-based model of ALS

.

PF-4800567

- selective ATP-competitive CK1ε inhibitor
- higher inhibitory activity towards CK1ε than towards CK1δ
with IC50 values of 32 and 711 nM as well as IC50 values of
2.65 and 20.38 μΜ in whole cells, respectively
- blocks period protein 3 (PER3) nuclear localization mediated
by CK1ε (0.01-10 μM) and suppresses PER2 degradation at μΜ
- rapid absorption and distribution in the plasma and brain of
mice
- extension of the period for single phases of the molecular
clockwork, especially the duration of PER2-mediated
transcriptional feedback

Meng et al. (2010); Walton et al. (2009)

.

- effective and selective inhibitor of CK1ε and CK1δ (IC50 values
of 7.7 nM and 14 nM, respectively)

Adler et al. (2019); Badura et al. (2007); Cheong et al. (2011);
Sundaram et al. (2019)

PF-670462

- influence on the localization of the GFP signal back to the
cytoplasm dependent on the inhibitor concentration, with an
EC50 of 290±39 nM in CKIε-transfected COS7 cells

- a potent inhibitor of theWnt/β-catenin signaling pathway with
an IC50 of ~17 nM

- weak inhibition of cell proliferation and only moderately
inhibition of HEK293 and HT1080 cell growth (1 μM)

- potential to repeal hippocampal proteomic changes in several
AD-related and clock-regulated pathways, e.g., synaptic
plasticity and APP cleavage
- able to reverse effects of working memory deficits and lead to
the improvement of disturbances in behavioral circadian rhythm
- inhibition of CK1δ/ε increases the cognitive-affective behavior
and inhibits the amyloid amount in the APP-PS1 mouse model
of AD

(Continued on following page)
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TABLE 2 (Continued) Inhibitors of CK1, TTBK, and CK2.

Inhibitor name and structure Biological activity References

.

PF-5006739

- possesses strong and selective potency against CK1δ and CK1ε
in enzymatic assays (3.9 nM and 17 nM, respectively) and in
whole-cell screening (EC50 = 15.2 and 83 nM, respectively)
- in a panel of 59 kinases, only JNK2 and MAP4K6 are inhibited
at a concentration of 1 µM with IC50 values of 6.1 and 1.5 µM,
respectively
- used in the treatment of several psychiatric disorders
- lowers the effect on opioid drug-seeking behavior in a rodent operant
reinstatement animal model dependent on the inhibitor dose
- daily treatment of diet-induced obese and ob/ob mice increase
expression of clock genes and improved the glucose tolerance

Cunningham et al. (2016); Wager et al. (2014)

.

- effective ATP-competitive CK1 inhibitor (IC50 values of 44 nM
for CK1δ and 260 nM for CK1ε)
- EC50 value below 100 nM estimated in a MTT assay against
human melanoma cell line A375
- a binding assay analysis of 442 kinases showed that only CK1δ
and CK1ε are strongly inhibited
- reduction of the activities of CDK6/cyclin D3, CDK6/cyclin
D1, CDK4/cyclin D3, CDK4/cyclin D1, and FLT3 (IC50 values
between 368 and 3,000 nM)
- decrease of TPA-induced skin tumor formation in carcinogen-
initiated mouse skin cells, most likely by the inhibition of the
Wnt/β-catenin signaling

Bibian et al. (2013); Su et al. (2018)

SR-3029

.

LH846

- selective, cell-permeable, ATP-site-targeting inhibitor
(IC50 values of 290 nM, 1.3 μM and 2.5 μMfor CK1δ, ε, and
α, respectively)
- inhibition of PER1 phosphorylation by CK1δ and its
degradation
- able to prolongate the circadian period in U2OS cells, but only
minimally effects the amplitude

Lee et al. (2011)

. - effective, reversible, andweakly specificATP-competitive inhibitor of
CK1δ and ALK5 with IC50 values of 0.3 and 0.5 µM, respectively

Flajolet et al. (2007); Järås et al. (2014); Liu et al. (2021); Rena
et al. (2004)

D4476

- modest inhibitory activity against other kinases, including
p38α MAP kinase, PKB, SGK, and GSK-3β
- potently kills leukemia stem cells (LSCs) with high selectivity
when compared to normal HSPCs
- CK1α inhibition causes a decrease of ribosomal protein
S6 phosphorylation and activates p53 resulting in the selective
removal of leukemia cells
- inhibition or down-regulation of CK1α, efficiently reduced
glioblastoma multiforme (GBM) cell proliferation in both
Tp53 wild-type and Tp53-mutant GBM cells

- significant reduction of Aβ40 peptide production in N2A cells
expressing APP-695

- effect towards γ-secretase cleavage activity in mammalian cells
transfected with the C-terminal fragment of APP

. - compound 1: ATP-competitive and isoform CK1δ seletive
inhibitor (Ki = 125 nM)

Cozza et al. (2008)

- compound 2: inhibitory activity against CK1δ (IC50 = 0.6 μM)
- cytotoxicity of compound 1 on human ovarian carcinoma cell
line 2008 (IC50 = 14.4 μM) and on its cisplatin-resistant clone
C13 ( IC50 = 87.9 μM)
- cytotoxicity of compound 2 on human ovarian carcinoma cell

(Continued on following page)
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TABLE 2 (Continued) Inhibitors of CK1, TTBK, and CK2.

Inhibitor name and structure Biological activity References

Amino-antraquinone 1 line 2008 (IC50 = 122.4 μM) and on its cisplatin-resistant clone
C13 ( IC50 = 8.0 μM)

.

Amino-antraquinone 2

. - highly effective ATP-competitive inhibitor of CK1δ (IC50

CK1δ=4 nM, IC50 CK1ε=25 nM)
- highly selective towards CK1δ when tested against more than
321 protein kinases
- high efficiency against p38α MAPK with an IC50 value three-
fold higher compared to CK1δ
- inhibitory effect on human pancreatic cancer cell lines
Colo357 and Panc89 (EC50 of 3.5 and 1.5 μM, respectively)

Halekotte et al. (2017)

Compound 11b

. - potent ATP-competitive and specific inhibitors of CK1δ (IC50

values of 40 and 42 nM, respectively)
Bischof et al. (2012)

Bischof-5

- Bischof-5 exhibits a 5-fold higher affinity towards CK1δ than
to CK1ε (IC50=199 nM)

- Bischof-6 inhibits both isoforms in similar range (IC50=33 nM
for CK1ε)

.

- Bischof-5 is highly potent and selective towards CK1δ in a
panel of 442 kinases

Bischof-6

- Bischof 5 and 6 negatively influence the proliferation of several
tumor cell lines

(Continued on following page)
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TABLE 2 (Continued) Inhibitors of CK1, TTBK, and CK2.

Inhibitor name and structure Biological activity References

. - potent ATP-competitive and selective CK1δ/ε inhibitors (IC50

values of 0.07-0.81 μM and 0.13-1.36 μM)
Richter et al. (2014)

Compound 1

.

- inhibition of growth analysed by cell viability assays and cell
cycle distribution on 82 different tumor cell lines

Compound 2

. - ATP-competitive and CK1 specific García-Reyes et al. (2018)

IWP-2

- specifically inhibits CK1δ when compared to 320 other kinases
(IC50 values of 0.317 and 4 μM for CK1δ and CK1ε, respectively
- inhibition of the gatekeeper mutantM82FCK1δ (IC50 = 40 nM)
- inhibition of the viability of various cancer cell lines

. - multi-kinase inhibitor (IC50 values between 0.5 and 20 nM for
CK1 isoforms, CDK7, and CDK9)

Ball et al. (2020)

BTX-A51

- specifically blocks leukemic stem cell target CK1α as well as
CDK7 and CDK9 preventing transcription of key oncogenic
genes.

- activation of p53 and its sustained stabilization by a super-
enhancer shutdown of Mdm2 in combination with the
transcriptional shutdown of leukemia oncogenes, includingMyc
and Mcl1

. - highly selective and CK1 isoform-specific (IC50 = 14 nM for
CK1γ)

Hua et al. (2012)

Compound 1h

- excellent selectivity over other CK1 isoforms, like CK1α (IC50 =
9.18 μM) and CK1δ (IC50 = 2.32 μM)

- no inhibitory activity against 48 kinases including GSK3β
(IC50 = 60 μM)

- stable in the rat and human microsomes and show good effects
on cells and modest pharmacokinetic properties in rats

(Continued on following page)
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TABLE 2 (Continued) Inhibitors of CK1, TTBK, and CK2.

Inhibitor name and structure Biological activity References

. - inhibitory activity against CK1δ and CK1ε (IC50 values of
0.41 and 0.8 μM, respectively)

Baunbæk et al. (2008); Iwao et al. (2011)

Lamellarin 3 - inhibition of other kinases (CDKs, DYRK1A, GSK3α/β, and
PIM1) with IC50 values from 0.06–0.6 μM

. - inhibition of cell survival of human neuroblastoma SH-SY5Y
cells (IC50 values of 0.56 and 0.11 μM for lamellarin 3 and 6,
respectively)

Lamellarin 6

. - inhibitory activity in nanomolar range against few AD-related
protein kinases, e.g., CK1δ, GSK3β, and CDK5/p25 (IC50 values
of 35, 10, and 28 nM, respectively)

Meijer et al. (2000); Plisson et al. (2014); Wan et al. (2004);
Zhang et al. (2012)

Hymenialdisine

- numerous kinases were inhibited only in the micromolar range,
e.g., Aurora-A, Her1/2, IKKα, PKA, and PKB
- CK1 dose-dependent inhibition of presenilin-2
phosphorylation using presenilin-2-maltose-binding protein
- debromohymenialdisine inhibits the activities of diverse
protein kinases including CK1δ, CDK5/p25, and GSK3β (IC50

values of 0.1–0.4 μM

TTBK1/2 inhibitors

. - potent and selective ATP-competitive inhibitors (IC50 values of
4.4 µM and 6.8 µM (AZ-1), 2.6 µM and 3.2 µM (AZ-2) for
TTBK1 and TTBK2, respectively)

Xue et al. (2013); Kiefer et al. (2014); Palomo et al. (2020)

AZ-1

- neuroprotective profile on phospho-TDP-43 induced cell death
in cellular human neuroblastoma models

.

AZ-2

(Continued on following page)
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TABLE 2 (Continued) Inhibitors of CK1, TTBK, and CK2.

Inhibitor name and structure Biological activity References

. - potent, selective and brain-penetrant TTBK1 inhibitor (IC50 =
2.7 nM)

Dillon et al. (2020); Halkina et al. (2021); Tian et al. (2021)

TTBK1-IN-1

- in in vivo selectivity study with a panel of 150 kinases only
4 kinases (including TTBK1/2) are inhibited more than 50%
- dose-dependent inhibition of tau phosphorylation levels at
Ser422 (IC50 of ~9.5 nM) in isoflurane-induced hypothermia
mice model
- reduction of TDP-43 phosphorylation and formation of high
molecular species in N2a cells

. - potent, selective and brain penetrant inhibitors of TTBK1 (IC50

of 60 nM (compound 8) and 2.7 nM (compound 31))
Halkina et al. (2021)

Compound 8

- compound 31 inhibits tau phosphorylation at S422 in mouse
hypothermia and a rat developmental model (IC50 of 315 nM)

.

Compound 31

. - cell-permeable, ATP-competitive TTBK1/2 inhibitor (IC50

values of 0.24 μM and 4.2 μM for TTBK1 and TTBK2,
respectively)

Nozal et al., (2022)

Pyrropirimidine 29

- inhibition of TDP-43 phosphorylation in vitro and in vivo, in
cell cultures and in the spinal cord of transgenic TDP-43 mice

. - possesses good CNS penetrating properties and potent
antioxidant and anti-inflammatory activities

Jana and Singh, (2020); Wang et al. (2016)

5-TDMF

- inhibition of LPS-induced NF-κB translocation and expression
of iNOS and COX-2 blocking MAP kinase and Erk signaling
pathways

. - inhibition of TTBK1 and TTBK2 (1 μM) with remaining
activity of 8% and 12% (MRC Kinase Profiling Inhibitor
Database)

Potjewyd et al. (2022)

AMG-28

- inhibition of tau phosphorylation at S422 in a biochemical and
cellular assay with IC50 values of 199 nM and 1.85 μM,
respectively

- new analogs are more potent inhibitors of TTBK2 than TTBK1
- assayed in NanoBRET test in permeabilized HEK293 cells and
compound 9 shows IC50 values of 2.5 and 1.8 μM for TTBK1 and
TTBK2, respectively
- in an enzymatic test derivative 9 possesses inhibitory activity
(IC50 values between 150 and 400 nM)
- derivative 9 shows highest kinome-wide selectivity towards the
TTBK activities

(Continued on following page)
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TABLE 2 (Continued) Inhibitors of CK1, TTBK, and CK2.

Inhibitor name and structure Biological activity References

CK2 inhibitors

. - cell-permeable, highly selective, and ATP/GTP-competitive
inhibitor of CK2 (IC50 values of 0.9 and 1.6 μM for rat liver and
human recombinant CK2, respectively)

Pagano et al. (2008); Sarno et al. (2001); Szyszka et al. (1995);
Yadikar et al. (2020); Zhang et al. (2018)

TBB

- discrimination between CK2 subunits (Ki values ranging from
80 nM to 210 nM)

- strong inhibition of several other kinases (DYRK1-3, HIPK2,
and PIM1–3) at a concentration of 10 μM

- effect on human prostate cancer PC-3 cell viability is
dependent on the time of administration

- inhibition of okadaic acid-induced monomeric and oligomeric
phospho-tau in both, N2a and CTX culture

- prevention of I2
PP2A phosphorylation at Ser9 in neurons and

animal models

. - ATP-competitive CK2 inhibitor (IC50 = 130 nM) Li et al. (2011); Ławnicka et al. (2010); Pagano et al. (2008);
Yde et al. (2007)

DMAT

- inhibition of PIM1-3, HIPK2-3, DYRK1-3, PKD1, and CDK2
(IC50 values between 0.07–3.7 µM)

- possesses anti-neoplastic effect on the growth and hormonal
activity of human adrenocortical carcinoma cell line (H295R)
in vitro

- able to induce cell death in antiestrogen-resistant human breast
cancer cells
- inhibition of TDP-43 phosphorylation which is necessary for
the decrease of the ND251 or ND207 aggregation

. - orally bioavailable, highly selective, and potent CK2 inhibitor
(IC50 value of 13 nM against CK2α and CK2α’)

Buontempo et al. (2016); Chon et al. (2015); Cozza et al.
(2012); Lee et al. (2019); Kim et al. (2014); Pierre et al. (2011);
Rosenberger et al. (2016); Siddiqui-Jain et al. (2010);

Simitasertib (CX4945)

- in cancer cells, causes cell-cycle arrest and selectively induces
apoptosis when compared to normal cells.
- correlation between the antiproliferative activity and the
expression of CK2α as well as inhibition of the PI3K/Akt
signaling

- synergistic effects on cell death in combination with other
inhibitors
- synergistic cytotoxic effects of bortezomib (20S proteasome
inhibitor with Ki of 0.6 nM) and CX-4945 in acute lymphoblastic
leukemia resulting in turning off the prosurvival ER chaperone
BIP/Grp78 and turning on the pro-apoptotic NF-κB
- dose-dependent inhibition of the IL-1β/TNF-α induced
secretion of the inflammatory cytokines MCP-1 and IL-6 in
human primary astrocytes and U373 astrocytoma cells

- strong inhibition of CLK activity

- inhibition of CDC2-like kinases in nanomolar range leading to
the inhibition of the phosphorylation of serine/arginine-rich
proteins in mammalian cells

- induction of abnormal alternative splicing of CK2α′ pre-
mRNA

- orphan drug status by the US FDA for therapy of hard-to-treat
bile duct cancers, known as cholangiocarcinomas

- first described orally bioavailable CK2 inhibitor that advanced
into clinical trials

(Continued on following page)
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TABLE 2 (Continued) Inhibitors of CK1, TTBK, and CK2.

Inhibitor name and structure Biological activity References

.

TTP22

- inhibition of CK2 with a Ki of 40 nM
- high selectivity towards CK2 confirmed using serine/threonine
(ASK1, JNK3, Aurora A, and Rock 1) and tyrosine protein
kinases (FGFR1, Met, and Tie2)
- inhibition of CK2 decreases taspase1-dependent
MLL1 processing leading to higher MLL1 stability, and finally
displace the MLL chimeras from chromatin
- suppression of CK2 retard the leukemic progression in a MLL-
AF9 leukemia mouse model

Golub et al. (2011); Zhao et al. (2018)

.

SGC-CK2-1

- potent inhibitor of CK2 with activity on both isoforms, CK2α
and CK2α’ (IC50 values of 4.2 nM and 2.3 nM, respectively)
- inhibition of DYRK2 (IC50 of 440 nM)
- potent suppression of CK2-mediated neuroinflammatory
response inhibiting the expression of the proinflammatory
cytokines IL-6 and IL-1β

Wells et al. (2021); Mishra et al. (2022)

.

GO289

- potent and selective inhibitor of CK2 (IC50 of 7 nM) and minor
effects on CK1δ and CK1α activities
- inhibition of PIM2 (IC50 of 13 nM)
- inhibition of the phosphorylation of clock proteins, including
PER2
- cell type-dependent inhibition of cancer cell growth that
correlated with cellular clock function
- in vitro potency and selectivity comparable to CX4945

Borgo et al. (2021b); Oshima et al. (2019)

. - potent and selective dual inhibitor of CK2 and serine-arginine
protein kinase 1 (SRPK1)

Dalle Vedove et al. (2020); Morooka et al. (2015)

SRPIN803-rev

- activity in mouse model of age-related macular degeneration
due to the involvement of SRPK1 in angiogenesis and CK2 in
neovascularization

.

Compound 4

- the most potent SRPIN803-rev derivative (IC50 = 0.28 μM)
- significant selectivity when tested on 320 kinases (inhibits only
CK2 catalytic subunits by more than 50% at 1 μM
concentration)
- good cell permeability, inhibiting endocellularly CK2
- significant reduction of Jurkat and CEM cells viability

Dalle Vedove et al. (2020)

(Continued on following page)
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TABLE 2 (Continued) Inhibitors of CK1, TTBK, and CK2.

Inhibitor name and structure Biological activity References

. - antioxidant, anti-cancer, and anti-inflammatory activities Caltagirone et al. (2015); Daily et al. (2021); Guo et al. (2013);
Kang et al. (2004); Kotanidou et al. (2002); Kwon, (2017); Lolli
et al. (2012); Lopez-Lazaro, (2009); Rezai-Zadeh et al. (2009);
Sharma et al. (2007)

Luteolin

- ATP-competitive inhibition of CK1 (IC50 = 1.6 μM)
- inhibition of CK2 holoenzyme and CK2α (IC50 0.5 and
0.35 μM, respectively)
- prevention of NDDs by reducing oxidative stress,
inflammation, and Aβ production

- protection against lipopolysaccharide-induced lethal toxicity
and a reduction of the expression of pro-inflammatory
intermediate in mice (0.2 mg/kg)
- reduction of 6-hydroxy-dopamine-derived toxicity leading to
neuroprotection in rat pheochromocytoma PC12 cells
(3.13–50 μM)
- neuroprotective effects on stroke patients undergoing
neurorehabilitation as a component of a co-ultramicronized
composite (140 mg/day for 60 days) and palmitoylethanolamine

- improvement of brain insulin resistance as well as
inflammation protecting against the development of AD and the
gut microbiota-liver-brain axis

.

Quercetin

- antioxidant and anti-inflammatory activities
- potent inhibition of all CK2 isoforms with IC50 values below
1 µM
- affects ROS-producing enzymes and protects neurons from
oxidative stress-induced damage
- potential up- and/or down-regulation of cytokines via Nrf2,
ERK1/2, PI3K/Akt, JNK, MAPK pathways
- Improvement of cognitive performance and cognitive
functions in patients with neurological diseases or
neurobehavioral disorders
- inhibition of Aβ production in vitro and protection against
cognitive impairments in a mouse model

Baier et al. (2018); Nakagawa and Ohta, (2019); Selvakumar
et al. (2012); Zaplatic et al. (2019)

.

Chrysoeriol

- inhibition with IC50 values in low nanomolar range
- administration alleviates the damage caused by cerebral
ischemia and reperfusion in MCAO model rats
- administration reduces the area of brain infarction and relief of
neurobehavioral deficits
- inhibition of the production of pro-inflammatory cytokines,
- reduction of neuronal apoptosis and promotion of nerve
growth
- neuroprotective mechanism is strongly linked to the activation
of the Wnt/β-catenin signaling pathway

Baier et al. (2017); Shao et al. (2021)

. - potent, selective, ATP-competitive, and cell-permeable
inhibitor of CK2 ( Ki = 50 nM)

Cozza et al. (2009); Cozza et al. 2015; Schwind et al. (2017);
Zhou et al. (2015)

Quinalizarin

- able to discriminate between the free catalytic subunits and the
CK2 holoenzymes
- downregulation of transcription factors and modulation of
microRNA in 3T3-L1 cells leading to inhibition of adipogenesis

- inhibition of cell viability, especially in adenocarcinoma cells
harboring EGFR sensitive mutation and interruption of
migration

- stimulation of apoptosis in different human lung cancer cell
lines

- moderate ATP-directed inhibitor of the CK2 holoenzyme (IC50

of 1.24 µM)
- reduction of cell viability and proliferation in cancer cell lines,
like MCF7, A427, and A431 (10 μM)
TTBK1/2 inhibitors

Haidar et al. (2019); Nirmaladevi et al. (2014);
Hinojosa-Ventura et al. (2019)

(Continued on following page)
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TABLE 2 (Continued) Inhibitors of CK1, TTBK, and CK2.

Inhibitor name and structure Biological activity References

.

Bikaverin

- cytotoxic and antitumor effect on L5178Y lymphoma cells
(IC50 of 0.23 μg/ml) and on BALB/c mice inoculated with
L5178Y
- capable to recover the nuclear and mitochondrial integrity in
H2O2-induced damaged cells

.

Resveratrol

- antioxidant, anti-cancer, anti-inflammatory, and anti-aging
properties
- CNS penetrating molecule
- increases the activity of antioxidant enzymes
- reduction of the cell viability of human breast carcinoma cells
(MCF-7) dependent on the concentration (IC50 = 106 μM)
- inhibition of CK2 activity by 1.6-fold
- decrease of the potential of the mitochondrial membrane
- increases ROS levels by 1.7-fold
- protection of the central nervous system against symptoms of
disorders, like stroke, spinal cord injury-induced inflammation,
AD, PD, or HD
- activation of SIRT1, Nrf2, and AMP-activated kinase

Ahmed et al. (2017); Costa et al. (2021); Gomes et al. (2018);
Farkhondeh et al. (2020); Kim et al. (2018); Komorowska et al.
(2020); Kumar et al. (2011); Turner et al. (2015); Liu et al.
(2015); Zhao et al. (2021); Maher et al. (2010); Yu et al. (2016);
Su et al. (2021); Yang et al. (2021)

. - potent ATP-competitive CK2 inhibitor (IC50 = 40 nM, Ki =
20 nM)

Baluchnejadmojarad et al. (2017); Cozza et al. (2006); Dheen
et al. (2005); Ebrahimi et al. (2019); Lastres-Becker et al.
(2016); Liu et al. (2017); Ríos et al. (2018); Vargas et al. (2006);
Wang et al. (1998); Wei et al. (2020)

Ellagic acid

- inhibitory effects towards the activity of many kinases such as
LYN, PKA, SYK, GSK3, PKC, FGR, or CK1 (IC50 values between
2.9 and 13 µM)
- normalization of the lipid metabolism and the lipidemic profile

- regulation of proinflammatory mediators, such as IL-6, IL-1β,
and TNF-α
- upregulation of Nrf2 and the inhibition NF-κB
- neuroprotection due to antioxidant properties, ability to iron
chelating, the induction of signaling pathways, and the reduction
of mitochondrial dysfunction

- neuroprotective contribution towards several neurotoxins in
numerous animal models

- neuroprotective effect in the 6-OHDA rat model of PD
(50 mg/kg/day for one week)
- neuroprotective potential by the reduction of apoptosis and
oxidative stress, and inhibition of MAO-B.

- effect on the ERβ/Nrf2/HO-1 signaling cascade

- protective influence on DA neurons from rotenone-induced
neuronal damage by activating Nrf2 signaling

- induction of Nrf2 and HO-1 expression and inhibition of the
NF-κB signaling pathway

- protection of rats (6-OHDA rat model) against MTX-induced
apoptosis and mitochondrial dysfunction

- significant reduction of the volume of cerebrum infarction and
the neurological deficit scores of the rats in an experimental rat
model based on oxygen-glucose deprivation and reoxygenation
in primary cultured cortical rat neurons.

- increase of the number of Bcl-2-positive cells and the ratio of
Bcl-2-positive to Bax-positive neurons in the semidarkness zone
near the brain ischemic focus in the photothrombotic cerebral
ischemia model

- higher neuron viability, cell nuclear integrity, and a higher ratio
of Bcl-2/Bax expression in the primary cultured neuron model

- decrease of the number of apoptotic cells

Frontiers in Molecular Biosciences frontiersin.org17

Baier and Szyszka 10.3389/fmolb.2022.916063

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.916063


binding of activator protein 1 (Sannerud et al., 2016). Further

experiments are necessary to examine the role of

phosphorylation in the case of presenilin-2.

Inhibitor-2 PP2A

The phosphorylation of tau is regulated by phosphoseryl/

phosphothreonyl protein phosphatase PP2A and its activity is

decreased in AD brain. PP2A is regulated by two endogenous

inhibitory proteins called I1
PP2A and I2

PP2A (Gong et al., 1993; Li

et al., 1996). Typically, I2
PP2A is mainly located in the nucleus

regulating DNA replication, gene transcription, cell-cycle

progression, DNA repair and migration as well as chromatin

remodeling. In AD patients, I2
PP2A is overexpressed and

translocated from the nucleus into the cytoplasm, where PP2A

and significantly hyperphosphorylated tau is localized forming the

NFTs in the neuronal cytoplasm (Tanimukai et al., 2005). In

PC12 cells, stably transfected with tau and transiently transfected

with human I2
PP2A, accumulation of the inhibitor in the cytoplasmwas

observed (Chohan et al., 2006). CK2 was identified as one of two

kinases responsible for the phosphorylation of S9 (Vera et al., 2007).

This phosphorylation affects the ability of I2
PP2A to bind to importin

proteins (importin-α and importin-β). Phosphorylated I2PP2A does not
form a complex with importin, therefore, it is localized in the

cytoplasm instead to be transported into the nucleus (Yu et al., 2013).

Kinase inhibitors used in NDD
pathway interrogation

In the literature synthetic and natural substances are

described inhibiting protein kinases CK1, TTBK, and CK2.

Table 2 gives an overview of several inhibitors with in vitro

and/or in vivo activities on these kinase targets. Many of them do

not selectively inhibit kinases, but might be a good starting point

for drug design. Many research results on cancers and cancer cell

lines involving protein kinase inhibitors were published, but only

a few reports towards NDDs, especially in the case of CK2.

Cancer and NDDs are both characterized by the dysregulation of

the same signalling pathways, but with opposite effects. In

cancers the cell survival and proliferation is increased,

whereas, in NDDs those alterations lead to cell death and

apoptosis. The most altered signal pathways in cancer, e.g.,

Nrf2 pathway and Wnt/β-catenin pathway, are also implicated

in NDDs, like AD and PD (Varela and Garcia-Rendueles, 2022).

The development of specific CK1 inhibitors capable to cross

the blood-brain-barrier is a promising target for the treatment of

TDP-43 proteinopathies, e.g., ALS. Small brain-penetrating

molecules were described which block the neurotoxicity of

TDP-43 in cell culture experiments through inhibition of its

phosphorylation (Perez et al., 2011; Salado et al., 2014; Morales-

Garcia et al., 2017). Up to now, few CK1-specific compounds

have been synthesised and a small part of them has been also

examined in animal models. Kinetic studies of these compounds

revealed an ATP-competitive mode of action in the case of

almost all molecules.

In several studies, it has been proven that CK1 activity is

necessary for molecular pacemaking. It was shown that CK1δ is

the main regulatory element of the clock period: inhibition of

CK1δ remarkably prolongated the circadian rhythms in

locomotor activity in vivo and molecular oscillations in the

suprachiasmatic nucleus (SCN) and peripheral tissue slices

in vitro. Additionally, cumulation of PER2 protein in the

nucleus was observed, in vitro and in vivo (Meng et al., 2010).

Cell proliferation is increased and colony formation is

promoted through overexpression of CK1α. Effects of CK1α
inhibition include the increase of the sensitivity to

radiotherapy and reduction of the production and secretion of

pro-inflammatory factors (Liu et al., 2021).

Several benzimidazole-based inhibitors displayed significant

inhibition of CK1δ, e.g., Bischof-5 and -6. Other potent ATP-

competitive and selective CK1δ/ε inhibitors are represented by

difluoro-dioxolo-benzimidazole derivatives, compounds 1 and 2

(Richter et al., 2014). Substances derived from inhibitors of Wnt

production (IWP) are structurally similar to benzimidazoles. Such

inhibitors have been characterized asATP-competitive andCK1 specific.

Another potent inhibitor, compound 1h, which is highly selective

and CK1 isoform-specific was identified from a high-throughput

screen of the Amgen compound library (Hua et al., 2012).

Many modulators of CK1 presently under investigation are

isolated from natural environment or are derivatives of natural

products. Nowadays, compounds from marine organisms are

getting more attention and are now being investigated in clinical

tests, essentially against cancer, inflammation, chronic pain, and

NDDs. Among the promising drug candidates is the family of

lamellarins, which are marine alkaloids with fused 14-phenyl-

6H-[1]benzopyrano[4′,3′:4,5]pyrrolo[2,1-a]isoquinoline or non-
fused 3,4-diarylpyrrole-2-carboxylate ring systems (Baunbæk

et al., 2008; Bailly, 2015; Fukuda et al., 2020). So far, over

50 lamellarins have been purified from different marine

organisms, e.g., mollusks, tunicates, and sponges. In 2008,

protein kinases have been identified as new molecular targets

of anticancer lamellarins (Baunbæk et al., 2008). 22 lamellarins

were screened for cancer- and Alzheimer’s disease-relevant

protein kinases.

Until now, only a few protein kinases were described, which are

associated with abnormal TDP-43 hyperphosphorylation, including

both TTBK isoforms (Versluys et al., 2022). Both are known to

colocalize with TDP-43 inclusions in spinal cords of ALS patients.

TTBK2 is involved in crucial cellular mechanisms, e.g., ciliogenesis,

microtubule dynamics, and neurotransmitter trafficking. Thus, its

reduced activty may have negative effects for the patients (Jackson,

2012; Bowie and Goetz, 2020). Only a small number of TTBK1/

2 inhibitors have been described, but unfortunately they do not show

selectivity for one isoform (Xue et al., 2013; Kiefer et al., 2014).
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A set of TTBK1 azaindazole inhibitors has been examined

(Halkina et al., 2021). Two of them are characterized by high

potency, selectivity and they are brain penetrant: compound 8

(4-(1-(2-Aminopyrimidin-4-yl)-1H-pyrazolo[4,3-c]pyridin-6-

yl)-2- methylbut-3-yn-2-ol) with an IC50 of 60 nM and

compound 31 ((S)-1-(1-(2-Amino-6-methoxypyrimidin-4-

yl)-1H-pyrrolo[3,2-c]-pyridin-6-yl)-3-methylpent-1-yn-3-ol)

with an IC50 of 2.7 nM.

Lately, receptor-based pharmacophore models were developed

applying three TTBK1 protein structures. The combination of

integrated e-pharmacophore based virtual screening and molecular

dynamics simulation resulted in four hits: ZINC14644839 (5,6,4′-
Trihydroxy-7,3′-Dimethoxyflavone, 5-TDMF), ZINC00012956 (3-

phenyl-2-(9H-purin-6-ylamino)propan-1-ol), ZINC91332506 (1-[3-

(6-aminopurin-9-yl)propyl]-3-methyl-pyridin-2-one), and

ZINC69775110 (N-[(4-ethoxy-3-fluoro-phenyl)methyl]-7H-purin-

6-amine). AMG-28 (4-(2-amino-5,6,7,8-tetrahydropyrimido

[4′,5′:3,4]cyclohepta[1,2-b]indol-11-yl)-2-methylbut-3-yn-2-ol)

was originally designed as an inhibitor of a Ser/Thr protein kinase

essential for the activation of the NF-κB pathway (NIK) (Li et al.,

2013). A co-crystal structure of this inhibitor with the kinase domain

of human TTBK1 showed binding of the aminopyrimidine ring with

the hinge region of protein kinase. On the basis of AMG-28 11 new

indolyl pyriminidine compounds were synthetized. New analogs are

more potent inhibitors of TTBK2 than TTBK1 (Potjewyd et al., 2022).

Compounds that may inhibit CK2 activities where described in

numerous publications. Since research results on the role of CK2 in

NDD are diverse, there are only a few reports about CK2 inhibitors

on NDDs available. The observation that CK2 is either overactive or

overexpressed in patient brains supports kinase inhibition as a

therapeutic approach for multiple neurodegenerative diseases. A

large group of CK2 inhibitors, known for more than 20 years, are

benzimidazoles, e.g., TBB and DMAT (Szyszka et al., 1995).

Data propose the influence of CK2 on astrocytes in the

neuroinflammatory response in AD. In astrocytes in the

hippocampus and temporal cortex of AD patients levels of

CK2α/α’ are increased. Those astrocytes are linked to amyloid

deposits in the AD brain. In human primary astrocytes and

U373 astrocytoma cells, the IL-1β/TNF-α induced secretion of

the inflammatory cytokines MCP-1 and IL-6 is potently inhibited

by CX-4945 dependent on the dose (Rosenberger et al., 2016). CX-

4945 is the first described orally bioavailable CK2 inhibitor that

advanced into clinical trials (Pierre et al., 2011; Cozza et al., 2012).

Quite recently SRPIN803-rev (6-(4-hydroxy-3-

metoxybenzylidene)-5-imino-2-(trifluoromethyl)-5H-[1,3,4]

thiadiazolo[3,2-a]pyrimidin-7(6H)-one), a new dual inhibitor

of CK2 and serine-arginine protein kinase 1, was identified

(Dalle Vedove et al., 2020). SRPIN803-rev and its new

synthesized derivatives bind to the open conformation of

the hinge/αD region within the ATP-binding pocket of CK2α.
The MLL/COMPASS stability is regulated by taspase1 cleavage

and might be a possible target for clinical therapy of leukemia.

Destabilized MLL and unprocessed version MLL1 associated with

chromatin results in the displacement of MLL chimeras from

chromatin in leukemic cells. The CK2 phosphorylation site is next

to the taspase1 cleavage site, and enables its cleavage. Inhibition of

CK2 by specific inhibitors (CX-4945 or TTP22) decrease taspase1-

dependent MLL1 processing, which leads to higher MLL1 stability,

and finally displace the MLL chimeras from chromatin. In a MLL-

AF9 leukemia mouse model the suppression of CK2 retard the

leukemic progression (Zhao et al., 2018).

Naturally occurring compounds might act as antioxidant,

anti-inflammatory, antiviral, antimicrobial, and anticancer

agents (Baier and Szyszka, 2020). They have shown

neuroprotective effects in many clinical trials (Ullah et al.,

2020; Akter et al., 2021; Kim and Park, 2021; Wang et al., 2021).

It has been proven that flavonoids are most effective in the

treatment of NDDs, including AD. First analyses with flavonoids

against CK2 were reported by Li et al. (2009), Lolli et al. (2012). As we

described in our own publications, flavonoids naturally occurring in

plants are highly potent CK2 inhibitors. A set of more than

20 compounds (e.g., apigenin, pedalitin, and chrysoeriol) was

tested for their inhibitory effect on four human CK2 isoforms. The

results reveal that CK2α’ was most sensitive to the examined

compounds (Baier et al., 2017; Baier et al., 2018).

Quercetin (3,5,7,3′,4′–pentahydroxyflavone) belongs to the

polyphenolic compounds with powerful antioxidant and anti-

inflammatory activities. Polyphenolic compounds are often

applied in the treatment and protection against severe diseases,

like diabetes, cancer, neurodegenerative and cardiovascular diseases.

In time-course experiments it was shown that CK2 is crucial at

early time points just after the induction of cell differentiation

(Schwind et al., 2017).

In several studies it was observed that Nrf2 signaling is

involved in PD pathogenesis (Dheen et al., 2005). The

increase of Nrf2 induced dopamine (DA) neuroprotection

and, at the same time, the decrease of Nrf2 altered DA

neurons to get sensitive to oxidative stress damage (Lastres-

Becker et al., 2016). It was shown that the progress of PD is linked

to an incomplete activation of Nrf2 (Vargas et al., 2006).

Conclusion

During past decades many research groups provided new

information to better understand the molecular aspects of

cancerogenesis and neurodegenerative diseases. Protein

kinases play an important role in the regulation of the activity

of a huge amount of proteins involved in the control of different

cell functions. Nevertheless, in many cases of NDDs, protein

aggregation often caused by (hyper-)phosphorylation is

observed. Therefore, the inhibition of these reactions is a

promising therapeutic target. Unfortunately, whereas for the

treatment of cancers several compounds were successfully

developed, there does not exist a therapy for NDDs being a

kinase inhibitor. Until September 2021, 73 small molecule kinase

Frontiers in Molecular Biosciences frontiersin.org19

Baier and Szyszka 10.3389/fmolb.2022.916063

https://www.frontiersin.org/journals/molecular-biosciences
https://www.frontiersin.org
https://doi.org/10.3389/fmolb.2022.916063


inhibitors were approved by FDA but only a small amount of them

are for noncancer-related diseases (Ayala-Aguilera et al., 2022). The

main obstacle in the design of substances targeting the CNS is the

effective crossing of the blood-brain-barrier which is necessary in the

treatment of NDDs, but also in the case of oncology. CK1 superfamily

and CK2 play essential roles in the regulation of cell processes, like in

signaling pathways. With respect to this fact, it is not surprising that

their deregulation might be associated to numerous disorders, e.g.,

inflammations, cancer, and NDDs. The starting point for

CK1 inhibitors could be described as poorly selective and weakly

potent molecules necessary to be improved for application in

pharmacological treatment. Subsequently, compounds were

developed, which show significant preference between the

functionally different CK1 isoforms. Noteworthy, Pfizer designed

two ATP-competitive compounds (PF-4800567 and PF-0670462),

which possess selectivity towards the CK1δ and CK1ε isoforms. TG

Therapeutics discovered umbralisib (UKONIQ™), an orally available
dual inhibitor for PI3Kδ and CK1ε applied in the treatment of adults

with relapsed or refractory marginal zone lymphoma, which received

its FDA approval in 2021 (Burris et al., 2018). Despite this, there are

no CK1 inhibitors reaching the clinical stage in neurodegenerative

disorders. Those first successes raise the hope for the design of more

selective and potent inhibitors of CK1 isoforms to improve the

therapeutic opportunities.

In the case of TTBK1/2, up to date, only a small amount of

molecules are known, which show potent inhibitory activity towards

TTBK1/2. The undisputable advantage of TTBK1 over other kinases

is its specific expression in neurons, and therefore, it seems to be a

favorable target for NDDs.

Many kinds of CK2 inhibitors have been reported by using

different methods, e.g., computer-aided drug design or structure-

based reconstitution. Most of them lack cell permeability, high

selectivity, but possess off-target potential. The latter might be

explained by the fact that this kinase phosphorylates a huge

amount of protein substrates. The principle characteristics for a

satisfactory molecule are, furthermore, metabolic stability and a

good pharmacokinetic profile. Even the best compound CX-

4945, already in clinical use, is not devoid of unspecific effects.

Nevertheless, the number of newly developed inhibitors (GO289,

SGC-CK2-1, and the SRPIN803-rev derivatives), may increase

the chance of developing highly selective and CNS penetrating

molecules for CK2 in the near future.
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