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Abstract: Lamb waves have emerged as a valuable tool to examine long plate-like structures in a faster
way compared to conventional bulk wave techniques, which make them attractive in non-destructive
testing. However, they present a multimodal and dispersive nature, which hinders signal identification.
Oblique incidence is one of the most known methods to generate and receive Lamb waves and it is
applied in different experimental arrangements with different types of sensors. In this work, several
setups were conducted and compared to determine the optimal ones to launch and detect ultrasonic
Lamb waves, especially in non-homogeneous specimens. The chosen arrangements were contact with
angle beam transducers, immersion in a water tank, localised water coupling using conical containers
and air coupling. Plates of two different materials were used, stainless steel and Portland cement
mortar. Theoretical and experimental dispersion curves were compared to verify the existence of
Lamb modes and good correspondence was achieved.

Keywords: non-destructive testing; ultrasound; signal processing; Lamb waves; dispersion curves;
angle beam wedge transducers; immersion technique; air-coupled

1. Introduction

Conventional ultrasonic inspection techniques used in non-destructive testing (NDT) are based
on bulk waves (also called body or volume waves). These procedures are time-consuming since a
point-by-point scan is needed to obtain global information from a structure because they only cover
the localised area below or adjacent to the transducer [1]. Bulk waves consist of longitudinal (also
known as P-waves/primary waves, pressure waves or compressional waves) and transverse waves
(also known as S-waves/secondary waves or shear waves). Both kinds of waves occur in solids with
dimensions greater than a wavelength in the three dimensions [2,3]. Nevertheless, in non-viscous fluids,
such as water or air, only longitudinal waves can propagate [1]. The particle motion of longitudinal
waves is parallel to the direction of wave propagation while the particle motion of transverse waves
is perpendicular to the direction of wave propagation. The remaining waves, as guided waves, are
composed of a combination of longitudinal and transverse wave-particle velocity components [1].

Ultrasonic guided waves have become an important subject in NDT. They are a faster, more
sensitive and more economical way of inspecting materials compared with bulk wave techniques.
The main advantage is that a whole structure can be inspected globally from a single probe position [4,5].
These waves need boundaries to propagate, unlike bulk waves whose propagation is unaffected by
boundaries. Depending on the type of structure with boundaries (waveguide), guided waves receive
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different names. If the waveguide is a half-space (a thick structure) Rayleigh waves (R-waves) are
found, which propagate in the surface of the tested specimen because the wavelength is very small
compared to its thickness. Stoneley and Scholte waves travel in solid-solid and liquid-solid interfaces
(or half-spaces), respectively. For pipes or cylindrical rods, cylindrical guided waves appear and the
guided waves that occur in plates (or multilayered plates [6,7]) are known as Lamb waves [1].

Lamb waves are frequently used in ultrasonic NDT because they can travel long distances with
little energy loss [8–10]. The main problem with Lamb waves is that they are dispersive (their phase
and group velocities depend on frequency) and multimodal (different particle motion). Their velocities
and modes can be obtained from characteristic Equations and the graphical solutions of these Equations
are known as dispersion curves. As frequency increases, many modes with different velocities exist in
the received signal, overlapping and hindering Lamb wave analysis. To improve the interpretation of
these dispersive and multimode signals, different recommendations may be followed:

• A region of the phase/velocity dispersion curves where little dispersion exists (i.e., small variations
of phase/group velocity when changing frequency) may be selected to reduce variations in
amplitude and the shape of the sensed signal as it propagates along the plate [11,12].

• Modes with different group velocities may be chosen to separate them in the time domain [11,13,14].
• Low frequencies may be chosen to minimise the number of modes in the received signals, i.e.,

“working on the left side” of the dispersion curves. In fact, the best would be to excite only one
mode because that would enable better damage identification since the appearance of non-excited
modes could indicate the existence of defects, i.e., mode conversion [11,15,16].

The fundamental modes A0 and S0 are frequently used for damage detection [17,18] since, at low
frequencies (until the first cut-off frequency), they are the only existing modes. Normally, the A0 mode
presents a larger signal magnitude than the S0 mode [6]. To isolate both modes, one can work with
low-frequency transducers or inspect plates with the lowest thickness possible. Different types of
defects that have been detected by Lamb waves are delamination [16,19], cracks [10,20], notches [21,22]
and corrosion [17,23]. Depending on the type of defect, a determined mode may be excited depending
on its sensitivity to that defect. Modes that present great displacements in the thickness direction,
like the A0 mode, have good sensitivity to surface damage, such as surface cracks [6], while modes with
great displacement in the direction of wave propagation, like the S0 mode, mean good sensitivity to
any defect in the thickness of the specimen, such as delamination [24]. Some procedures to detect these
defects include observing the velocity shifts in the experimental dispersion curves [19], the amplitude
of the received signals [3] and peaks of the frequency spectrum [5].

One of the most known methods to excite guided waves, in general, is oblique incidence (also
found in the literature as the wedge method or the coincidence principle) [11,14,24–26]. It consists of
striking a bulk wave (generally a longitudinal wave, since water and air do not support transverse
waves) at a determined angle with respect to the normal in a coupling medium (Plexiglas, water, air, etc.)
to generate Lamb waves in the specimen by following Snell’s law. In this way, a specific mode can be
selectively excited. Traditional ultrasonic probes are usually employed in oblique incidence. Although
Lamb waves can be excited and measured by normal beam excitation [9,27,28] this configuration is not
as efficient as oblique incidence. However, selective excitation of Lamb wave modes can be achieved
by normal beam excitation. For instance, some researchers excite different modes by changing the
polarity of piezoceramic lead-zirconate-titanate (PZT) transducers normally attached on both sides
of the plate [8,16]. Others modify the excitation frequency and the geometry of piezoelectric wafer
active sensors (PWAS, basically a network of PZT sensors) to selectively excite Lamb wave modes
(Lamb wave tuning) [10,29,30]. PZT and PWAS are widely used in Lamb wave excitation and damage
detection [31–33].

Both kind of sensors must be strongly coupled with the inspected structure. For that, different
bonded materials have been studied [34,35]. They present several advantages over the typical ultrasonic
probes: they are cheaper, lighter, smaller, need less power and can be embedded in structures [31].
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Nonetheless, they are fragile, could show non-linearities at certain conditions and usually generate
multiple Lamb wave modes [6]. In this work conventional ultrasonic transducers with oblique
incidence have been used.

Different techniques can be used to change the inclination of the transducers, such as the
contact technique with angle beam wedge transducers [7,36,37], immersion coupling [3,13,38] and
air coupling [19,39,40]. Angle beam wedge transducers are basically longitudinal wave transducers
placed on wedges with a certain angle. These wedges are usually made with materials, such as Teflon
or Plexiglas, with a bulk wave velocity lower than the velocity of the mode that you want to work with.
A coupling agent (gel, petroleum jelly) must be used between the transducer-wedge interface and the
wedge-plate interface to provide efficient transmission of energy to the specimen [40,41]. Nevertheless,
the received signal is sensitive to the thickness of the layer of the coupling gel, the contact pressure
between the transducer-wedge and the wedge-plate interfaces [5,28,40] and the reflections produced
within the wedges [11]. Non-contact techniques avoid these problems and enable constant coupling and
faster, easier scanning [13] of the plate with repeatable results [42] compared to the direct contact case.
One non-contact technique [3,13] is immersion coupling, which consists of completely submerging the
test object in a fluid tank (usually water). Longitudinal wave immersion transducers are commonly
employed in this setup with an acoustic matching layer between the piezoelectric element and water
(the same principle is applied to piezoelectric air-coupled transducers). In this case, leaky Lamb waves
(LLW), which are formed by the leakage of energy into the surrounding medium (water, air), are
measured [1,38,43,44]. Note that if the acoustic impedance (or density) of the surrounding medium is
small compared to the acoustic impedance of the plate, the LLW velocities can be approximated by the
Lamb wave velocities [40,45,46]. Nonetheless, the received signal is formed with the addition of the
generated LLW and other undesirable signals, as the reflections from the water surface, the bottom of
the tank, geometrical (or specular) reflection or the direct wave through the water [28,38,44]. These
undesirable signals pollute the received waveform, making mode identification difficult. To solve
these issues, some researchers place some insulating material in the bottom of the tank and between
the transducers [44] or increase the separation between the plate and other surfaces (bottom of the tank,
water surface, etc.) [13]. Additionally, the excited mode could suffer great attenuation due to energy
leakage from the plate, especially if the separation between transmitter and receiver increases (e.g.,
the A0 mode) [3,6,11,43,47,48]. Other researchers avoid completely immersing the plate and choose
water columns [42], conical water containers [28], water balloons [49] or water wedges [14,50] as the
coupling mechanism. However, immersion is not practical for testing large structures, hot structures
or specimens whose surface cannot be contaminated [40,51]. In these cases, air coupling is a better
solution, since it maintains the advantages from immersion testing, such as constant coupling, provide
fast scanning measurements [52] and almost solves the drawbacks from the undesired contributions,
except for the direct acoustic wave through the air, which can be attenuated by an acoustic barrier
placed between the transducers [53,54]. Two types of air-coupled transducers can be found, capacitive
and piezoelectric. The capacitive design generally offers more bandwidth than the piezoelectric ceramic
elements [55,56]. Nevertheless, the received waveforms show a low signal-to-noise ratio (SNR) because
of the high attenuation present in air [52,53]. Therefore, amplification in transmission/reception and
averaging is needed [43,52,57,58]. Furthermore, there are modes which are difficult to excite in air
because of its low surface motion, such as the S0 mode [40,43,52,59,60]. On the contrary, A0 is a mode
considered suitable for air-coupled ultrasonic testing due to its great out-of-plane displacement [39,43].

Lamb waves have been generated and received in different materials. The most commonly used
are metals [3,4,8,14,36,39,43,61], but composites [9,15,24,51,60] and cementitious materials [19,62,63]
are also used. However, the excitation and detection of Lamb waves in cementitious plates is still a
challenging task.

The goal of this work is to compare and assess different techniques for generating and receiving
Lamb waves and determine the optimal technique considering the frequency, material and mode.
For this goal, the first specimen tested was a metallic plate (a reference plate in Lamb wave testing)
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and the contact technique, immersion technique (with two alternatives) and air coupling were
analysed. The fundamental Lamb modes were successfully generated and detected. After performing
a considerable amount of experiments in the metallic plate, two techniques were chosen to test a plate
of a more heterogeneous material, Portland cement mortar. Despite being a more complicated material,
Lamb waves were also excited and sensed. This may be due to its small thickness compared to the
conventional cementitious specimens, which are often thick.

The paper is organised as follows. In Section 1, a broad introduction to Lamb waves was described.
Section 2 shows the mathematical background employed in the theoretical and experimental data.
In Section 3, an explanation about the different experimental arrangements is offered along with the
results, which consist of matching the experimental and theoretical dispersion curves to verify which
modes were excited in every case. Finally, in Section 4, the conclusions are presented.

2. Mathematical Background

Lamb waves propagate in a linear, homogeneous and isotropic elastic plate with stress-free upper
and lower surfaces (as if the plate was placed in vacuum [36,62]) and with lateral dimensions (length
and width) far greater than the thickness [39]. They are created by the constructive interference of
reflections of longitudinal and transverse waves with both plate surfaces as long as the employed
wavelength is greater than the plate thickness (a possible relation from [13] is 2h ≤ 3λ, where 2h is
the total plate thickness and λ the wavelength). Depending on the particle motion with respect to the
middle of the plate (see Figure 1), Lamb waves can be classified into antisymmetric and symmetric
wave modes (labelled Am and Sm, respectively, where m = 0, 1, 2, 3, . . . indicates the “order”).
Antisymmetric modes generally present out-of-plane particle displacement (in the transverse direction)
while symmetric modes predominantly have in-plane particle displacement (in the longitudinal
direction) [6,13,43].
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2.1. Theoretical Dispersion Curves

For a linear, homogenous and isotropic elastic plate with stress-free boundaries and lateral
dimensions far greater than the thickness (which has a value of 2h), the characteristic Equations for
guided symmetric Lamb wave motion can be expressed by Equation (1) [1,10,64,65]:

4k2pq sin(ph) cos(qh) +
(
k2
− q2

)2
sin(qh) cos(ph) = 0, (1)

and for antisymmetric Lamb wave motion by Equation (2):

4k2pq sin(qh) cos(ph) +
(
k2
− q2

)2
sin(ph) cos(qh) = 0, (2)

p2 =
ω2

cL2 − k2, q2 =
ω2

cT2 − k2, (3)
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where k = ω
cp

is the wavenumber, ω = 2π f is the angular frequency, cp is the phase velocity and cL and
cT are longitudinal and transverse velocities of the material, respectively. Characteristic Equations (1)
and (2) are also known as dispersion Equations for Lamb waves or Rayleigh-Lamb Equations [6].

The solutions of Rayleigh-Lamb Equations for the phase velocity, cp, generally plotted as a
frequency depending function, are called dispersion curves. Nonetheless, there is the option to
normalize the axis of the dispersion curves with respect to plate properties, e.g., the frequency axis can
be multiplied by the plate thickness and the phase velocity axis can be normalized by the transverse
velocity of the plate [52,62]. The phase velocity, cp, can be defined as the speed at which the phase of
any frequency component of the wave travels [39]. An example of phase velocity dispersion curves
where different modes appear is found in Figure 2.
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Figure 2. An example of Lamb wave phase velocity dispersion curves for a mortar plate (cL = 4779 m/s,
cT = 2872 m/s, 2h = 13 mm). The three non-dispersive velocities (longitudinal (1), shear (2) and
Rayleigh (3) wave velocities, continuous lines) and the first cut-off frequency (4) (discontinuous line) are
highlighted. Antisymmetric modes are represented by solid lines and symmetric modes are represented
by dotted lines.

Note that for dispersion curves of symmetric modes, there is a horizontal part where the phase
velocity approaches the quasi-longitudinal wave velocity [62]. In fact, the longitudinal wave is the
fastest wave that appears in plates [36]. Two modes exist for all frequencies, the fundamental modes A0
and S0. At higher frequencies, both modes approach the Rayleigh wave velocity of the plate while the
rest of Lamb wave modes (Am, Sm where m>0) approach the transverse wave velocity of the plate [14].
These higher modes have cut-off frequencies where their phase velocity tends toward infinity [1,61].

When computing the dispersion curves, the real solution of the Rayleigh-Lamb Equations is chosen
to represent the propagating modes of the plate. One way to achieve that is to divide Equation (1) by q
and Equation (2) by p. Then, the procedure explained in [1,6] can be performed to obtain the phase
velocity dispersion curves. Once the phase velocity, cp, is known, other parameters, such as the group
velocity, cg, the angle of incidence, θ, or the wavenumber, k, can be determined. Figure 3 shows the
dispersion curves of theses specific parameters for a 1.1 mm stainless steel plate.
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Figure 3. Dispersion curves for a stainless steel plate (cL = 5851 m/s, cT = 3056 m/s, 2h = 1.1 mm):
(a) Phase velocity, cp; (b) Group velocity, cg; (c) Incident angle, θ, for air (343 m/s); (d) Wavenumber, k.

The group velocity, cg, can be thought of as the speed at which the wavefront of each mode
propagates [64] and is given as [18,66,67]:

cg =
cp

2

cp − f
∂cp
∂ f

(4)

The incident angle, θ, is governed by Snell’s law [26]:

cp sinθ = c sinθr (5)

where c is the bulk longitudinal wave velocity of the coupling medium (water, air, Plexiglas, etc.) and
θr is the refraction angle. As θ is the critical angle which selectively excites a Lamb wave mode with
a selected phase velocity, cp, θr must be equal to 90◦. Therefore, the optimum angle of incidence, θ,
is [14,40,52]:

θ = sin−1
(

c
cp

)
(6)

It is important to choose a coupling material with c < cp. Equation (6) is the basis of the
wedge method [14,25] and the coincidence principle [36,44]. Placing the receiver at the same angle
as the transmitter in a pitch-catch configuration (both transducers above the plate surface) enables
efficient reception (a higher amplitude) of the excited mode, suppressing others [3,11,52,59,68].
One advantage of pitch-catch setups is that they only need access to one side of the structure,
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in contrast to through-transmission (also called through-thickness) setups which need double-sided
access [15].

Therefore, to excite and receive a certain mode, the excitation frequency and the angle of inclination
with respect to normal to the transmitter and receiver must be chosen. Incident angle dispersion
curves are helpful for this task [52,69]. To identify the generated modes, theoretical and experimental
dispersion curves must be overlaid [16,25,37,39,62,70].

2.2. Experimental Dispersion Curves

Experimental phase velocity (or wavenumber) dispersion curves can be mapped out using
the two-dimensional fast Fourier transform (2D-FFT) [36]. This method requires the collection of
equally spaced waveforms that can be acquired by moving the receiver (or the transmitter) along the
specimen [36,39,52]. With this technique, the identification of individual modes is possible [36,65].

Another procedure to measure experimental phase velocity dispersion curves is varying the angle
of inclination and locating the peaks or dips [28,38,68,71] from the frequency domain of the received
Lamb waves. An automated system is usually required to vary the position of the transmitter/receiver
or their angles of inclination [38,39,52].

Experimental group velocity dispersion curves can be constructed from time-frequency
representations (TFR) of the received signals, such as the short-time Fourier transform (STFT),
the wavelet transform (WT), the scalogram, the Wigner-Ville distribution or the chirplet
transform [72–75]. These techniques require only a single received waveform, which is more practical
and less time-consuming [72] than the methods explained to obtain phase velocity dispersion curves
(although, group velocities can also be obtained from moving the transmitter/receiver [38,39]). However,
TFR presents problems due to the Heisenberg uncertainty principle [72]. In this work, the spectrogram,
the graphical display from the STFT analysis that is widely used in Lamb wave studies, was applied to
obtain experimental group velocity dispersion curves, which are very useful for identifying guided
wave modes [1,16,37,70]. The STFT of a signal s(t) is equal to [21,72]:

S( f , t) =
1

2π

∫ +∞

−∞

s(τ)h(τ− t)e− j2π fτdτ, (7)

where h(t) is the window function. The spectrogram is the energy density spectrum of a STFT and it is
defined as:

E( f , t) =
∣∣∣S( f , t)

∣∣∣2. (8)

If broadband signal excitation is used [8,16,61], several modes can be excited in a wide frequency
range, which can include dispersive regions and non-dispersive regions, and only one spectrogram
would be necessary. In this work, different sinusoidal tone burst signals (which produce narrowband
excitation) varying in frequency [39,44,47,70,76] were launched in the tested plate and then every
received spectrogram was combined into one [37] (hereafter, the combined spectrogram). The
mathematical model of the transmitted sinusoidal tone burst signals is shown in Equation (9) [77]:

xn(t) = A· sin(2π fnt)·rect
(

t− Nc/2 fn
Nc/fn

)
, (9)

where A is the signal amplitude, fn is the driving frequency, Nc the number of cycles and rect(·) is the
rectangular function.

Five [11,36,39,76] and ten cycles [14,58,78] are a reasonable number of cycles for burst
signals. Furthermore, windowing the emitted signals can reduce side lobes to avoid exciting other
modes [11,40,79] in addition to removing the ringing effects of the transducers [80].

The group velocity, cg, can be obtained from the spectrogram. This velocity is also defined as the
quotient of the propagation distance, d, in the plate and the flight time corresponding to ultrasound
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travel through the plate [60,81]. From the time axis, t, of the spectrogram, the experimental group
velocity can be calculated as [3,13,37,70]:

cg =
d

t− tc
, (10)

where tc is the approximate delay suffered in the coupling medium. This delay can be obtained from
the following relationships:

tc = tc1 + tc2 =
dc1

c
+

dc2

c
=

dc

c
, (11)

where tc1 and tc2 are the flight times for the ultrasound travelling in the coupling media from the
transmitter to the plate and from the plate to the receiver, respectively, dc1 and dc2 are the propagation
paths (transmitter-plate and plate-receiver, respectively), dc is the addition of both propagation paths
and c is the bulk wave velocity in the coupling material, as was shown before. In this study, the three
distances, d, dc1 and dc2, are measured using a ruler. Wherever possible, it is recommended that
these distances have a value equal to or greater than the near field distance to work in the far-field
region [14,53,68,82,83]. The near field distance, N, is given as [1,53]:

N =
D2 f
4c

, (12)

where D is the transducer diameter.
This recommendation is due to the near field or Fresnel region, where great ultrasound pressure

fluctuations occur, hindering defect detection; while in the far-field or Fraunhofer region, the ultrasound
pressure gradually tends toward zero [48,53]. If the transducers are placed close to the plate, undesirable
reflections can appear between the transducer face and the specimen [59,84]. However, some researchers
ignore the near field effects and adjust the distances according to the received amplitude [28] or the
signal fidelity and repeatability of the experiment [3], obtaining good results. One solution to avoid
distance calculations is to employ phase velocity measurements [28,36,38].

2.3. System Sensitivity Curves

In every arrangement, in addition to the inspected plate, the transducers and the coupling medium
influence the magnitude of the received signals and, consequently, the frequency domain of those
signals. By analysing this frequency domain, it is possible to know the frequencies where the excited
mode presents a higher signal level (in other words, the frequencies where the mode is more sensitive).
To this end, the system sensitivity curves (SSC) were computed. A diagram of the calculation of the
combined spectrograms and the SSC is represented in Figure 4. The procedure is as follows:

1) The frequency sweep is performed and tone burst signals of different frequencies ( f1, f2, . . . , N f ,
where N f is the number of driving frequencies) are launched on the plate surface by means of the
corresponding actuator.

2) The generated Lamb waves are detected by the sensor and acquired for post-processing.
3) Signal processing is applied and the spectrograms and the Fourier transforms (FT) for every

sensed signal is obtained.
4) From every spectrogram, a slice including the driving frequency is extracted and then it is

normalised by that driving frequency. The slices are represented by rectangles with white
discontinuous lines placed on the two spectrograms, E1( f , t) and EN f ( f , t). The combined
spectrograms are constructed with N f slices [37,70].

5) The SSC are built using the absolute values of the FT of the signals received at every injected

frequency:
∣∣∣Y1( f1)

∣∣∣, ∣∣∣Y2( f2)
∣∣∣, . . . ,

∣∣∣∣YN f

(
fN f

)∣∣∣∣. These absolute values are marked by blue circles

placed on the two FT, |Y1| and
∣∣∣∣YN f

∣∣∣∣. The maximum in the FT should appear in the excitation
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frequency, although there are cases where this is not fulfilled. These curves act as a filter to
highlight which part of the combined spectrogram can be considered in terms of SNR. In the
diagram, the SSC presents more signal level between fmin and fmax. Therefore, the combined
spectrogram is analysed in that frequency range, i.e., between the two vertical black discontinuous
lines that connects both combined spectrogram and SSC.

SSC( fn) =
∣∣∣Yn( fn)

∣∣∣, n = 1, 2, . . . , N f , (13)

Figure 4. Diagram of the system sensitivity curve (SSC) and the combined spectrogram generation.
The transmission and reception stages include part of the employed equipment (amplifiers, signal
generator, oscilloscope, etc).

3. Experimental

Different setups were exposed for exciting and detecting Lamb waves in two plates of different
materials. The transducers were placed in a pitch-catch configuration (see Figure 5 for instance) and
they are mounted in holders produced by 3D printer. One transducer acts as an actuator (left) and the
other as a sensor (right). To approximate the stress-free boundary conditions of the plates, a piece of
insulating material (expanded polystyrene (EPS)) was placed under them [16,66,85]. A testing system
was built to control the inclination and distances of the actuator/sensor. That inclination was measured
using an angle level composed by an Arduino board (Mega 2560, Arduino, Somerville, MA, USA) and
two sensors (MPU-6050, Invensense, San José, CA, USA). These sensors present an accuracy of ±0.03◦.
For every setup, a detailed explanation of the parameters (equipment, excitation, incidence angles,
etc.) was given in the next sections and in Appendix A. Furthermore, the experimental data of every
setup can be found as supplementary material. The signal generator and the oscilloscope used in the
different setups were managed by a computer with a MATLAB graphical user interface developed by
the group [86]. Special care was paid to avoid saturated signals by choosing a proper input voltage.
The vertical range of the oscilloscope was adjusted to the maximum amplitude of the received signal
to minimise quantification errors. Electrical stray coupling [87–89] and other undesired effects were
removed in the post-processing stage. The spectrogram parameters remain constant for all cases,
a 20 µs temporal Hamming window size, 75% overlap between windows and zero padding, up to 214

points, was applied for every window. Theoretical group velocity dispersion curves were overlaid
on the combined spectrograms (i.e., experimental group velocity dispersion curves). The lower and
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upper frequencies of the SSC (marked by black discontinuous lines) were superimposed on the figures
at 90% of the maximum amplitude of the current SSC.

 Sensors 2019, 19, x FOR PEER REVIEW 10 of 30 

The tested samples were a stainless steel and a mortar plate. The main data of these samples are 
summarised in Table 1. 

Table 1. Specimen data. 

Parameters Stainless Steel Mortar 
Dimensions (length x width x thickness) (mm3) 530 × 27 × 1.1 240 × 60 × 5 

Longitudinal wave velocity 𝑐  (m/s) 5851 4779 
Transverse wave velocity 𝑐  (m/s) 3056 2872 

 
Although their widths should be several times larger than their thickness to optimize Lamb 

wave generation, some articles demonstrate that this condition is not strictly required [16,23,90,91]. 
The mortar was prepared by mixing a Spanish Portland cement (CEM I-52.5R), sand (quartz, 0.6–1.2 
mm particle size) and water in the 1:3:0.35 ratio by mass. Superplasticiser was added in order to 
achieve appropriate workability. The fresh mortar was put in a mold, which was vibrated in a 
vibrating table (ToniVIB Model 5533, Toni Technik, Berlin, Germany) in order to homogenise the 
mortar and to eliminate the air bubbles. The specimens, after 24 h in the mold (temperature 20 °C, 
relative humidity > 95%), were demoulded and stored under water for 90 days. To determine mortar 
properties, the same mix was prepared and moulded in 40 × 40 × 160 mm3 specimens (according to 
UNE EN 196-1:2005 [92]) and cured in the same conditions. The bulk wave velocities of both stainless 
steel and mortar were measured experimentally using the Ultrasonic Pulse Velocity (UPV) method 
[93,94]. 

3.2. Techniques and Results on Stainless Steel 

The techniques used in the stainless steel plate were the contact technique with angle beam 
probes, water coupling (immersion and conical containers) and air-coupled testing. 

3.2.1. Direct Contact 

Both schematic and photograph of the experimental arrangement for the direct contact 
technique is shown in Figure 5. A pair of angle beam probes (MUBW 2N, Krautkramer, Huerth, 
Germany) with a 2 MHz central frequency were employed for Lamb wave excitation and detection. 
In these transducers, the piezoelectric element (9 mm large × 8 mm width) was embedded in a 
Plexiglas wedge, which has a longitudinal wave velocity of 2730 m/s (value obtained from the 
transducers data sheet). The angle can be changed manually from 0° to 60°. Petroleum jelly (Panreac, 
Darmstadt, Germany) was used as a coupling between the Plexiglas wedges and the plate. The effects 
of the coupling were ignored in the group velocity calculations. The actuator was excited by a ten-
cycle tone burst using a programmable signal generator (33120A, Agilent Technologies, Loveland, 
CO, USA). The excitation frequencies were swept from 1 MHz to 3 MHz, in 20 kHz steps. The sent 
signals were amplified 40 dB (5660C, Panametrics, Waltham, MA, USA) and then captured using a  

 

(a) 

0

06

0

06

Plate

𝜃 = 32°, 50° 𝑑 = 440 mm

2ℎ = 1.1 mm

𝜃 = 32°, 50°

 Sensors 2019, 19, x FOR PEER REVIEW 11 of 30 

(b) 

Figure 5. Direct contact setup with variable angle beam transducers to measure the stainless steel 
plate: (a) Schematic; (b) Photograph. 

Two incidence angles were chosen to excite and “follow” the predominant S0 mode in the 
frequency range from 1 MHz to 3 MHz: 32° and 50° (see Figure 6). The A0 mode cannot be generated 
in this arrangement since the maximum angle that can reach these transducers is 60°. 

 
Figure 6. Incidence angle dispersion curves for a stainless steel plate and Plexiglas as the coupling 
medium (𝑐 = 2730 m/s). The chosen angles (32°, 50°) are represented by black discontinuous curves. 

Figure 5. Direct contact setup with variable angle beam transducers to measure the stainless steel plate:
(a) Schematic; (b) Photograph.

3.1. Materials

The tested samples were a stainless steel and a mortar plate. The main data of these samples are
summarised in Table 1.

Table 1. Specimen data.

Parameters Stainless Steel Mortar

Dimensions (length ×width × thickness) (mm3) 530 × 27 × 1.1 240 × 60 × 5
Longitudinal wave velocity cL (m/s) 5851 4779
Transverse wave velocity cT (m/s) 3056 2872

Although their widths should be several times larger than their thickness to optimize Lamb
wave generation, some articles demonstrate that this condition is not strictly required [16,23,90,91].
The mortar was prepared by mixing a Spanish Portland cement (CEM I-52.5R), sand (quartz, 0.6–1.2 mm
particle size) and water in the 1:3:0.35 ratio by mass. Superplasticiser was added in order to achieve
appropriate workability. The fresh mortar was put in a mold, which was vibrated in a vibrating
table (ToniVIB Model 5533, Toni Technik, Berlin, Germany) in order to homogenise the mortar and to
eliminate the air bubbles. The specimens, after 24 h in the mold (temperature 20 ◦C, relative humidity >

95%), were demoulded and stored under water for 90 days. To determine mortar properties, the same
mix was prepared and moulded in 40 × 40 × 160 mm3 specimens (according to UNE EN 196-1:2005 [92])
and cured in the same conditions. The bulk wave velocities of both stainless steel and mortar were
measured experimentally using the Ultrasonic Pulse Velocity (UPV) method [93,94].
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3.2. Techniques and Results on Stainless Steel

The techniques used in the stainless steel plate were the contact technique with angle beam probes,
water coupling (immersion and conical containers) and air-coupled testing.

3.2.1. Direct Contact

Both schematic and photograph of the experimental arrangement for the direct contact technique
is shown in Figure 5. A pair of angle beam probes (MUBW 2N, Krautkramer, Huerth, Germany)
with a 2 MHz central frequency were employed for Lamb wave excitation and detection. In these
transducers, the piezoelectric element (9 mm large × 8 mm width) was embedded in a Plexiglas wedge,
which has a longitudinal wave velocity of 2730 m/s (value obtained from the transducers data sheet).
The angle can be changed manually from 0◦ to 60◦. Petroleum jelly (Panreac, Darmstadt, Germany)
was used as a coupling between the Plexiglas wedges and the plate. The effects of the coupling were
ignored in the group velocity calculations. The actuator was excited by a ten-cycle tone burst using a
programmable signal generator (33120A, Agilent Technologies, Loveland, CO, USA). The excitation
frequencies were swept from 1 MHz to 3 MHz, in 20 kHz steps. The sent signals were amplified 40 dB
(5660C, Panametrics, Waltham, MA, USA) and then captured using a digital oscilloscope (DPO3014,
Tektronix, Shanghai, China) with a 25 MHz sampling frequency, 10,000 sampling points (a temporal
interval of 400 µs) and 32 averaging.

Two incidence angles were chosen to excite and “follow” the predominant S0 mode in the
frequency range from 1 MHz to 3 MHz: 32◦ and 50◦ (see Figure 6). The A0 mode cannot be generated
in this arrangement since the maximum angle that can reach these transducers is 60◦.
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Figure 6. Incidence angle dispersion curves for a stainless steel plate and Plexiglas as the coupling
medium (c = 2730 m/s). The chosen angles (32◦, 50◦) are represented by black discontinuous curves.

In Figure 7, the combined spectrograms for the two chosen angles along with the theoretical
group velocity dispersion curves and system sensitivity curves (SSC) are represented. There is a
good correspondence between the theoretical curve of the S0 mode (red discontinuous curve) and the
experimentally obtained dispersion curve (yellow) hot spots [1] in the frequency ranges that mark
the SSC, from approximately 1.2 to 2.2 MHz in both angles, 32◦ and 50◦. The SSC values for 32◦ are
larger than those for 50◦ (note that the vertical ranges are set at the maximum SSC value of 32◦). This
makes sense according to the angle dispersion curves in this case (Figure 6) since 32◦ is a better angle
than 50◦ to excite the S0 mode (especially at 2 MHz, the centre frequency of the transducer).
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Figure 7. Combined spectrograms and system sensitivity curves (SSC) from the contact technique
setup to measure the stainless steel plate: (a) 32◦; (b) 50◦.

3.2.2. Immersion

Both schematic and photograph of the experimental arrangement for the immersion is shown in
Figure 8. The plate is supported on small EPS blocks to reduce the effects of the reflections in the bottom
of the tank [3,13]. A pair of broadband longitudinal transducers (K2SC, General Electric, Huerth,
Germany), with a 2 MHz central frequency and 24 mm diameter were employed for Lamb wave
excitation and detection. The longitudinal wave velocity in water is 1490 m/s [28,68]. The actuator
was excited by a ten-cycle tone burst using a programmable signal generator (33120A, Agilent
Technologies, Loveland, CO, USA). The excitation frequencies went from 1 MHz to 3 MHz, in 20 kHz
steps. The sensed signals were amplified by 40 dB (5660C, Panametrics, Waltham, MA, USA) and then
captured using a digital oscilloscope (DPO3014, Tektronix, Shanghai, China) with a 50 MHz sampling
frequency and 10,000 point length (200 µs temporal interval) and averaged 32 times. In this case,
a higher sampling frequency was used (which implies a lower acquisition time) to eliminate part of
the direct wave through the water that appears after the excited modes.
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Figure 8. Immersion setup to measure the stainless-steel plate: (a) Schematic; (b) Photograph.

The chosen angles for the water arrangement were 20◦ and 40◦ (see Figure 9). It was expected to
excite S0 mode with 20◦ and A0 mode with 40◦.
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Figure 9. Incidence angle dispersion curves for a stainless-steel plate and water as the coupling medium
(c = 1490 m/s). The chosen angles (20◦, 40◦) are represented by black discontinuous curves.

In Figure 10, the combined spectrograms for the two chosen angles along with the theoretical
group velocity dispersion curves and SSC are represented. For the 20◦ spectrogram, the S0 mode
is detected only between 1.5 and 1.9 MHz (see that two frequency bands can be established in the
20◦ SSC, 1.9–2.3 MHz and 2.3–2.9 MHz) and there is close agreement between the A0 mode and the 40◦
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diagram from 1 to 2.8 MHz. In the 20◦ SSC, other modes appear because of the width of the transmitted
ultrasonic beam and the reflections produced. Moreover, it is remarkable the higher values of the 40◦

SSC compared to those from the 20◦ SSC (for that reason, the vertical range of the 20◦ SSC was not
set at the maximum value of the 40◦ SSC). This is attributed to a combination of existing reflections
and the large energy leakage of the excited A0 mode (40◦) into the surrounding medium compared to
the low energy leakage of the S0 mode (20◦), since the latter presents an in-plane displacement where
almost all the energy is confined inside the plate [6].  Sensors 2019, 19, x FOR PEER REVIEW  14 of 30 
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Figure 10. Combined spectrograms and sensitivity system curves (SSC) from the immersion setup to
measure the stainless-steel plate: (a) 20◦; (b) 40◦.

3.2.3. Conical Containers

Both schematic and photograph of the experimental arrangement for the setup of water conical
containers is presented in Figure 11. These conical volumes were designed following [27,28]. They are
bottomless, so the water is in contact with the plate. Putty was used around the conical containers to
prevent water leakage. This arrangement helps to focus the ultrasonic beam (which translates in a
smaller angular range) and reduces the reflections present in the immersion arrangement. Additionally,
the maximum angle is limited by the conical container. A pair of broadband longitudinal transducers
(K2SC, General Electric, Huerth, Germany) were employed for the excitation and detection of Lamb
waves. The actuator was excited by a ten-cycle tone burst using a programmable signal generator
(33120A, Agilent Technologies, Loveland, CO, USA) and amplified by a factor of 50 (WMA-300, Falco
Systems, Amsterdam, The Netherlands). The excitation frequencies were varied from 1 MHz to 3 MHz,
in 20 kHz steps. The sended signals were amplified 32 dB (AMPLUS-32, Dasel Sistemas, Madrid,
Spain) and then captured using a digital oscilloscope (DPO3014, Tektronix, Shanghai, China) with a
25 MHz sampling frequency, 10,000 sampling points (400 µs temporal interval) and 32 averaging.
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Figure 11. Conical containers setup to measure the stainless-steel plate: (a) Schematic; (b) Photograph.

The angles chosen, as in the previous case, were 20◦ and 40◦, for the same frequency range
(1–3 MHz). It was expected to excite the same modes, S0 with 20◦ and A0 with 40◦, since the coupling
medium was not modified and, therefore, the same angle curves from Figure 9 could be used.

In Figure 12 the combined spectrograms for the two chosen angles along with the theoretical
group velocity dispersion curves and SSC are presented. There is good agreement with the S0 mode
in the 20◦ diagram (1–2.5 MHz) and with the A0 mode in the 40◦ diagram (1–1.9 MHz). The 20◦

combined spectrogram for conical containers differs from the 20◦ immersion setup. These differences
are attributable mainly to the existing reflections mentioned in Section 1 that affect the signals sensed.
The trend in water coupling is maintained, the larger the incidence angle, the higher the SSC values.
Additionally, the 20◦ SSC reach higher frequencies (2.5 MHz) than the 40◦ SSC (1.9 MHz).
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Figure 12. Combined spectrograms and system sensitivity curves (SSC) from the setup of conical
containers to measure the stainless plate: (a) 20◦; (b) 40◦.

3.2.4. Air Coupling

Both schematic and photograph of the experimental arrangement for the air coupling setup is
presented in Figure 13. A block of EPS was placed between both actuator and sensor to absorb the direct
wave through the air. Two pair of piezoelectric air-coupled transducers with a 32 mm diameter mm and
central frequencies of 250 kHz and 500 kHz were employed for the excitation and detection of Lamb
waves (information about these transducers can be found in [95,96]). The longitudinal wave velocity
in air is 343 m/s [53,58]. The actuator was excited by a five-cycle tone burst using a programmable
signal generator (33120A, Agilent Technologies, Loveland, CO, USA) and amplified by a factor of50
(WMA-300, Falco Systems, Amsterdam, The Netherlands). In air coupling, fewer cycles were used to
minimise electrical stray coupling effects. The excitation frequencies were swept from 50 kHz to 550
kHz for the 250 kHz transducers and from 200 kHz to 800 kHz for the 500 kHz transducers, using
5 kHz steps in both cases. The sensed signals were amplified 40 dB (5660C, Panametrics, Waltham,
MA, USA) and then captured using a digital oscilloscope (RTO 1004, Rohde & Schwartz, München,
Germany) with a 25 MHz sampling frequency and 10,000 sampling points (400 µs temporal interval)
and averaged 32 times.

Two incidence angles were chosen to excite and detect the A0 mode with two kinds of transducers,
13.75◦with 250 kHz transducers (frequency range from 50 to 550 kHz) and 10◦with 500 kHz transducers
(from 200 kHz to 800 kHz, see Figure 14). As can be seen, the lower the longitudinal wave velocity of
the coupling medium, the lower the angular range in the dispersion curves. Due to the low central
frequencies of the transducers (250 kHz and 500 kHz), only the two fundamental modes appear. Small
angle increments can be attained since they are easy to manage, and no physical limitation exists,
unlike in immersion and conical containers setups.
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Figure 13. Air coupling setup.to measure the stainless-steel plate: (a) Schematic; (b) Photograph.
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Figure 14. Incidence angle dispersion curves for a stainless-steel plate and air as the coupling medium
(c = 343 m/s). The chosen angles (10◦, 13.75◦) are represented by black discontinuous curves.
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Several attempts were made to excite S0 mode, but it was not possible as no signal was sensed by
the oscilloscope. One reason is that S0 particle motion is predominantly in-plane and it radiates much
less energy to the air than the A0 mode (as stated in Section 1) [40,43,59,60].

In Figure 15, the combined spectrograms for the two chosen angles along with the theoretical
group velocity dispersion curves and SSC are represented. There is a good correspondence with the A0
mode in the three diagrams for the frequency bands established for the SSC, from 0.17 to 0.33 MHz for
the 13.75◦ diagram and from 0.3 to 0.65 MHz for the 10◦ diagram. The bandwidth and the SSC values
of 10◦ are greater than those for the SSC of 13.75◦ (bear in mind that the transducers are different).
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Figure 15. Combined spectrograms and system sensitivity curves (SSC) from the air coupling setup to
measure the stainless-steel plate: (a) 13.75◦, 250 kHz transducers; (b) 10◦, 500 kHz transducers.

3.3. Techniques and Results on Mortar

To test the mortar plate, two techniques were selected, water conical containers and air-coupled
transducers. The direct contact technique with the Plexiglas wedges was discarded for two reasons:
1) The central frequency of the wedge transducers (2 MHz) is very high to test an attenuative material
like mortar [97] and 2) some modes are unable to propagate in mortar if their velocities are lower
than the longitudinal wave velocity in Plexiglas because of the Snell’s law concept [26]. The Plexiglas
speed (2730 m/s) is large in comparison to other coupling mediums (1490 m/s in water, 343 m/s in air).
Normally, Teflon (1350 m/s) is employed as a wedge material to test cementitious materials [57,83].
Water coupling through conical containers enables the possibility of exciting both fundamental modes
while air coupling enables a fast and comfortable measurement. Almost the same equipment was used.
However, a lower sampling frequency (10 MHz) was chosen to enhance the temporal interval (1 ms),
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since the acquired signals in the mortar plate arrive later than those acquired in the metallic plate (i.e.,
the bulk wave velocities in mortar are lower than in the metallic plate).

3.3.1. Conical Containers

Both schematic and photograph of the experimental arrangement for the setup of water conical
containers to measure the mortar plate is shown in Figure 16. A pair of broadband longitudinal
transducers (K0,5SC, General Electric) with a 0.5 MHz central frequency and 24 mm diameter were
employed for the excitation and detection of Lamb waves.
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Figure 16. Conical containers setup to measure the mortar plate: (a) Schematic; (b) Photograph.

The actuator was excited by a ten-cycle tone burst using a programmable signal generator (33120A,
Agilent Technologies, Loveland, CO, USA). The excitation frequencies were varied from 10 kHz to
1 MHz, in 5 kHz steps. The sensed signals were amplified by 40 dB (5660C, Panametrics, Waltham, MA,
USA) and then captured using a digital oscilloscope (DPO3014, Tektronix, Shanghai, China) with a
10 MHz sampling frequency and 10,000 points length (a 1 ms temporal interval) and averaged 32 times.

Two incidence angles, 20◦ and 40◦, were chosen to excite the S0 and the A0 modes (respectively)
in the frequency range from 0.01 to 1 MHz (see Figure 17).
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Figure 17. Incidence angle dispersion curves for a mortar plate and water as the coupling medium
(c = 1490 m/s). The chosen angles (20◦, 40◦) are represented by black discontinuous curves.

In Figure 18, an acceptable coincidence exists between the theoretical and experimental curves.
In a), the S0 mode is detected between approximately 0.35 and 0.4 MHz (the bandwidth that shows the
SSC goes from 0.25 to 0.55 MHz); in b) the A0 mode is detected from approximately 0.1 to 0.3 MHz
(the bandwidth goes from 0.05 to 0.45 MHz). As can be seen, new modes appear in these curves in
contrast to the stainless steel dispersion curves (A2, S2), the larger the thickness, the larger the number
of Lamb modes. In the 20◦ SSC, higher amplitude and lower bandwidth are observed. Also, the 20◦

SSC decays at a higher frequency (0.55 MHz) than the 40◦ SSC (0.45 MHz), as in Section 3.2.3 (conical
containers setup to test the stainless steel plate), although no comparisons should be drawn since the
inspected material and transducers are different.
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Figure 18. Combined spectrograms and system sensitivity curves (SSC) from the conical containers
setup to measure the mortar plate: (a) 20◦; (b) 40◦.

3.3.2. Air Coupling

Both schematic and photograph of the experimental arrangement for the air coupling setup is
shown in Figure 19. The pair of piezoelectric air-coupled transducers with a 250 kHz central frequency
used to measure the metallic plate were employed for the excitation and detection of Lamb waves
since 250 kHz attenuates less than 500 kHz.

The actuator was excited by a five-cycle tone burst using a programmable signal generator
(33120A, Agilent Technologies) and amplified by a factor of 50 (WMA-300, Falco Systems, Amsterdam,
The Netherlands). The excitation frequencies were swept from 50 kHz to 450 kHz, in 2 kHz steps
(201 frequencies). The sensed signals were amplified 40 dB (5660C, Panametrics, Waltham, MA, USA)
and then captured using a digital oscilloscope (RTO 1004, Rohde & Schwartz, München, Germany)
with a 10 MHz sampling frequency and 10,000 points length (a 1 ms temporal interval) and averaged
32 times. A 10◦ angle of inclination was chosen to excite the A0 mode in the mortar plate in the 50 to
450 kHz frequency range (see Figure 20).
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Figure 19. Air coupling setup to measure the mortar plate: (a) Schematic; (b) Photograph.
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Figure 20. Incidence angle dispersion curves for a mortar plate and air as the coupling medium
(c = 343 m/s). The chosen angle (10◦) is represented by a black discontinuous curve.

In Figure 21, there is a good match between the theoretical and experimental curves. The A0 mode
is excited in the frequency range that shows the SSC, from 0.15 to 0.3 MHz.
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Figure 21. Combined spectrogram and system sensitivity curves (SSC) from the air coupling setup to
measure the mortar plate: 10◦.

4. Conclusions

The main conclusions are:

1) This contribution is a research work where different coupling techniques have been compared
and analysed: the contact technique with angle beam probes, pure immersion and alternatives
with water wedges, and air-coupled ultrasonic testing. First, a metallic plate was used to perform
different experimentals and to achieve a solid theoretical basis. With this theoretical knowledge,
a more complicated and heterogeneous material as mortar was inspected.

2) Good matching between theoretical and experimental group velocity dispersion curves was done
to determine which modes were generated in the metallic and mortar plates. Close agreement was
achieved between theoretical and experimental data, which means that Lamb waves were excited
and received successfully in every setup by choosing the same inclination angle in transmission
and reception to enhance a particular Lamb mode.

3) If the A0 mode is needed, air-coupled ultrasonic testing is recommended as the first option.
On the other hand, if S0 mode is sought, water coupling using conical containers is suitable as
a first alternative. Plexiglas wedges are also an option to excite the S0 mode if the bulk wave
velocities of the tested material are higher than the bulk wave velocity of Plexiglas.

4) System sensitivity curves (SSC), a signal processing tool that represents the bandwidth of the
whole “Lamb wave” system has been of great help to analyse the experimental dispersion curves
in the proper frequencies.

As future directions, improvements in the conical containers design (as increasing the maximum
incidence angles) and testing of more complicated cementitious materials with new configurations
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(as laser interferometry) will be analysed. With the acquired theoretical knowledge, practical
applications of Lamb waves in cementitious materials are studied, as carbonation and thermal damage.

Supplementary Materials: The following are available online at http://www.mdpi.com/1424-8220/19/19/4068/s1,
Data file S1: Experimental data from the direct contact setup to measure the stainless steel plate (32◦), Data file S2:
Experimental data from the direct contact setup to measure the stainless steel plate (50◦), Data file S3: Experimental
data from the immersion setup to measure the stainless steel plate (20◦), Data file S4: Experimental data from
the immersion setup to measure the stainless steel plate (40◦), Data file S5: Experimental data from the conical
containers setup to measure the stainless steel plate (20◦), Data file S6: Experimental data from the conical
containers setup to measure the stainless steel plate (40◦), Data file S7: Experimental data from the air coupling
setup to measure the stainless steel plate (13.75◦), Data file S8: Experimental data from the air coupling setup
to measure the stainless steel plate (10◦), Data file S9: Experimental data from the conical containers setup to
measure the mortar plate (20◦), Data file S10: Experimental data from the conical containers setup to measure the
mortar plate (40◦), Data file S11: Experimental data from the air coupling setup to measure the mortar plate (10◦).
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Appendix A

The Table A1 brings together all the parameters of every setup used in this study.

Table A1. Experimental parameters.

Material Technique Transducers Signal
Generator

Signal (tone
burst)

TX
Amplitude

(V)

TX
Amplification

Frequency
Range

Frequency
Step (kHz)

Number of
Frequencies

RX
Amplification

(dB)

Acquisition
Equipment Samples

Sampling
Frequency

(MHz)

Time
Interval Averaging

Stainless
steel

Contact MUBW 2N
(2 MHz)

Agilent
33120A 10 cycle 10 x1 (1 MHz,

3MHz) 20 100 40 DPO3014 10000 25 400 µs 32

Immersion K2SC
(2 MHz)

Agilent
33120A 10 cycle 10 x1 (1 MHz,

3MHz) 20 100 40 DPO3014 10000 50 200 µs 32

Conical
containers

K2SC
(2 MHz)

Agilent
33120A 10 cycle 3),

6) x50 (1 MHz,
3 MHz) 20 100 32 DPO3014 10000 25 400 µs 32

Air coupling 250 kHz Agilent
33120A 5 cycle 6 x50 (50 kHz,

550 kHz) 5 100 40
Rohde &
Schwartz
RTO 1004

10000 25 400 µs 32

500 kHz Agilent
33120A 5 cycle 6 x50 (200 kHz,

800 kHz) 5 120 40
Rohde &
Schwartz
RTO 1004

10000 25 400 µs 32

Mortar
Conical

containers
K0,5SC

(0.5 MHz)
Agilent
33120A 10 cycle 3 No (10 kHz,

1 MHz) 5 200 40 DPO3014 10000 10 1 ms 32

Air coupling 250 kHz Agilent
33120A 5 cycle 6 x50 (50 kHz,

450 kHz) 2 200 40
Rohde &
Schwartz
RTO 1004

10000 10 1 ms 32
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