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Abstract

Background: To build an automatic pathological diagnosis model to assess the lymph

node metastasis status of head and neck squamous cell carcinoma (HNSCC) based on

deep learning algorithms.

Study Design: A retrospective study.

Methods: A diagnostic model integrating two-step deep learning networks was

trained to analyze the metastasis status in 85 images of HNSCC lymph nodes. The

diagnostic model was tested in a test set of 21 images with metastasis and 29 images

without metastasis. All images were scanned from HNSCC lymph node sections

stained with hematoxylin–eosin (HE).

Results: In the test set, the overall accuracy, sensitivity, and specificity of the

diagnostic model reached 86%, 100%, and 75.9%, respectively.

Conclusions: Our two-step diagnostic model can be used to automatically assess the

status of HNSCC lymph node metastasis with high sensitivity.

Level of evidence: NA.
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1 | INTRODUCTION

Head and neck cancer is the sixth common malignant disease in the

world, most of which are squamous cell carcinoma.1 The prognosis of

patients with head and neck squamous cell carcinoma (HNSCC) is

poor owing to treatment metastasis, resistance, and recurrence.2,3

Regional cervical lymph node metastasis is an independent poor prog-

nostic factor for patients with HNSCC.4,5 Therefore, accurate diagno-

sis of lymph nodes metastasis status is an important part of the

staging and grading of HNSCC, guiding clinical decision making, and

treatment management.6 In clinical practice, pathological diagnosis is

the gold standard for the evaluation of lymph node metastasis, which

was estimated by pathologists. However, manual pathological

assessment is an exhausting and subjective task.7 In particular, micro-

metastases (between 2 mm and 0.2 mm) and isolated cancer cell clus-

ters (<0.2 mm) may be ignored and missed.8 Immunohistochemistry

can improve the accuracy of manual evaluation. However, most

HNSCC lymph node sections only stained by hematoxylin–eosin

(HE) without immunohistochemical detection due to laboratory tech-

nology and costs.

Digital pathology includes the process of digitizing histopathologi-

cal slices and analyzing these digitized images. Digital pathology is

widely used in cancer research, including diagnosis,9 quantitative

analysis,10 biomarkers prediction,11 and prognostic evaluation.12,13

Deep learning, especially convolutional neural network (CNN), has

performed well in the interpretation of digital pathology images. In

CAMELYON167 and CAMELYON178 challenges, using artificial intel-

ligence algorithms detected metastases from whole slice images

(WSIS) of the HE-stained breast cancer lymph node, deep learning

models even showed similar or better diagnostic performance com-

pared with experienced pathologists. Campanella et al.9 achieved an

area under the curve (AUC) of 0.966 in a dataset of 9894 axillary

breast cancer lymph nodes WSIS using weakly supervised learning.

Therefore, developing artificial intelligence diagnostic models may be

an auxiliary method to solve the shortage of pathologists. However,

there is currently no research on artificial intelligence diagnosis of

HNSCC lymph node pathological slices.

In this study, we aim to use a deep learning method to extract

high-dimensional features from HE-stained histopathological images

to detect tumor tissues in HNSCC lymph nodes, which finally strives

to develop a deep learning-based model to diagnose the metastasis

status of HNSCC lymph nodes and annotate the areas of tumor

lesions to assist the pathologist.

2 | MATERIALS AND METHODS

2.1 | Dataset

A total of 135 HE-stained lymph node histopathological images from

20 HNSCC patients treated with neck lymph node dissection at

Xiangya Hospital of Central South University between August 2018

and May 2019 were enrolled in this study. The digitized

histopathological images were acquired at �20 magnification

(0.5 μm/pixel on both horizontal and vertical) by the Pannoramic MIDI

scanner (3DHISTECH Ltd, Hungary). The labels of the metastatic sta-

tus of these lymph node images were based on past pathological

reports and manual review. According to the surgery date, 85 lymph

node histopathological images from the previous 11 patients were

used to construct the development set, and the remaining 50 images

were used as the test set (Table 1). The study was approved by the

Ethic Committee of the Xiangya Hospital of Central South University

(IRB: NO2019121187), while informed consent was obtained from

the participants in the study.

2.2 | CNN-based primary model

We extracted 40 � 40 pixels patches at 10� magnification

(1.0 μm/pixel) as the input unit. All patches containing cancer cells

(even if only one cancer cell) were labeled with “tumor”, and the

remaining patches were labeled with “nontumor” (Figure 1A). The

“nontumor” patches dataset included noncancerous areas from nega-

tive lymph node images and positive lymph node images. It should be

noted that necrotic tissue and tumor-associated stroma were also

labeled with “nontumor”.
We extracted 16,000 “tumor” patches and 16,000 “nontumor”

patches from the development set to train the CNN models

(Table S1). The patches of each classification were randomly divided

into a training set and a validation set at a ratio of 7:3. Four pretrained

CNNs based on the ImageNet database (available at http://www.

image-net.org/) were trained to classify “tumor” patches from “non-
tumor” patches: GoogLeNet,14 MobileNet-v2,15 ResNet50,16 and

ResNet101.16 To increase the generalization and robustness of the

model, we augmented the training set by eight times, by rotating

(clockwise rotation at 0�, 90�, 180�, and 270�), flipping (in the horizon-

tal or vertical), and combination of these operations. In the training

procession, we used the adaptive moment estimation (ADAM) opti-

mizer17 to update the gradient. The initial learning rate was set to

0.001 and was reduced by a factor of 0.1 after every 10 epochs. The

mini-batch size was 128, and the maximum number of epochs was

30 (the maximum number of training iterations was 42,000). L2 regu-

larization and early stopping mechanism were used to reduce over-

fitting. The accuracy and the AUC of the receiver operating

characteristic curve (ROC) were used to evaluate the classification

performance.18

2.3 | Visualization of whole lymph node images
based on the primary model

We defined a sliding window with a size of 40 � 40 pixels, non-

overlapping sampling along with the horizontal and vertical directions

on the whole lymph node image at 10x magnification. The obtained

patches were input into the primary model. If the predicted label was

“tumor”, it was marked in red at the corresponding position of the
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lymph node image, otherwise, it was marked in white. We merged the

generated images on the original images to visualize the detection

results of the whole lymph node images in the development set by

the primary model. The primary model misidentified some negative

regions as “tumor”, such as lymphoid follicles and sinus cavities.

2.4 | CNN-based secondary model

To reduce false-positive recognition of the primary model, we ana-

lyzed all negative lymph node images in the development set with the

primary model. To extract more false-positive patches, we adopted

partial overlapping sampling with 20 pixels as a sliding length

(Figure 1B). In this way, a total of 10,137 false-positive patches were

obtained and were labeled with “nontumor”. Then, 10,137 actual

“tumor” patches were randomly selected from the primary model

dataset and were used to develop the secondary model with those

false positive patches. MobileNet-v2 was used to train the secondary

model, which achieved the best performance in the primary classifica-

tion (Table 2). Similarly, 70% of the image patches were randomly

divided into the training set and were augmented, and the rest consti-

tuted the validation set (Table S2). The training options and evaluation

methods of the second model were roughly the same as those of the

primary model.

TABLE 1 Development set and test set

Dataset Patients Positive lymph node images Negative lymph node images Total lymph node images

Development set 11 38 47 85

Test set 9 21 29 50

Total 20 59 76 135

F IGURE 1 Workflows. (A) Training flowchart of the primary model. (B) Training flowchart of the secondary model. (C) Training flowchart of
the integrating diagnostic model based on the primary model and the secondary model
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2.5 | Lymph node metastasis classification

First, we delineated a tumor probability score heatmap of a whole lymph

node image. As shown in Figure 1C, a 40 � 40 pixels slidingwindow con-

tinuously cropped image patches in horizontal and vertical directions

with steps of 10 pixels. In this way, each pixel, except for the edge area

with a width of 30 pixels, was analyzed by 16 times in different patches.

Further, the image edge areas (without tissue) were eventually removed.

The initial value of the tumor probability score for each pixel was 0. As

shown in Figure 1C, a combination of the primarymodel and the second-

ary model was used to calculate the tumor probability score for each

patch. Specifically, if a patch was recognized as “tumor” by the primary

model, then the patch would be entered into the secondary model; oth-

erwise, the patch would be directly labeled as “nontumor”. Furthermore,

if a patch was finally recognized as “tumor”, then the tumor probability

scores of all pixels located on this patch would be increased by 0.0625;

otherwise, the scores would plus 0. Finally, the tumor probability score

heat maps of the lymph node images were obtained. Areas with higher

scores aremore likely to include tumor cells.

Then, we analyzed the distribution characteristics of tumor

probability scores of negative and positive lymph nodes in the devel-

opment set. Finally, the score threshold was set to 0.6875 to classify

positive and negative lymph nodes. Images with total scores not less

than the threshold were defined as positive; otherwise, the lymph

node images were diagnosed as negative. The classification perfor-

mance of this threshold was tested in the test set. Next, we analyzed

the performance of the score threshold in the detection of meta-

static lesions.

TABLE 2 Basic characteristics and
performance of the four CNNs for
classification of the image patches in the
validation set

Networks Depth Number of parameters (million) Accuracy (%) AUC

GoogLeNet 22 7.0 97.3 0.9957

MobileNet-v2 53 3.5 98.7 0.9982

ResNet50 50 25.6 98.1 0.9974

ResNet101 101 44.6 97.9 0.9975

Abbreviations: AUC, area under the curve; CNN, convolutional neural network.

F IGURE 2 Visualization of
large-scale lymph node
histopathological images analyzed

by the primary model. Here are
representative examples of
correct (A) and incorrect
(B) annotation of large-scale
lymph node images in the training
set using the primary model with a
sliding window of 40 � 40 pixels.
The original images are on the left.
The merged images are on the
right. The area predicted to be
tumor is marked in red. The area
predicted to be nontumor is
marked in white
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2.6 | Statistics

All CNN models were trained on a desktop workstation with a NVIDIA

GeForce RTX 2060 super GPU. The statistical analysis and algorithms in

this study carried out with MATLAB® (version R2020a). We used the

DeepNetwork Designer app for loading and editing pretrained networks

onMATLAB®. OnMATLAB, the plotconfusion function was used to plot

classification confusionmatrix. The perfcurve function was used for plot-

ting ROC curve and calculating AUC. The performance of the primary

model and secondary model were evaluated by confusion matrix and

AUC.18,19 The classification performance of lymph node metastasis

status is evaluatedwith sensitivity, specificity, and accuracy.19

3 | RESULTS

3.1 | CNNs can distinguish “tumor” patches from
“nontumor” patches

The information of patients and lymph node images was shown in

Table 1. Four common pretrained CNNswere trained to classify “tumor”
patches from “nontumor” patches in the training set (Figure 1A and

Table S1): GoogLeNet, MobileNet-v2, ResNet50, and ResNet101. Then,

we evaluated their performance in the validation set. The accuracy of

four CNNs all exceed 97%, and the AUCs all exceed 0.99 (Table 2 and

Figure S1). These results showed that CNNs could classify “tumor” pat-
ches from “nontumor” patches. In particular, the MobileNet-v2-based

model achieved a classification accuracy of 98.7% and an AUC of

0.9982, both of which were the best among the fourmodels (Table 2 and

Figure S1). Hence, we chose the MobileNet-v2-based model as the pri-

marymodel to analyze thewhole lymph node histopathological images.
F IGURE 3 ROC of the secondary model. AUC, area under the
curve; ROC, receiver operating characteristic curve

F IGURE 4 Distribution of tumor probability scores. (A) Distribution of tumor probability scores in the development set. When the score
threshold is between 0.6875 and 1, the sensitivity and specificity of the model are both 100%. We set the score threshold to 0.6875 of the lower
bound. This means that the area with a score not lower than 0.6875 will be marked as metastatic disease, otherwise, it will be marked as normal
tissue. (B) Distribution of tumor probability scores in the test set

TANG ET AL. 165



3.2 | Hard negative regions are incorrectly
detected in the whole lymph node images

We next applied the MobileNet-v2-based primary model to analyze

large-scale lymph node images in the development set. Reviewing the

original images and the visual images, almost all areas of metastasis

could be effectively detected. A positive example was presented in

Figure 2A. However, we noticed that part of normal lymph node tis-

sues, especially lymphoid follicles and sinus cavities, were mis-

classified as tumor tissues, as shown in Figure 2B. These

misclassifications might lead to misdiagnosis of the lymph nodes.

Therefore, we needed to improve the model's classification perfor-

mance for these normal tissues that were difficult to identify.

3.3 | The secondary model can improve the
classification of hard negative patches by the primary
model

Misclassifications of lymphoid follicles and sinus cavities were com-

mon problems in artificial intelligence detection of lymph node metas-

tases. To improve the classification performance of the diagnostic

model for these regions, we constructed a new data set to train the

MobileNet-v2-based secondary model, consisting of 10,137 mis-

identified “nontumor” patches and 10,137 randomly matched “tumor”
patches (Table S2). The accuracy and AUC of the secondary model in

the validation set arrived 96.3% and 0.9933, respectively (Figures 3

and S2).

3.4 | The diagnostic model can exclude
approximately three-quarters of the negative lymph
node images while maintaining 100% sensitivity in the
test set

Furthermore, we evaluated whether these models could be used to

diagnose metastasis status of whole lymph node images. An algorithm

was built to make the tumor possibility score heat maps of whole

lymph node images using patches-based classification CNN models

(Figure 1C). The distribution characteristics of tumor probability

scores in the development set and the test set were shown in

Figures 3B and 4A, respectively. In the development set, all positive

lymph node images included areas with a score not lower than

0.9375, and the scores of all lymph node negative images were less

TABLE 3 Performance of the integrating diagnostic model

Datasets

Threshold = 0.6875

Sensitivity Specificity Accuracy

Development set 38/38 (100%) 47/47 (100%) 85/85 (100%)

Test set 21/21 (100%) 22/29 (75.9%) 43/50 (86%)

F IGURE 5 Representative examples of the delineation of metastatic lesions by the diagnostic model. The areas detected as metastatic lesions
are marked in red. The area detected as normal tissue is marked in white. (A) The metastatic lesions with accurate segmentation in the
development set. (B) A correctly classified negative lymph node in the development set. (C) The metastatic lesions with accurate segmentation in
the test set. (D) A correctly classified negative lymph node in the test set
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than 0.6875 (Figure 4A and Table 3). Lymph node images with tumor

scores not less than 0.6875 were classified as positive, otherwise,

they were classified as negative. We next evaluated the classification

performance of the threshold in the test set, as shown in Figure 4B

and Table 3, the classification model achieved a sensitivity of 100%

and a specificity of 75.9% in the test set.

Next, we analyzed the similarity between the area of the lymph

node image where the tumor score was not lower than the threshold

and the true metastatic disease area. Our results indicated that the

model annotated the main metastatic lesions and excluded most of

the nontumor areas in the development set and the test set (Figure 5).

Interestingly, cancer cell clusters smaller than 200 microns were also

occasionally detected (Figure 5A). However, there were still six false-

positive lymph node images and local false-negative areas for pixel-

level metastasis detection (Figure S3). Nevertheless, no positive lymph

node images were classified as negative.

4 | DISCUSSION

Previous studies have reported the application of artificial intelligence

to detect lymph node metastasis in breast cancer,7–9 lung cancer,20

colorectal cancer,21 and so on. Recently, there are some radiomics

studies to predict HNSCC lymph node metastasis22 or extranodal

extension23 from lymph node computed tomography (CT) imaging.

However, the disadvantage is that only large enough lymph nodes can

be detected from CT. A study predicts the presence or absence of

lymph node metastasis from early-stage oral tongue squamous cell

carcinoma clinical and primary tumor pathology records, but it is

impossible to evaluate specific individual lymph nodes.24 In this pilot

study, we developed a CNN-based HNSCC lymph node diagnosis

model and tested the classification performance on a dataset based

on the images with or without metastasis. Our data indicate that this

model can diagnose all positive lymph node images and exclude

approximately three-quarters of negative lymph node images. To our

knowledge, this is the first application of deep learning from cervical

lymph nodes HE-stained pathological images in the prediction of

lymph node metastasis in patients with HNSCC.

One advantage of this study is that we developed a secondary

model to reduce the false positive recognition of hard negative

regions. The primary model based on MobileNet-v2 achieved an accu-

racy of 98.7% and an AUC of 0.9982 in the patches classification in

the validation set; however, when analyzing in large-scale images,

some hard negative areas were identified as metastatic lesions, mainly

located in lymphoid follicles and sinus cavities. This is a common phe-

nomenon in the development of artificial intelligence models for

lymph nodes in other malignancies,7,8 which may be caused by a low

proportion of hard negative patches in the training set. Therefore,

researchers often used hard negative mining to increase the propor-

tion of these hard negative patches in the training set.7,8 Previous

study in lung cancer has trained an additional model to eliminate lym-

phoid follicles in lymph node to reduce the false positive detection,20

however, the hard negative areas apart from the lymphoid follicles

were ignored in this model. In our study, we re-collected these mis-

classified patches to train a secondary model to analyze the patches

defined by the primary model as “tumor”, to improve the classification

performance between tumor and hard negative regions.

Common postprocessing methods in the lymph node-based clas-

sification include training new machine learning models and setting

lesion size thresholds based on the generated probability heat

maps.8,20 In a previous study, the specificity of the artificial intelli-

gence detection model without postprocessing was even 0.20 How-

ever, postprocessing might cause false-negative results. In the

CAMELYON17 Challenge, the best model even classified 4 macro-

metastasis (larger than 2 mm) WSIS as negative.8 A previous study set

the threshold of positive lesion size to 0.6 mm and 0.7 mm, and the

final sensitivity was 79.6% and 75.5%, respectively.20 In clinical prac-

tice, it is often unacceptable for the missed diagnosis of positive

lymph nodes in malignancies.9 In our study, we calculated the tumor

score by partially overlapping sampling and selected the score thresh-

old to diagnose the status of lymph node metastasis based on the dif-

ference between the tumor score in positive and negative images.

Our model can screen out a large number of negative lymph nodes

with a sensitivity of 100% in our test set, freeing the pathologist to

focus on the diagnosis of difficult slices. Meanwhile, as for lymph

nodes that are diagnosed as positive by the model, pathologists also

need to be cautious to distinguish malignant lesions from false-

positive identifications.

Next, we analyzed the role of the score threshold in annotating

metastatic lesions. In many cases, the annotated lesions were basically

consistent with the actual lesions, and even some tumor cell clusters

smaller than 0.1 mm were also marked. In addition, the model identi-

fied the most negative lymph node images. We have to mention that

some tumor tissues were ignored by the score threshold. As shown in

Figure S3A,B, these metastatic lesions were not completely marked.

Nevertheless, these false-negative phenomena did not lead to the

missing of diagnosis in our test set. Increasing the number of patches

that include only a few tumor cells in the training set may improve the

performance of the model. These results indicate that the threshold in

the pixel-wise detection for metastatic lesions still needs to be

improved and it is necessary to further validate the performance of

the model in the lymph node slices with micro-metastases and iso-

lated cancer cell clusters.

Focusing on the false-positive lymph node images in the test set,

one of these was predicted with a large area of metastasis

(Figure S3C). We noticed that the staining of this lymph node was

weaker than most other lymph node images. Color differences are

rare in our dataset but cannot be ignored in slices from different insti-

tutions. To reduce the interference caused by color differences, com-

mon image preprocessing methods including color normalization and

color augmentation are required.7,8,12 Besides, the rest of the false-

positive lymph node images were marked with only a few scattered

tumor spots, mainly located in lymphoid follicles and sinus cavities

(Figure S3D).

There are some limitations in our study. Our training samples size

is limited, and collected from one institution. A large-scale multi-
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institutional study in future will improve the robustness and generaliz-

ability of the model. Another limitation is that this is a retrospective

study, and further prospective studies are necessary. Notwithstanding

these limitations, this pilot study suggests that it is possible to develop

a CNN-based automatic diagnosis model of HNSCC lymph node

metastasis with clinical applications.

5 | CONCLUSIONS

In summary, our results suggest that it is possible to automatically

detect metastasis from HNSCC lymph node pathological images. In our

study, we developed and evaluated a two-step deep learning model to

screen suspected positive HNSCC lymph nodes and outline the regions

of interest to assist pathologists. This method reduces false-positive

identification and maintains high sensitivity, but it still cannot replace

manual evaluation. Whether this method can be applied to complex

clinical practice will still require the further evaluation.
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