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Abstract

GABAergic inhibitory neurons in the prefrontal cortex (PFC) play crucial roles in higher cognitive functions. Despite
the link between aberrant development of PFC interneurons and a number of psychiatric disorders, mechanisms

~

Parvalbumin (PV)-expressing inhibitory neurons in the prefrontal cortex (PFC) play a critical role in excita-
tion—inhibition balance and neuronal synchrony during cognitive tasks, and their abnormality is associated
with many developmental brain disorders, including schizophrenia and autism. However, molecular and
cellular mechanisms for the development of these neurons are not well understood. In this study, we found
that retinoic acid (RA) signaling plays an important role in early postnatal development of prefrontal PV
neurons, and that the developmentally regulated expression of a key enzyme that restricts RA signaling in
the PFC requires the connections between the thalamus and the neocortex. Thus, our results show a novel
Krole of the thalamus in regulating PV neuron development in postnatal PFC. j
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underlying the development of these neurons are poorly understood. Here we show that the retinoic acid
(RA)-degrading enzyme CYP26B1 (cytochrome P450 family 26, subfamily B, member 1) is transiently expressed
in the mouse frontal cortex during postnatal development, and that medial ganglionic eminence (MGE)-derived
interneurons, particularly in parvalbumin (PV)-expressing neurons, are the main cell type that has active RA
signaling during this period. We found that frontal cortex-specific Cyp26b1 knock-out mice had an increased
density of PV-expressing, but not somatostatin-expressing, interneurons in medial PFC, indicating a novel role of
RA signaling in controlling PV neuron development. The initiation of Cyp26b1 expression in neonatal PFC
coincides with the establishment of connections between the thalamus and the PFC. We found that these
connections are required for the postnatal expression of Cyp26b7 in medial PFC. In addition to this region-
specific role in postnatal PFC that regulates RA signaling and PV neuron development, the thalamocortical
connectivity had an earlier role in controlling radial dispersion of MGE-derived interneurons throughout embryonic
neocortex. In summary, our results suggest that the thalamus plays multiple, temporally separate roles in

interneuron development in the PFC.
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Introduction

The prefrontal cortex (PFC) integrates many modalities
of information to execute higher functions such as goal-
oriented behaviors, social interactions and emotion. Ab-
errant development of the PFC has been linked to
schizophrenia, autism spectrum disorders, attention def-
icit hyperactivity disorders, depression, and bipolar
disorders (Schubert et al., 2015). More specifically, devel-
opmental trajectories of GABAergic interneurons in the
PFC, particularly those expressing the calcium-binding
protein parvalbumin (PV), are impaired in both human
patients and animal models of these disorders (Meechan
et al., 2012; Nakazawa et al., 2012; Powell et al., 2012;
Gonzalez-Burgos et al., 2015; Caballero and Tseng, 2016;
Hashemi et al., 2018). Therefore, determining the devel-
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opmental mechanisms of PFC interneurons is important
for understanding the disease pathophysiology.

Development of cortical interneurons is regulated by
both intrinsic and extrinsic mechanisms (Bartolini et al.,
2013; Chu and Anderson, 2015; Hu et al., 2017; Wamsley
and Fishell, 2017). One key extrinsic cue is the input from
the thalamus, which regulates the migration and matura-
tion of these neurons (Sugiyama et al., 2008; Marques-
Smith et al., 2016; Tuncdemir et al., 2016; Zechel et al.,
2016). However, most studies addressing the role of the
thalamic input in interneuron development have been per-
formed on primary visual or somatosensory cortex, leav-
ing the mechanisms in PFC understudied. The delayed
maturation of PFC interneurons compared with other cor-
tical areas (Gonchar et al., 2007; Nowicka et al., 2009;
Ueno et al., 2017) and the distinct set of thalamic nuclei
connected with the PFC (Clasca et al., 2012; Nagalski
et al.,, 2016) suggest the presence of unique extrinsic
regulatory mechanisms for interneuron development in
the PFC.

One candidate molecule that may play a role in post-
natal development of the PFC is retinoic acid (RA), a small
molecule derived from vitamin A. RA is critical for many
important aspects of brain development, ranging from
rostrocaudal patterning of the hindbrain and spinal cord
to synaptic plasticity (Maden et al., 1996; Dupé and Lums-
den, 2001; Molotkova et al., 2007; Chen and Napoli, 2008;
Chatzi et al., 2011). The RA-degrading enzyme CYP26B1
(cytochrome P450 family 26, subfamily B, member 1) is
crucial in embryonic vertebrate development (Yashiro
et al., 2004; Hernandez et al., 2007; Gonzalez-Quevedo
et al., 2010). In postnatal mouse neocortex, Cyp26b1 is
expressed in the deep layer of the frontal cortex (Allen
Brain Atlas). In addition, Aldh1a3, which encodes an RA-
synthesizing enzyme, is expressed in the superficial layer
of the medial PFC (Wagner et al., 2006). The already
established role of RA in embryonic brain development
and the unique opposing locations of Cyp26b71 and
Aldh1a3 expression imply that the balance between the
degradation and production of RA might play an unex-
plored role in postnatal development of medial PFC.

In this study, we demonstrated that in medial PFC,
Cyp26b1 is transiently expressed in layer 6 cells during
early maturation of interneurons in the PFC, and that a
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significant subpopulation of PV interneurons is the main
cell type that responds to RA. These results led us to
hypothesize that RA signaling regulated by Cyp26b1
plays a role in controlling the development of PV interneu-
rons in the PFC. To test this, we generated frontal cortex-
specific Cyp26b1 mutant mice and found that these mice
had an increased density of PV-expressing neurons in
deep layers of medial PFC. We further demonstrated that
the postnatal expression of Cyp26b7 in medial PFC is
dependent on the connections between the thalamus and
PFC. Thus, the thalamus has a postnatal role in regulating
the development of PV neurons via inducing the expres-
sion of the RA-degrading enzyme CYP26B1 in frontal
cortex. Additionally, we found that the thalamus is also
required for the radial allocation of PFC interneurons dur-
ing embryogenesis. We therefore propose that the thala-
mus plays multiple crucial roles in interneuron
development in the PFC first by controlling their laminar
positioning during embryonic stages, and thereafter by
restricting the maturation of PV neurons through the in-
duction of a retinoic acid-degrading enzyme.

Materials and Methods

Mice

RARE-LacZ transgenic mice (Rossant et al., 1991) were
obtained from The Jackson Laboratory (stock #008477)
and were kept in the CD1 background. Frontal cortex-
specific Cyp26b1 mutant mice were generated using BAC
(bacterial artificial chromosome) Syt6-Cre mice (GENSAT;
Gong et al., 2003; Hsu et al., 2014). Although the endog-
enous Syt6 (Synaptotagmin 6) gene is expressed ubiqui-
tously in layer 6 of the neocortex, the BAC Cre line caused
recombination specifically in the frontal cortex. We
crossed Syt6°™®*; Cyp26b1™* mice and Cyp26b171ox/flox
mice to generate the conditional mutants. Cyp26b170x/flox
mice (Okano et al., 2012) were developed by Dr. Hiroshi
Hamada’s laboratory (RIKEN Center for Developmental
Biology, Kobe, Japan) and obtained from Dr. Maria Mo-
rasso (National Institute of Arthritis and Musculoskeletal
and Skin Diseases, Bethesda, MD). Rosa265tor-25Green/+
(Ai6) mice (Madisen et al., 2010) were obtained from The
Jackson Laboratory (stock #007906). Thalamus-specific
Gbx2 mutant mice were generated by crossing Olig3°™®'*;
Gbx2™"* mice and Gbx2™*°X mice as described previ-
ously (Vue et al., 2013). Gbx2™/x mjce were obtained
from The Jackson Laboratory (Li et al., 2002). Olig3°™*
mice were described previously (Vue et al., 2009; Bluske
et al., 2012). The Gbx2™" allele was generated by cross-
ing Gbx2™Mx mice with the CMV-Cre germline deleter
mice (stock #003465, The Jackson Laboratory). Mice that
express tetanus toxin light chain (TeNT) in thalamic neu-
rons were generated by crossing Olig3°®* mice and
Rosa26stor-TeNT/stop-TeNT mjce (Zhang et al., 2008).

In situ hybridization

cDNAs for the following genes were used: Cyp26b1,
Aldh1a3, Syt6, and Lmo4 (Open Biosystems); Pvalb, Sst,
and Vip (obtained from Dr. Rob Machold, New York Uni-
versity); Lhx6 (obtained from Dr. John Rubenstein, Uni-
versity of California San Francisco); and ROR (obtained

January/February 2019, 6(1) e0018-19.2019

New Research 3 of 17

from Dr. Michael Becker-Andre, Ludwig Maximilians Uni-
versity of Munich). Postnatal pups were perfused with 4%
paraformaldehyde (PFA)/0.1 m phosphate buffer, and the
heads were postfixed until needed. Brains were then
taken out of the skull, washed in 0.1 m phosphate buffer
for 20 min and were sunk in 30% sucrose/0.1 M phos-
phate buffer. Coronal sections were cut with a sliding
microtome at 50 um thickness (Leica) or with a cryostat at
20 wm [postnatal day 2 (P2) or younger] or 40 um (P4 or
older) thickness and were mounted on glass slides (Super
Frost Plus, Thermo Fisher Scientific). In situ hybridization
was conducted as described previously (Vue et al., 2007).

Immunohistochemistry

Brains were taken out immediately after perfusion and
were postfixed for 1 h (P0), 1-2 h (P4-P14) or 1-4 h (P21).
After the postfixation, the brains were washed in 0.1 m
phosphate buffer for 20 min and were sunk in 30% su-
crose/0.1 m phosphate buffer. Sections were cut as de-
scribed above for in situ hybridization. The following
primary antibodies were used: B-galactosidase (B-gal;
1:100, goat, catalog #55976, Cappel; 1:500, chicken, cat-
alog #ab9361, Abcam); SOX6 (1:100, rabbit, catalog
#ab30455, Abcam); SP8 (1:100, goat, catalog #sc-
104661, Santa Cruz Biotechnology); CTIP2 (1:200, rat,
catalog #ab18465, Abcam); TBR1 (1:200, rabbit, catalog
#ab31940, Abcam; 1:200, chicken, catalog #AB2261, Mil-
lipore); PV (1:500, rabbit, catalog #PV27, SWANT); soma-
tostatin (SST; 1:100, rat, catalog #MAB354, Millipore); LIM
Homeobox 6 (LHX6; 1:50, mouse, catalog #sc-271433,
Santa Cruz Biotechnology); vesicle-associated mem-
brane protein 2 (VAMP2; 1:200, rabbit, catalog #104 202,
Synaptic Systems); NetrinG1 (1:100, goat, catalog
#AF1166, R&D Systems); and cleaved caspase 3 (1:100,
rabbit, catalog #D175, Cell Signaling Technology). Sec-
ondary antibodies conjugated with Cy2, Cy3, or Cy5 were
obtained from Jackson ImmunoResearch.

Combined in situ hybridization (Sst) and
immunohistochemistry (SOX6)

In situ hybridization was conducted as described
above, except that before proteinase K treatment, sec-
tions were incubated with 0.3% hydrogen peroxide/PBS
for 10 min to block endogenous peroxidase activity. After
the hybridization, slides were washed as described
above, and were incubated for 30 min with anti-
digoxigenin antibody conjugated with peroxidase, fol-
lowed by two washes in PBS and one wash with TNT
solution (TNT: 0.1 m Tris, pH 7.5, 0.15 m NaCl, 0.05%
Tween 20). Sections were then incubated for ~30 min in
Tyramide Plus Fluorescein (Thermo Fisher Scientific) di-
luted at 1:250, washed twice in TNT solution, and post-
fixed. Thereafter, immunostaining with anti-SOX6
antibody was conducted as described above.

Imaging and binning

For cell counting, images of sections that underwent in
situ hybridization or immunostaining were taken using an
upright microscope (model E800, Nikon) with a 2X (in situ
hybridization) or a 4 X (immunostaining) objective using a
digital CCD camera (Retiga EXi, Qlmaging) and the Open-
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Figure 1. Spatiotemporally regulated expression of Cyp26b1 and Aldh1a3 in the PFC and other forebrain regions. In situ hybridization
of frontal sections through PFC at various stages is shown. A-E, Cyp26b1 expression in frontal cortex. At PO, only a weak expression
is seen in medial PFC (A, arrowhead). B, At P2, Cyp26b1 starts to be detected clearly in medial PFC (B, arrowhead); expression in
lateral cortex, especially agranular insula in more superficial layer (A, arrow) is strong, which continues into later stages (B-E, double
arrowheads). At P8, expression in medial (C, arrowhead) and ventral (C, arrow) PFC is strong. At P21, the expression of Cyp26b1 is
reduced in medial PFC (D, arrowhead) and is almost undetectable by P35 (E, arrowhead). F, Syt6, a layer 6 marker, is expressed in
the same layer as Cyp26b1 in medial PFC at P8 (arrowhead). G-K, Aldh1a3 expression in frontal cortex. At PO, expression is not
detected in PFC (G). At P2, clear expression is detected in the superficial layer of medial PFC (H, arrow). The expression continues
into P8, P21, and P35 (I-K, arrow). L, Schematic summary of the spatial expression patterns of Cyp26b1 and Aldh1a3 in medial PFC
of early postnatal mouse brains. M, Expression of Cyp26b1 is not detected in LGE or MGE at E14.5, but is already found in the
hippocampus (arrowhead), septum (arrow), globus pallidus (data not shown), and amygdala (data not shown). N, At E16.5, Cyp26b1
is detected in hippocampus (arrowhead), piriform cortex (Pir), globus pallidus (GP), and amygdala (Amy). O, P, This pattern continues
into P4 and adulthood (data not shown). P is at a more caudal level than O. Expression in the hippocampus is strongest in CA3 and

e

hilus, whereas multiple nuclei in amygdala show strong expression of Cyp26b1 (P). Scale bars: A-K, N-P, 1 mm; M, 500 um.

Lab software. Coronal sections of the rostral cortex that
contain the forceps minor (anterior forceps) of the corpus
callosum in the center (Fig. 1A-F) were used for analysis.
Sections in which the forceps minor is extending toward
the medial surface as well as the sections that include the
corpus callosum itself were excluded as being too caudal.
Once the sections were selected for each brain, putative
prelimbic and infralimbic areas of the medial PFC (Allen
Brain Atlas; Paxinos et al., 2006; Van De Werd et al., 2010)
were binned for cell counting. As seen in Figure 5, A and
B, three dorsal-ventral bins were drawn using Photoshop
CS5. Each bin is 500 wm high at the medial surface. Each
of these three bins was further subdivided into smaller
bins by their laminar locations; for sections with in situ
hybridization, the most superficial layer (layer 1) was de-
fined as the cell-sparse layer on DAPI staining. The re-
maining cortical wall was divided into three bins with
equal widths, resulting in the total of four laminar bins.
Layer 1 and the layer underneath it were grouped together
and were named superficial layers, and the remaining two
layers were named the deep layers. For immunostaining,
we used anti-TBR1 (T-Box, Brain 1) antibody for all slides
in Cy5 channel and used it as a reference marker of layer
6. Then, the areas excluding layers 1 and 6 were equally
divided into three parts, resulting in five laminar bins (see
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Fig. 7). For Figures 2, F and G, and 3, K and L, the portion
between layer 1 and layer 6 was divided into two equal
parts, resulting in four laminar bins. For high-magnifi-
cation images shown in Figures 2 and 3, an Olympus
FluoView 1000 confocal microscope was used (40X ail;
numerical aperture, 1.25).

Cell counting

Using the Imaged or Fiji program, the original color
images were converted to inverted black and white im-
ages, and dark spots were automatically counted by the
ITCN (Image-based Tool for Counting Nuclei) plugin. Cell
density was calculated by measuring the area of each bin
and dividing the cell number by the area of each bin. At
least two sections per brain were used for cell counting,
and the numbers were averaged to represent the brain.
Two brains (mutant and wild type) from the same litter that
were processed and analyzed in the same experiment
were compared as a pair.

Experimental design and statistical analysis

Both males and females were used in this study. A
paired ratio t test was used for comparing cell counts
between Cyp26b1 CKO (conditional knock-out) mice and
wild-type littermates as well as Gbx2 CKO and wild-type
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Figure 2. RA signaling in early postnatal PFC. In all sections, the right hemisphere is shown, and the white dashed line marks the
medial surface of the frontal cortex. A-E, H-J, Immunostaining for B-gal on frontal sections of PO (A) and P14 (B-E, H-J) brains of
RARE-LacZ transgenic mice. A, At PO, B-gal expression is found only in the radial glial fibers (arrow). B-J, At P14, B-gal-positive cells
are abundant in medial PFC and they are SOX6 positive. B is a 10X image including the medial surface of the brain, and C-E are 40X
confocal images of the same region outlined in the square in B. E is the merged image of C and D. Yellow arrows in C and D show
SOX6/B-gal-double-positive cells, and green arrow in C shows a rare, B-gal-positive, SOX6-negative cell. F, Average number of
B-gal-positive cells per section by layers (mean = SEM). L1, Layer 1 as marked by sparse labeling in DAPI staining; L6, layer 6 as
marked by TBR1 staining. The two middle columns represent equal-width bins between layer 1 and layer 6, and approximately
corresponds to layers 2/3 and layer 4/5, respectively. Because most B-gal-positive cells are immediately above layer 6, and layer 4
is thin in medial PFC (Fig. 6G), the highest peak in the third column likely represents layer 5. G, The ratios of SOX6; B-gal-double-
positive cells among B-gal-positive cells are shown by layers (mean = SEM). H-J, B-gal does not overlap with SP8, CTIP2, or TBR1.

Scale bars: A, 200 um; B, 100 um; C-E, H-J, 50 um.

littermates. For data seen in Figures 5 and 7, we also
performed repeated-measures two-way ANOVA using
Prism (versions 6 and 7, GraphPad Software). Graphs
were generated using Prism.

Axon tracing

Small crystals of 1,1-dioctadecyl-3,3,3'3-tetrame-
thylindocarbocyanine perchlorate (Dil) were placed on the
medial surface of frontal cortex of PFA-fixed P14 Gbx2
conditional mutant brains and their control littermates.
After incubation of the brains in PFA at 37°C for 2 weeks,
we cut sections at 150 um with a vibrating microtome
(Oscillating Tissue Slicer, Electron Microscopy Sciences),
counterstained the sections, and mounted them on glass
slides for imaging.

Results

Cyp26b1, a gene encoding a retinoic acid-degrading
enzyme, is expressed in a spatially and temporally
dynamic pattern in postnatal mouse PFC

To identify genes that are enriched in developing PFC,
we screened the Anatomic Gene Expression Atlas (AGEA;
Ng et al., 2009). The database showed that Cyp26b1, a
gene that encodes a retinoic acid (RA)-degrading enzyme
that belonged to the cytochrome P450 family 26 (CYP26)
proteins, is strongly expressed in the frontal cortex at P14,
including the deep layer of medial and ventral PFC as well
as the middle layer of lateral cortex extending into the
agranular insula. We therefore examined the developmen-
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tal expression patterns of Cyp26b7 in more detail by in
situ hybridization. Prenatal cortex did not show detectable
Cyp26b1 expression (data not shown). At PO, lateral fron-
tal cortex, but not medial PFC, started to show a robust
signal (Fig. 1A). At P2, strong expression of Cyp26b1 was
detected in medial PFC, as well as in the dorsolateral
frontal cortex including the motor area (Fig. 1B). Compar-
ison with the established marker of layer 6 neurons, Syt6,
showed that Cyp26b1 is expressed in layer 6 of medial
and ventral PFC (Fig. 1, compare C and F). Not only was
the expression of Cyp26b1 spatially restricted, it was also
temporally dynamic; in medial PFC, Cyp26b1 was strong
at P8 (Fig. 1C) and P14 (see Fig. 6M). However, by P21,
Cyp26b1 expression in medial PFC was much weaker
compared with ventral and lateral regions (Fig. 1D). By
P35, there was no detectable expression of Cyp26b1 in
medial PFC (Fig. 1E).

The tissue RA level is controlled both by its synthesis
from vitamin A and by its degradation by CYP26 enzymes.
Members of the aldehyde dehydrogenase 1 (ALDH1) fam-
ily are crucial for synthesizing RA, and two members of
this family (ALDH1A2 and ALDH1A3) are expressed in
early postnatal cortex; Aldhia2 is broadly expressed in
the meninges (Wagner et al., 2002), whereas Aldh1a3 is
specifically expressed in the superficial layer of postnatal
medial PFC as well as higher-order visual areas (Wagner
et al,, 2002, 2006). We found that the expression of
Aldh1a3 becomes detectable in medial PFC at P2 (Fig.
1H). By P8, the expression was robust in layer 2 and

eNeuro.org
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Figure 3. Overlapping expression of RARE-LacZ transgene and PV in early postnatal PFC. A-C, In situ hybridization for Pvalb mRNA
on frontal sections of control mice at P8 (A), P14 (B), and P21 (C). In medial PFC, Pvalb is undetectable at P8, but is robustly expressed
at P14, which further increases by P21 (A-C, single arrow). Pvalb mRNA is already expressed in many cells in dorsolateral frontal
cortex (A, double arrow). D-G, Double immunostaining for g-gal and PV on frontal sections of P14 brains of RARE-LacZ transgenic
mice. D is a 10X image including the medial surface of the brain, and E-G are 40X confocal images of the same region outlined in
the square in D. G is a merged image of E and F. Note the heavy overlap between -gal and PV. H, I, Timecourse of Sst expression
in medial PFC of postnatal mice. In H, Sst mRNA was detected by in situ hybridization using a Tyramide Signal Amplification system,
followed by immunostaining with anti-SOX6 antibody. The section is from a control P14 PFC and left is to the medial surface. In I, the
ratio of Sst-positive, SOX6-positive cells to SOX6-positive cells in medial PFC is shown for PO, P4, P7, P14, and P59. A plateau value
of ~0.4 is reached by P7. At PO, a much smaller portion of SOX6-positive cells expressed Sst mRNA. Each dot indicates an average
number of cells in medial PFC of at least three sections of a wild-type brain. J, Double immunostaining for -gal and SST on frontal
sections of P14 brains of RARE-LacZ transgenic mice. Note the little or no overlap between B-gal and SST. K, The ratios of PV;
B-gal-double-positive cells among B-gal-positive cells in P14 medial PFC are shown by layers (mean = SEM). L, The ratios of
PV/B-gal-double-positive cells among PV-positive cells in P14 medial PFC are shown by layers (mean = SEM). M, A schematic
summary of the interneuron populations in medial PFC. Based on the results of this study, a subpopulation of PV interneurons
responds to RA via RAR/RXR receptor complex. Scale bars: A-C, 1 mm; D, 100 um; E-G, J, 50 um; H, 200 um.

°

GABAergic neurons in the PFC

extended more laterally (Fig. 1/). A similar pattern of ex-  areas at any developmental stage examined (Figs. 1N,O,
pression was found at P21 (Fig. 1J) and P35 (Fig. 1K).  4L). Cyp26b1 was also expressed in the piriform cortex,
There also appears to be Aldh1a3 expression in medial the amygdala, CA3 and the hilus regions of the hippocam-
cortex in adult mice (Allen Brain Atlas). Outside of the pus, and the globus pallidus (Fig. 1N-P). Expression in
frontal cortex, we did not detect Cyp26b17 expression in  these regions started during embryogenesis (Fig. 1N) and
more caudal parts of the neocortex including sensory  continued into adulthood (Allen Brain Atlas). Cyp26b1 was
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Figure 4. Conditional deletion of Cyp26b1 using Synaptotagmin6-Cre (Syt6-Cre). A-E, Recombination in Syt6-Cre transgene mice. A-E,
Expression of ZSGreen in Syt6-Cre/+; Ai6 (ZSGreen Cre reporter) mice at E12.5 (A), E14.5 (B), and PO (C-E) are shown. All sections are
coronal, and the midline is to the left. At E12.5, the expression of ZSGreen reporter is found in meninges (A, arrow) and preplate (A,
arrowhead), but not in the rest of the cortex or MGE and LGE. At E14.5, a small number of cortical cells (B, double arrows) below the
marginal zone (B, arrowhead) start to express ZSGreen. C-E, At PO, many layer 6 cells of frontal cortex express ZSGreen (C, arrow), but
not in more caudal neocortex (D, Ncx), CA1, CA3, and hilus regions of the hippocampus (E, note that strong signal is found in the meninges
of the hippocampus) or the amygdala (F, Amy). ic, Internal capsule. Scale bar, 200 um. F-Q, Generation of conditional Cyp26b1 knock-out
mice. F-Q, In situ hybridization of frontal sections of P8 (F, G, I, J, L-Q) or P14 (H, K) Cyp26b1 conditional knock-out (I~K, O-Q) and control
littermate (F-H, L-N) brains. Cyp26b1 was conditionally knocked out using the Syt6-Cre transgene. Syt6 is expressed in layer 6 of both
control (F) and Cyp26b1 knock-out (/) brains (arrow). The expression of Cyp26b1 in layer 6 of frontal cortex (arrow) is detected in control
brains, but not in Cyp26b1 knock-out brains at P8 (G, J) and P14 (H, K). The expression of Cyp26b1 in agranular insula is unchanged in
Cyp26b1 knockouts (G, H, J, K, arrowhead). The expression of Cyp26b1 in CA3 and hilus region of the hippocampus (L, O, arrowhead),
globus pallidus (M, P, arrow), and amygdala (N, Q, arrowhead) is unchanged in Cyp26b1 knockouts. Scale bar, 1 mm.

not detected in either medial ganglionic eminence (MGE)  an RA-degrading enzyme or “RA sink,” is located in layer 6 (Fig.
or lateral ganglionic eminence (LGE; Fig. 1M). 1L). These results suggest that RA signaling is spatially and

In summary, in the medial part of early postnatal PFC, RAis  temporally controlled, and that this regulation might play a role
produced by cells in the superficial layer, whereas CYP26B1,  in the development of medial PFC.
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Parvalbumin-expressing interneurons in medial PFC
respond to retinoic acid during early postnatal
development

The spatiotemporal expression pattern of Cyp26b1
prompted us to explore the cellular targets of RA signaling
during postnatal PFC development. To determine the
populations of cells that respond to RA, we analyzed the
expression of the RARE-LacZ transgene, an indicator of
the transcriptional activity of the RA receptor RAR (reti-
noic acid receptor)/RXR (retinoid X receptor) heterodimers
(Rossant et al., 1991). At PO, the expression of B-gal was
barely detectable in medial PFC except in radial glial
fibers (Fig. 2A). At P14, a robust population of B-gal-
positive cells was detected in medial PFC, mostly in layer
5. These cells were also positive for SOX6, a marker for
GABAergic interneurons derived from MGE (Batista-Brito
et al., 2009; Fig. 2B-F). Analysis of three transgenic brains
revealed that 91% of B-gal-positive cells in layer 5 were
also SOX6 positive (Fig. 2G). Markers of other neuronal
types, including SP8 [Fig. 2H; caudal ganglionic eminence
(CGE)-derived cortical interneurons; Ma et al., 2012],
CTIP2 (Fig. 2I; layer 5 subcerebral projection neurons as
well as some interneurons; Arlotta et al., 2005; Chen et al.,
2005; Nikouei et al., 2016), and TBR1 (Fig. 2J; layer 6
corticothalamic projection neurons; Hevner et al., 2001)
did not overlap with B-gal, indicating that these types of
neurons do not express the molecular machinery for re-
sponding to RA via RAR/RXR heterodimers. In summary,
MGE-derived interneurons in layer 5 are the main re-
sponders to RA within early postnatal medial PFC.

Most MGE-derived interneurons in the adult neocortex
express either SST or PV (Fogarty et al., 2007; Miyoshi
et al., 2007). A majority of these interneurons complete
their tangential migration into the neocortex by birth (Mi-
yoshi and Fishell, 2011; Inamura et al., 2012). However,
PV protein or Pvalb mRNA is not expressed until much
later, suggesting that the expression of PV or Pvalb is a
useful marker of maturation for this lineage of cells. At P8,
Pvalb mRNA was already abundant in the lateral portion of
the neocortex including motor area (Fig. 3A, double ar-
rows), but not in medial PFC (Fig. 3A, arrow). Thus, mat-
uration of PV neurons is delayed in medial PFC. By P14,
cells expressing Pvalb mRNA or PV protein were clearly
detectable in medial PFC, mainly in layer 5 (Fig. 3B,
arrow), which further increased by P21 (Fig. 3C, arrow).

To determine whether RA-responding cells are re-
stricted to either PV or SST neurons, we next analyzed
RARE-LacZ transgenic mice to determine the colocaliza-
tion of B-gal and PV (Fig. 3D-G) as well as 3-gal and SST
(Fig. 3J) at P14. We found a heavy overlap between PV
and B-gal; in three P14 brains (Fig. 3D-G), 48% percent-
age of B-gal-positive cells in layer 5 were also PV positive
(Fig. 3K). In turn, 45% of PV-positive cells in layer 5 were
also B-gal-positive (Fig. 3L). Similar patterns were found
at P21 (data not shown). In a sharp contrast, SST showed
very little overlap with B-gal from P8 through P67 (Fig. 3J;
and data not shown); the ratio of SST/B-gal double-
positive cells to SST-positive cells was 2.9% (3 of 103) at
P14 and 5.0% (6 of 121) at P21. In medial PFC, cells
expressing SST protein or Sst MRNA appeared between
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PO and P4; by P7, ~40% of MGE-derived interneurons
that express SOX6 also expressed Sst mRNA, and this
ratio stayed constant until P59 (Fig. 3H,/). Thus, by P7,
most SST neurons in medial PFC already express Sst
mRNA, and MGE-derived interneurons that are B-gal-
positive and SST-negative are most likely to be PV neu-
rons (Fig. 4M).

Cyp26b1 is required for normal development of
parvalbumin-expressing interneurons in medial PFC

Because of the strong correlation between the expres-
sion of PV and the responsiveness of the cell to RA, we
hypothesized that the development of PV interneurons in
medial PFC is regulated by RA signaling and that this
regulation depends on CYP26B1. To test this, we gener-
ated conditional Cyp26b1 mutant mice in which Cyp26b1
is deleted in the PFC. Because the expression of Cyp26b1
is highly specific to layer 6 in the frontal cortex, we used
Syt6-Cre driver mice (Gong et al., 2003; Hsu et al., 2014).
Expression Syt6 is specific to layer 6 in the neocortex (Fig.
1F), and Syt6-Cre mice allow recombination in layer 6
corticothalamic projection neurons in the frontal cortex
including the medial PFC (Allen Brain Atlas; http://connec-
tivity.brain-map.org/). To validate the usefulness of Syt6-
Cre in knocking out Cyp26b1 in layer 6 of the postnatal
frontal cortex but not in other, potentially relevant
Cyp26b1-expressing cell populations, we first bred the
Cre mice with ZSGreen Cre reporter mice (Ai6; Madisen
et al., 2010). At embryonic day 12.5 (E12.5), Syt6-Cre; Ai6
brains showed ZSGreen expression in the preplate and
the meninges but not in other parts of the cortex or in
ganglionic eminences (Fig. 4A). Cortical expression of
ZSGreen started to be detected at E14.5 (Fig. 4B). At PO,
robust signs of recombination were seen in layer 6 of the
frontal cortex but not in more caudal cortex (Fig. 4C,D),
amygdala (Fig. 4E), or CA3 and hilus regions of the hip-
pocampus (Fig. 4D). Thus, we predicted that the Syt6-Cre
mice would cause specific deletion of Cyp26b1 in layer 6
cells of the frontal cortex including medial PFC. In Syt6-
Cre/+; Cyp26b1™¥™x (Cyp26b1 CKO) mice, Cyp26b1
mRNA was not detected in medial PFC (Fig. 4, compare
G, J and H, K), whereas expression in other brain regions
including the hippocampus (Fig. 4L,0), agranular insula
(Fig. 4G,J), globus pallidus (Fig. 4M,P), or amygdala (Fig.
4N,Q) was not affected, confirming an efficient and spe-
cific deletion of Cyp26b1.

We then counted Pvalb mRNA-expressing neurons and
compared the numbers between Cyp26b7 CKO mice and
their littermate wild-type controls at P14 and P21 (Fig. 5).
At both stages, the density of Pvalb-positive cells was
significantly increased in medial PFC of Cyp26b1 mutant
mice (Fig. 5C,F, “total”). When the PFC was divided into
superficial and the deep layers, the difference was seen
only in the deeper half of the medial PFC, consistent with
the distribution of B-gal-expressing cells. With repeated-
measures two-way ANOVA, we also detected significant
differences both between layers and between genotypes
(Fig. 5, legend). In the motor cortex, we detected a sig-
nificant increase in the density of Pvalb-expressing cells in
deep layers of Cyp26b1 CKO mice compared with con-
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Figure 5. Increased Pvalb-expressing interneurons in medial PFC of Cyp26b1 knock-out mice. A, B, In situ hybridization of frontal sections
of P14 Cyp26b1 conditional knock-out mice (B) and littermate controls (A). Expression of Pvalb mRNA is shown. See Materials and Methods
on the binning of the medial PFC. Numbers of Pvalb-positive cells in the two superficial bins and two deep bins were added together and
compared separately between Cyp26b1 mutants and littermate controls. C-E, Result of paired ratio t tests for cell counts in the medial PFC
(C), motor cortex (D), and somatosensory cortex (E), all on the same frontal sections. Each line connecting red and blue dots represents
a pair of brains analyzed in the same experiment (1 = 5). The p values of the ratio of paired t tests for each layer (superficial, deep, total)
are shown. In repeated-measures two-way ANOVA, the p values for layer (superficial versus deep), pair (between control and knockout),
and interactions (between layer and pair) are 0.0017, 0.0325, and 0.1416 (P14 in PFC); 0.0441, 0.0961 and 0.7807 (P14 in motor cortex);
0.1771, 0.4751, and 0.5496 (P14 in somatosensory cortex), respectively. Scale bar, 1 mm. L1, layer 1. F, G, At P21, the density of
Pvalb-expressing cells (F), but not Sst-expressing cells (G), is increased in Cyp26b1 conditional knock-out mice. In repeated-measures
two-way ANOVA, the p values for layer (superficial versus deep), pair (between control and knockout), and interactions (between layer and
pair) are 0.0047, 0.0287, and 0.0637 (Pvalb); 0.0065, 0.3621, and 0.7609 (Sst). H, I, No significant changes in the density of Pvalb- and
Sst-expressing interneurons in medial PFC of adult (P56-P67) Cyp26b1 knock-out mice. Each line connecting red and blue dots represents
a pair of brains analyzed in the same experiment (n = 4). The p values of paired t tests for individual layers are shown. J-R, No significant
changes in the number of Sst-, Vip-, and Lhx6-expressing interneurons in medial PFC of Cyp26b1 knock-out mice at P14. J-0, In situ
hybridization of frontal sections of P14 Cyp26b1 conditional knock-out mice (J, L, N) and littermate controls (K, M, O). Expression of Sst
W, K), Vip (L, M), and Lhx6 (N, O) is shown. Binning and cell counts were performed as shown in A and B. Scale bar, 1 mm. P-R, Result
of statistical analysis. Each line connecting red and blue dots represents a pair of brains analyzed in the same experiment (n = 5). The p
values of paired ratio t test for individual layer are shown.

trols by using paired t tests (Fig. 5D), but the difference
was not significant with repeated-measures two-way
ANOVA. More laterally, the putative somatosensory area
also did not show a significant difference in density (Fig.
5E), suggesting that in the CKO mice, the residual
Cyp26b1 expression in layer 5 of lateral frontal cortex (Fig.
4K) might have spared the normal density of Pvalb-
expressing cells in lateral cortex. In the medial PFC, nor-
mal expression of Cyp26b1 is limited to layer 6, and CKO
mice had no residual expression in more superficial lay-
ers. In contrast to Pvalb-expressing neurons, the density

January/February 2019, 6(1) e0018-19.2019

of Sst, Vip (derived from CGE), or Lhx6 (a general marker
for MGE-derived interneurons)-expressing neurons was
not significantly different in the CKO mice compared with
controls (Fig. 5J-R). Furthermore, in adult brains, Pvalb-,
Sst-, and Vip-expressing cells did not show a significant
difference between the CKO and control mice (Fig. 5H,/).
Together, these results indicate that transient expression
of Cyp26b1 in layer 6 of medial PFC is specifically re-
quired for controlling the development of PV interneurons.
This is consistent with a disproportionately high percent-
age of PV neurons responding to RA compared with SST
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neurons (Fig. 3). The lack of significant change in the
density of Sst-, Vip-, or Lhx6-expressing cells suggests
that CYP26B1 does not control the fate specification or
the number of each interneuron type, but rather the rate of
maturation of PV lineage cells specifically.

Cyp26b1 is not expressed in early postnatal medial
PFC in the absence of thalamus-PFC connectivity

Because Cyp26b1 starts to be expressed in medial and
ventral PFC when the reciprocal connections between the
thalamus and the cortex are being established, we next
asked whether the normal expression of Cyp26b1 de-
pends on this connectivity. In our previous study,
thalamus-specific deletion of the homeobox gene Gbx2
resulted in severe deficiency of thalamocortical and cor-
ticothalamic projections in sensory areas (Vue et al.,
2013). Similar to sensory cortex, the PFC also showed a
significant reduction in the staining of NetrinG1, a marker
of thalamocortical axons (Nakashiba et al., 2002; Vue
et al., 2013), in Gbx2 mutant mice at E16.5 (Fig. 6A,B).
Placement of Dil crystals into the medial PFC of Gbx2
mutants and wild-type mice at P14 revealed that both
retrograde labeling of thalamic neurons and anterograde
labeling of corticothalamic axons were severely attenu-
ated in Gbx2 mutants (Fig. 6C—F). These results demon-
strate a robust reduction of reciprocal connectivity
between the thalamus and PFC in Gbx2 mutant mice.

We then tested whether the expression of Cyp26b17 in
the PFC is altered in Gbx2 mutant mice. Already at P2, the
mutant cortex lacked the expression of Cyp26b1 in me-
dial and ventral PFC (Fig. 6K,P), demonstrating that the
onset of Cyp26b1 expression requires thalamocortical
interactions. The deficiency of Cyp26b1 expression con-
tinued until P21, when the medial PFC expression of
Cyp26b1 normally started to decline (Fig. 6N,S). In con-
trast, the expression of Cyp26b1 showed no alterations in
layer 5 of the lateral frontal cortex, including the motor
areas and agranular insula (Fig. 6K-T). The layer 6 marker
Syt6 was still highly expressed in the frontal cortex of
Gbx2 mutants (Fig. 6U,X), making it unlikely that cell loss
in layer 6 was the cause of the reduced expression of
Cyp26b1 in Gbx2 mutants. Lastly, Aldh1a3, which nor-
mally shows the onset of expression in medial PFC similar
to that of Cyp26b1, was qualitatively unaffected in Gbx2
mutants (Fig. 6V,Y). In summary, transient expression of
Cyp26b1 in layer 6 of medial PFC was dependent on the
connections between the thalamus and the cortex (Fig.
6W,2). Our results collectively suggest a novel, indirect
role of the thalamus in regulating the neocortical interneu-
ron development.

Lack of thalamus-PFC connectivity results in early
aberrancy of radial positioning of MGE-derived
interneurons

In sensory cortex, thalamocortical afferents affect the
development of interneurons by a variety of mechanisms
(Sugiyama et al., 2008; Marques-Smith et al., 2016; Tunc-
demir et al., 2016; Zechel et al., 2016). However, roles of
the thalamus in the development of PFC interneurons are
unknown. Hence, we analyzed the distribution of MGE-
derived interneurons in medial PFC at PO and P21. At PO,
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LHX6-expressing, MGE-derived interneurons showed an
altered radial distribution in medial PFC (Fig. 7A-D); there
was an increase in the density of LHX6-positive cells in
layer 6 and below, and a decrease in the middle layers
(Fig. 7C), while the total density was not significantly
different in mutant brains (Fig. 7D). These results on the
neonatal PFC are remarkably similar to a recent report on
sensory and motor cortex of thalamus-specific Gbx2 mu-
tant mice (Zechel et al., 2016). Thus, there is an early,
cortex-wide role of thalamocortical projections in control-
ling the radial distribution of MGE-derived interneurons.
Because the altered neuronal positioning occurred before
the onset of Cyp26b1 expression in medial PFC, these
early roles are likely to be independent of the later role of
the thalamus in regulating the development of PV in-
terneurons via Cyp26b1. At P21, densities of Pvalb- and
Sst- expressing interneurons in medial PFC, specifically in
the middle layers and not in the most superficial and the
deepest layers, were significantly reduced in Gbx2 mutant
mice (Fig. 7E-G). This is consistent with the increased
apoptosis of LHX6-expressing cells in Gbx2 mutants at
P8 (Fig. 7H), which might reflect the reduced excitatory
input onto MGE-derived interneurons in the absence of
thalamocortical afferents (Wong et al., 2018).

Induction of Cyp26b1 by the thalamus is
independent of transmitter release from
thalamocortical projection neurons

How does the thalamus control the expression of
Cyp26b1 in layer 6 neurons in medial PFC at early post-
natal stages? One likely cue that mediates the role of the
thalamus is the transmitter release from thalamocortical ax-
ons. To test whether the lack of transmitter release pheno-
copies the lack of the axon projections, we generated
mutant mice in which TeNT is ectopically expressed specif-
ically in thalamocortical projection neurons (Fig. 8). At E16.5,
the expression of VAMP2, the cleavage target of TeNT, was
dramatically reduced in thalamocortical axons expressing
TeNT, while it was retained in corticofugal axons (Fig.
8A-D,G-J). At P8, the expression of RORp in layer 4 of the
primary somatosensory area was altered in TeNT-
expressing mice, lacking the characteristic barrel-like pat-
tern (Fig. 8E,F). This is consistent with a recent study on
vGluT mutants (Li et al., 2013) and indicates the role of
transmitter release in the formation of normal cytoarchitec-
ture of the primary sensory cortex. In the PFC, however, the
induction of Cyp26b1 in the medial and ventral PFC was not
qualitatively affected in TeNT-expressing mice (Fig. 8K,L),
implying a unique cellular mechanism that underlies the
induction of Cyp26b1 expression in early postnatal PFC.

Discussion

In this study, we first demonstrated that Cyp26b7,
which encodes an RA-degrading enzyme and a critical
regulator of retinoid signaling (Duester, 2008; Rhinn and
Dollé, 2012), is expressed in developing PFC in a tempo-
rally and regionally specific manner. We also showed that
PV-expressing interneurons are the major cell population
that normally responds to RA via the RAR/RXR receptors.
Conditional deletion of Cyp26b1 in layer 6 of the frontal
cortex resulted in an increased density of Pvalb-
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Figure 6. Transient expression of Cyp26b1 in the PFC does not occur in the absence of thalamus-cortex interactions in Gbx2 mutant
mice. A-F, Thalamus—-PFC disconnection in Gbx2 mutant mice. A, B, Immunostaining for NetrinG1 at E16.5. In control mice,
NetrinG1-labeled thalamocortical axons are visible in coronal sections of frontal cortex. Arrowhead in A shows the medial PFC, where
robust labeling is detected. In contrast, NetrinG1 labeling is barely detectable in the frontal cortex of Gbx2 mutant mice, including the
medial PFC (B, arrowhead). Scale bar, 200 um. C-F, Dil labeling at P14. C, D, Dil placement in medial PFC retrogradely labels medial
thalamic nuclei in the control brains. E, F, In Gbx2 mutants, the label is severely reduced, indicating the deficiency of both
thalamocortical and corticothalamic projections. G-J, Expression of RORB and Lmo4 is qualitatively normal in the PFC of Gbx2
mutant mice at P8. G, I, The expression of RORp in layer 4 is comparable between control (G) and Gbx2 mutant (cko) mice (I, arrows).
H, J, Laminar expression patterns of Lmo4 also appear unchanged in Gbx2 mutants. Scale bar, 1 mm. K-Z, Transient expression of
Cyp26b1 in the PFC does not occur in the absence of thalamus-cortex interactions in Gbx2 mutant mice. K-T, in situ hybridization
of frontal sections through PFC at various postnatal stages with a Cyp26b1 probe. K-O, In control mice (K-0), Cyp26b1 expression
starts at P2 in medial (K, arrowhead) and ventral (K, single arrow) PFC, and continues until P14 (M). N, O, At P21, expression in medial
PFC is reduced (N) and is no longer detectable at P35 (0). K-0, In addition to medial and ventral PFC, Cyp26b1 is also expressed
in lateral frontal cortex, including the motor and somatosensory areas (double arrows) and agranular insula (double arrowheads). P-T,
In Gbx2 mutant mice, the expression of Cyp26b1 is not induced in medial or ventral PFC at P2 as well as at later stages, although
ventral PFC does not appear to be affected at P14 and later. P-T, Expression in more superficial layer of lateral cortex (double arrows
and double arrowheads) is not affected in Gbx2 mutant mice. U, X, Expression of the layer 6 marker Syt6 is not affected in Gbx2
mutant mice. V, Y, Expression of Aldh71a3 in layer 2 of medial PFC and anterior cingulate cortex (arrow) is not affected in Gbx2 mutant
mice. Scale bar, 1 mm. W, Z, Summary schematic for this figure.
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Figure 7. Abnormal radial distribution of MGE-derived interneurons in the medial PFC of neonatal and P21 Gbx2 mutant mice. A, B,
Representative images of immunostaining for LHX6 in medial PFC of wild-type (A) and Gbx2 mutant (B) mice at PO. Binning is shown in
yellow. Layer 1 (L1) was defined as the cell-sparse layer detected by DAPI staining. Layer 6 (L6) was defined as the layer with TBR1 staining
on the same sections (data not shown). The intervening region was equally divided into three layers. Sublayer 6 was defined as the layer
below layer 6. Scale bar, 200 um. C, D, Comparison of LHX6-positive cells in Gbx2 mutants (red dots) and wild-type littermates (blue dots)
in medial PFC at P0. Each line connecting red and blue dots represents a pair of brains analyzed in the same experiment (n = 5). C shows
laminar distribution pattern. The p values of paired t test for individual layer are shown. In repeated-measures two-way ANOVA, the p values
for layer, pair (between control and knockout), and interactions (between layer and pair) are 0.0001, 0.5950, and 0.0021, respectively. D
shows the total number of Pvalb- and Sst-expressing neurons in all layers. The p values of paired t tests are shown. “Sub-L6” was defined
as the region below the expression domain of TBR1, which was stained in all immunostaining slides for a reference. *p < 0.05, *xp < 0.005,
#xxp < 0.0005. E-G, Comparison of Pvalb-positive and Sst-positive cells in Gbx2 mutants (red dots) and wild-type littermates (blue dots)
in medial PFC at P21. Each line connecting red and blue dots represents a pair of brains analyzed in the same experiment (n = 5). E, F,
Comparison of laminar distribution of Pvalb-expressing and Sst-expressing neurons, respectively, in Gbx2 mutant mice and littermate controls.
Layer 1 was defined as the cell-sparse layer detected by DAPI staining. The remaining cortical wall was equally divided into three layers. The
deepest layer (shown as “L5/6”) contains the entire layer 6 and the deep part of layer 5. G, The total number of Pvalb- and Sst-expressing neurons
in all layers. The p values of a paired t test for an individual layer are shown. In repeated-measures two-way ANOVA, the p values for layer, pair
(between control and knockout), and interactions (between layer and pair) are <0.0001, 0.0002, and 0.0001 (Pvalb); <0.0001, 0.0247, and 0.0001
(Sst), respectively. H, Comparison of the numbers of cleaved caspase 3-positive, LHX6-positive cells in Gbx2 mutants (red dots), and wild-type
littermates (blue dots) in medial PFC at P8. Each line connecting red and blue dots represents a pair of brains analyzed in the same experiment
(n = 4). Each value is the mean of 7-15 sections. The p values of ratio paired t tests are shown.

expressing neurons in deep layers of medial PFC during
postnatal development. Expression of Cyp26b1 in the
PFC depended on the connections between the cortex
and the thalamus, but not on the transmitter release from
thalamocortical axons. These results demonstrate a
unique regulatory role of the thalamus in postnatal devel-
opment of PV interneurons in the PFC (Fig. 9D-G).

Roles of RA signaling in postnatal development of
the medial PFC

In early embryonic brain, RA controls rostrocaudal pat-
terning of the hindbrain and spinal cord (Maden et al.,
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1996; Dupé and Lumsden, 2001). Cells in the subventricu-
lar zone of the embryonic LGE express the RA-
synthesizing enzyme ALDH1A3, and Aldh1a3-deficient
mice had reduced expression of dopamine receptor D2
(Drd2) in nucleus accumbens (Molotkova et al., 2007) and
reduced expression of Gad7 in embryonic GABAergic
neurons in the striatum and the cortex (Chatzi et al., 2011),
demonstrating a crucial role of RA in the early differenti-
ation of embryonic GABAergic neurons. In contrast, much
less is known about the roles of RA signaling in postnatal
brain development. Systemic administration of RA into
early postnatal mice caused an increased number of
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Figure 8. Normal induction of Cyp26b1 in PFC in mice expressing tetanus toxin light chain in thalamocortical axons. A-D,
Immunostaining for VAMP2 on frontal sections of somatosensory cortex at E16.5 control (A, B) and mutant mice with ectopic
expression of TeNT in thalamic neurons (C, D). TeNT expression leads to the deletion of VAMP2, specifically in thalamocortical axons
at E16.5. Thalamocortical axons are shown by NetrinG1 staining (B, D, green). In control brains, both thalamocortical (bracket, A-D)
and corticofugal (asterisk, A-D) axons express VAMP2, whereas in TeNT-expressing mice, VAMP2 staining is specifically diminished
in thalamocortical axons (C, D, bracket). Scale bar, 500 um. E, F, Deletion of VAMP2 in thalamocortical axons results in the lack of
the characteristic pattern of RORB expression in the barrel field of primary somatosensory cortex at P8 (arrow), similar to the defect
found in Gbx2 mutant mice (Vue et al., 2013). G-J, Immunostaining for VAMP2 on frontal sections of prefrontal cortex at PO control
(G, H) and mutant mice with ectopic expression of TeNT in thalamic neurons (I, J). Similar to the somatosensory cortex, VAMP2
staining in thalamocortical axons is diminished in TeNT-expressing mice (I, J, bracket). Scale bar, 200 um. K, L, Expression of
Cyp26b1 in medial (arrowhead) and ventral PFC is intact in TeNT-expressing mice (L), similar to control (K), at P8. Scale bars: G, H,

I,J,200 um; E, F, K, L, 1 mm.

calbindin-expressing neurons in the adult cingulate cortex
(Luo et al., 2004), implicating a role of RA in early post-
natal brain development. However, the role of RA in PFC
development and the underlying cellular and molecular
mechanisms had remained unknown.

Our current study revealed that in postnatal PFC, a
significant subpopulation of PV interneurons are respon-
sive to RA via RAR/RXR receptors, and that the lack of the
RA-degrading enzyme CYP26B1 causes an increase in
the density of Pvalb-expressing cells in medial PFC at P14
and P21. This phenotype should be independent of the
proposed earlier roles of RA in tangential migration of
GABA neurons (Crandall et al., 2011) because (1) most
MGE-derived interneurons have completed the tangential
migration to the cortex by birth; (2) Cyp26b1 is expressed
only postnatally in the medial PFC and is not expressed in
embryonic MGE or LGE (Fig. 1M,N); (3) Syt6-Cre mice do
not cause recombination in MGE-derived interneurons
(Fig. 4A,B); and (4) in Syt6°™'*; Cyp26b17°¥/fox mice, the
expression of Cyp26b1 is not affected in regions outside
of the frontal cortex, including the ventral telencephalon
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(Fig. 4L-Q). In addition, the increased density of Pvalb-
positive neurons in deep layers of medial PFC was not
accompanied by their decrease in upper layers. This sug-
gests that the radial dispersion of PV neurons, which
follows their tangential migration, was also unaffected in
Cyp26b1 mutants.

In adult brains, Cyp26b1 mutants no longer showed a
significant increase in the density of Pvalb-positive neu-
rons in medial PFC (Fig. 5H). In addition, the total density
of MGE-derived interneurons marked by Lhx6 did not
show a significant change throughout postnatal develop-
ment. Thus, the most likely role of Cyp26b1 in the post-
natal development of PV neurons in the medial PFC is to
slow their rate of maturation by suppressing RA signaling.
It is known that neurotrophin (e.g., BDNF) signaling and
neuronal activity, likely mediated by NMDA receptors,
play a role in the postnatal development of PV neurons
(Huang et al., 1999; Itami et al., 2000; Patz et al., 2004;
Woo and Lu, 2006; Belforte et al., 2010). Further studies
are needed to investigate the relationship between these
pathways and RA signaling. It will also be informative to
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Figure 9. Schematic diagrams of the current finding. A-C, Embryonic roles of thalamocortical axons as observed in neonatal mice.
A, Thalamocortical axons reach the medial PFC (mPFC) by E16.5 and control migration of MGE-derived interneurons. B, In normal
neonatal mice, MGE-derived interneurons have largely completed tangential migration to the mPFC and have taken proper laminar
positioning by radial dispersion (arrows). C, In thalamus-specific Gbx2 mutant mice, radial positioning of MGE-derived interneurons
are aberrant, resulting in their accumulation in layer 6 and below. D-G, Postnatal roles of thalamus-PFC interactions and RA-
degrading enzyme CYP26B1 in the development of PV interneurons in the mPFC. D, Early postnatal mPFC is positioned between the
source of RA synthesis (layer 2, by ALDH1A3) and the RA-degrading “sink” (layer 6, by CYP26B1). The expression of both enzymes
is induced early postnatally, but only Cyp26b1 is dependent on the connections with the thalamus. The main cell population that
responds to RA in postnatal mPFC is PV interneurons, and their development is controlled by CYP26B1. E, In normal postnatal mice,
PV neurons mature and start to express Pvalb mRNA and PV protein mainly in deep layers of mPFC between P7 and P14. F, In
thalamus-specific Gbx2 mutant mice, Cyp26b1 is not induced in mPFC. The number of both Pvalb and Sst-expressing neurons is reduced
in the middle layers at least partly due to the earlier defects in radial dispersion (described in C). G, In frontal cortex-specific Cyp26b1 mutant

mice, lack of the RA sink in mPFC leads to an increased number of neurons that express Pvalb mRNA or PV protein in deep layers.

analyze various aspects of maturation of PV neurons
including intrinsic electrophysiological properties, forma-
tion of perineuronal nets, and changes in gene expression
(Okaty et al., 2009; Ueno et al., 2017).

Universal and area-specific roles of the thalamus in
neocortical development

Previous studies have indicated that thalamocortical
afferents instruct the establishment of area- and layer-
specific gene expression as well as morphologic differen-
tiation of excitatory neurons in primary visual and
somatosensory cortex (Chou et al., 2013; Li et al., 2013;
Vue et al., 2013; Moreno-Juan et al., 2017), and that some
of the effects are dependent on the release of neurotrans-
mitters from thalamocortical axons (Li et al., 2013). In
addition to excitatory neurons, both SST and PV interneu-
rons also depend on thalamic afferents for their matura-
tion, likely via glutamatergic synaptic transmission
(Sugiyama et al., 2008; Marques-Smith et al., 2016; Tunc-
demir et al., 2016). In somatosensory, visual, and motor
areas, thalamic afferents also control the radial position-
ing of MGE-derived interneurons before birth (Zechel
et al.,, 2016). Are these roles universal throughout the
cortex or is there area-specific regulation of cortical de-
velopment by the thalamus? Due to the diverse patterns
of gene expression (Jones, 2007; Nagalski et al., 2016;
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Phillips et al., 2018) and axon projections (Clasca et al.,
2012) among different thalamic nuclei and the early re-
gional specification of the cortex before the arrival of
thalamic axons (Rash and Grove, 2006; O’Leary et al.,
2007; Hoch et al., 2009), it is expected that the nature of
interactions with the thalamus varies among different cor-
tical areas.

In fact, the expression of RORB and Lmo4, which
showed abnormal patterns in primary sensory cortex in
the absence of thalamic input (Vue et al., 2013), was not
impaired in the medial PFC (Fig. 6G-J). Instead, our cur-
rent study has revealed a frontal cortex-specific regulation
of Cyp26b1 by the thalamus at early postnatal stages.
Interestingly, our TeNT model, in which the transmitter
release from thalamocortical axons was blocked, was
insufficient for recreating the loss of Cyp26b1 seen in the
anatomic deficiency of thalamocortical connectivity.
Therefore, the role of the thalamus in inducing Cyp26b1
expression in medial PFC neurons is likely independent of
transmitter release that involves VAMP2 functions.

The current study also revealed an early role of the
thalamus in regulating the radial positioning of MGE-
derived interneurons in neonatal PFC. The altered posi-
tioning of interneurons was similar to the phenotype seen
in sensory and motor areas lacking the thalamic input
(Zechel et al., 2016). This indicates that the early role of
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the thalamus in controlling the radial positions of cortical
interneurons is shared between many neocortical areas
(Fig. 9A-C). Importantly, abnormal radial distribution of
cortical interneurons was also found in Lhx6 mutant mice
(Liodis et al., 2007), which suggests that the tangential-
to-radial switch of interneuron migration in the cortex
requires coordination of intrinsic and extrinsic signaling
mechanisms during embryonic development.

It is intriguing that in postnatal Gbx2 mutant mice, even
in the absence of normal induction of Cyp26b17 in medial
PFC, the density of Pvalb-expressing neurons was de-
creased, not increased, unlike in Cyp26b1 mutants. This
suggests that the thalamus plays additional roles, includ-
ing the cell survival, in postnatal development of PV neu-
rons other than by inducing Cyp26b1. This possibility is
supported by our finding that there is an increased num-
ber of cleaved caspase 3-positive, LHX6-expressing cells
in Gbx2 mutants at P8. It will be important to determine
whether other known roles of the thalamus in postnatal
regulation of the development of PV neurons in sensory
cortex (Sugiyama et al., 2008; Marques-Smith et al., 2016;
Tuncdemir et al., 2016) also apply to the PFC.

Functional implications of altered PV neuron
development in Cyp26b1 mutant mice

At the systems level, RA regulates cortical synchrony
during sleep (Maret et al., 2005), memory, and cognitive
behaviors (Chiang et al., 1998; Aoto et al., 2008; Nomoto
et al., 2012). In addition, aberrant RA signaling is associ-
ated with multiple psychiatric disorders including schizo-
phrenia, bipolar disorder, and depression in humans
(Goodman, 1998; Bremner et al., 2012; Haybaeck et al.,
2015; Qi et al., 2015). Thus, understanding how RA func-
tions in early postnatal brain development is important for
determining the long-term consequences of the perturba-
tions of this signaling pathway. Our results suggest that
RA promotes postnatal development of PV neurons in
medial PFC. PV neurons orchestrate activity in local cir-
cuits, which leads to synchronous network activity in the
gamma band (Cardin et al., 2009; Sohal et al., 2009).
Synchronous gamma-band activity in medial PFC is as-
sociated with the successful operation of working mem-
ory. In a mouse genetic model of schizophrenia that
replicates the human 22g11.2 microdeletion syndrome
(Karayiorgou et al., 1995), gamma synchrony and working
memory performance were impaired (Sigurdsson et al.,
2010), so was the development of PV interneurons
(Meechan et al., 2012, 2015; Fénelon et al., 2013; Torit-
suka et al., 2013). These findings link PV interneuron
abnormalities to changes in prefrontal synchrony and
working memory impairment in mouse models of neuro-
psychiatric disorders. Mutation of CYP26B1 in humans is
a risk factor for schizophrenia that reaches genome-wide
significance (Mistry et al., 2013; Schizophrenia Working
Group of the Psychiatric Genomics Consortium, 2014).
Therefore, it will be interesting to test whether the aber-
rant timecourse of PV neuron development in medial PFC
causes altered synchrony and impairment of cognitive
behaviors in Cyp26b1 mutant mice.
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