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Abstract

The use of molecular data for species delimitation in Anthozoa is still a very delicate issue. This is probably due to the low
genetic variation found among the molecular markers (primarily mitochondrial) commonly used for Anthozoa. Ceriantharia
is an anthozoan group that has not been tested for genetic divergence at the species level. Recently, all three Atlantic
species described for the genus Isarachnanthus of Atlantic Ocean, were deemed synonyms based on morphological
simmilarities of only one species: Isarachnanthus maderensis. Here, we aimed to verify whether genetic relationships (using
COI, 16S, ITS1 and ITS2 molecular markers) confirmed morphological affinities among members of Isarachnanthus from
different regions across the Atlantic Ocean. Results from four DNA markers were completely congruent and revealed that
two different species exist in the Atlantic Ocean. The low identification success and substantial overlap between intra and
interspecific COI distances render the Anthozoa unsuitable for DNA barcoding, which is not true for Ceriantharia. In
addition, genetic divergence within and between Ceriantharia species is more similar to that found in Medusozoa (Hydrozoa
and Scyphozoa) than Anthozoa and Porifera that have divergence rates similar to typical metazoans. The two genetic
species could also be separated based on micromorphological characteristics of their cnidomes. Using a specimen of
Isarachnanthus bandanensis from Pacific Ocean as an outgroup, it was possible to estimate the minimum date of divergence
between the clades. The cladogenesis event that formed the species of the Atlantic Ocean is estimated to have occured
around 8.5 million years ago (Miocene) and several possible speciation scenarios are discussed.
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Introduction

In addition to morphological and/or ecological descriptions,

genetic diversity within geographically separated populations can

provide useful information to identify Cnidarian species e.g. [1];

[2]; [3]; [4]. Genetic studies on cnidarian populations reveals not

only cryptic species, but also provides information on the processes

and scenarios that could have led to speciation in the marine

environment e.g., [5]; [6]; [7] and illustrate how past oceano-

graphic and geological events have shaped current distributional

patterns of marine biodiversity e.g., [8]; [9]. The existence of

cryptic species and unknown dynamics on geological timescales

often hamper such phylogeographic studies.

Isarachnanthus Carlgren, 1924 is a genus of tube forming

anemones within the order Ceriantharia [10] that extend their

tentacles only during the night [8]. Among anthozoans, Cer-

iantharia is a clade whose taxonomic status is currently debated; it

is sometimes placed among clades of the Hexacorallia [11] and

sometimes deemed an ancestral clade of all other Anthozoa clades

[12]. Unlike many classic anthozoan taxa, Ceriantharia species

have larvae with a long planktonic life stage which led earlier

researchers to confuse them with jellyfishes, i.e., Medusozoa [13].

This long pelagic life stage or pelagic larval duration (PLD)

provides Isarachnanthus species with a high dispersal potential

with possible consequences for cladogenesis within this taxon [14].

The length of species’ PLD has been related to speciation patterns

in other marine organisms [15]; [16]; [17].

Currently, the genus Isarachnanthus globally consists of three

species [18]; [10], [19]. For the Pacific region two species were

described and accepted as valid, Isarachnanthus bandanensis

(Carlgren, 1924) and Isarachnanthus panamensis (Carlgren, 1924).

Three species were originally described for the Atlantic Ocean,

Isarachnanthus maderensis (Johnson, 1861) from Madeira Island

(32u389500N 16u509510W), Isarachnanthus nocturnus (den Har-

tog, 1977) from Curaçao (Caribbean Sea –12u079490N

68u589070W) and Isarachnanthus cruzi (Brito, 1986) from the

Canary Islands (27u51920N 15u239430W). However, a morpho-

logical comparison of these three Atlantic species recently
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indicated no apparent differences between specimens collected

from the Caribbean Sea, Canary Islands and Madeira Island [19].

Consequently, these Atlantic species were considered synonyms of

Isarachnanthus maderensis.

The status of Ceriantharia species, as well as species statuses in

other cnidarian taxa, is often debated; a situation that even

worsened when molecular studies indicated that cryptic species are

common in Cnidaria e.g. [1]. Nevertheless, molecular markers

have been successfully used to define and delimitate species,

especially in genera in which species share similar morphologies or

when convergent evolution has caused geographically separated

species to develop similar morphological characteristics e.g. [20];

[21]. The most widely used molecular marker Cytochrome

Oxidase I (DNA barcoding) generally shows an extremely low

rate of divergence between closely related anthozoan species of the

same genus [22]: see more in [23].

Based on a morphological and genetic comparison of

Isarachnanthus species collected from Atlantic and Pacific Ocean

we aimed, for the first time, to review the status of the genus

Isarachnanthus in Atlantic Ocean and discuss the most likely

evolutionary scenarios underlying speciation in this genus as a

latter input, the new genetic data would enhance the discussion

about the systematic position of the group.

Results

Systematics
Morphological differences among species. There are no

external or internal macromorphological differences between

Isarachnanthus specimens collected from the Caribbean, Brazilian

coast and Northeast Atlantic (Madeira) as previously reported by

[19]. Tentacles and mesenterial arrangement, coloration pattern,

siphonoglyph and mesenteries form are similar among these

specimens. The cnidome contained more than thirty kinds of

cnidae, and only four types could be used to significantly

distinguish between presumed species (Table 1– types with *)

and for which size (expressed as length and width) could be used to

significantly distinguish among species (Table 2). Furthermore, six

different types of cnidae (Table 1– types with #) were unique for

certain species, five types were exclusively found in Isarachnanthus

maderensis and one type in Isarachnanthus nocturnus. The

micromorphological analysis of the species’ cnidomes allows a

partial distinction of specimens from Brazil, Caribbean Sea and

Madeira Island, however it is not obvious without molecular data

(Table 1). The length of several cnida types of specimens from

different areas and different species overlapped and provided no

resolution to distinguish among species (see Figures 1 and 2). The

specimen of Isarachnanthus bandanensis from French Polynesia

(Pacific) showed four series of labial tentacles, whereas the two

Caribbean species I. maderensis and I. nocturnus have only one

series. We had no access to specimens of I. panamensis from the

Pacific, so this species is not further considered in this study.

Molecular Classification
Maximum Likelihood, Neighbor Joining, Bayesian Inference

and Maximum Parsimony analyzes of the genus Isarachnanthus

from Atlantic waters based on the genetic data from molecular

markers 16S, COI, ITS 1 and 2 revealed two distinct but cohesive

clades with high support values (Figures 1 and 2). One clade

(named Isarachnanthus nocturnus - blue) is confined to the west

coast of the Atlantic (Brazilian coastal waters and Caribbean Sea).

The other clade (named Isarachnanthus maderensis - green)

occurs on both sides of the Atlantic (Madeira Island, Rocas Atoll

and Caribbean Sea). Therefore, two distinctive clades occur in the

Atlantic Ocean that overlap in the Caribbean region. A sample

from French Polynesia (Isarachnanthus bandanensis) was used to

estimate the minimum time of divergence between the studied

clades (Figure 3).

In contrast to the commonly observed low interspecific genetic

variation found in other Anthozoa [24], Ceriantharia show

significant genetic separation among closely related, i.e., morpho-

logically similar species using standard genetic markers. The

estimated divergence between I. maderensis and I. nocturnus is

18% for ITS-1; 27% for ITS-2, 9% for COI and 6% for 16S.

Variation within each species for the same markers was always less

than 1%.

Molecular Clock and Historical Context
The speciation event that separated I. nocturnus and I.

bandanensis, occurred later than the speciation event that

separated the I. maderensis and the I. nocturnus + I. bandanensis

clade (Figure 3). The separation of the Atlantic I. maderensis and

Caribbean I. nocturnus + Pacific I. bandanensis clade therefore

likely coincided with geological events that caused gene-flow

between the two regions to stop, such as, for example, the closure

of the Isthmus of Panama that occurred 64.5 mya (see material

and methods section).

The isolated analysis of mitochondrial marker, 16S, showed an

unlike differentiation time between the species than nuclear

markers ITS1 and ITS2 (see material and methods section). An

analysis with concatenated markers was therefore applied to

present a more conservative pattern. Assuming that the concat-

enated analysis represents all nucleotide diversity of molecular

markers used in this section see more in [25], we decided to use

this result as our working hypothesis. Based on the results of

concatenated analyzes, the speciation period between Isarach-

nanthus maderensis and I. nocturnus + I. bandanensis occured 9

to 8 mya (Figure 3).

The rate of divergence of the COI in Cnidaria is estimated at

1% per million year [26]. When this rate was applied to the data

from this study, we find a speciation period around 9 mya between

Isarachnanthus maderensis and I. nocturnus + I. bandanensis.

That is, using an independent manner of the dating also shows the

same pattern/scale found in the above tests.

Discussion

Systematics
Based on our micromorphological (cnidae) and molecular

results, we conclude that there are two different Isarachnanthus

species in the Atlantic Ocean. However, the distribution of both

species overlaps in the Caribbean region. Variations in the cnida

size is a very complicated character to be used as an conclusive

diagnostic characteristic to identify species in some Anthozoa see

[27] including Isarachnanthus (this study), though the presence and

absence of some cnida types could potentially be used as a

taxonomic character in Ceriantharia see Table 2 in [28].

The genetic divergence found among the studied species

corresponds with that observed in certain Medusozoa species

[29], but differs considerably from patterns generally observed in

Anthozoa [30]. Up to now the analysis of genetic divergence found

among species/genera of several Anthozoa groups (mainly using

the molecular markers COI and 16S) are hardly successful to

discern among presumed lineages and morphologically defined

species. The data we obtained from Ceriantharia’s specimens

analyzed in our study differs from this pattern commonly observed

in anthozoans, mostly due to the larger genetic distances between

species in the different taxa. Anthozoans are considered one of the
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iã

o
,

B
ra

z
il

)

M
A

R
G

IN
A

L
T

E
N

T
A

C
L

E
S

A
tr

ic
h

5
4

.3
6

(5
1

–
5

7
)6

7
.2

6
(6

–
7

.2
6

)
5

1
.4

8
(4

9
.2

–
5

4
.6

)6
8

.8
2

(8
.4

–
9

.6
)

6
5

.4
3

(6
1

.8
–

7
3

.8
)6

9
.7

2
(9

–
1

0
.8

)
4

8
.1

2
(4

6
.8

–
4

9
.2

)6
8

.3
4

(7
.2

–
9

)

M
ic

ro
b

.
B

-m
as

ti
g

o
p

h
o

re
1

*
1

4
.2

2
(1

2
–

1
6

.2
)6

3
.5

4
(3

–
3

.6
)

1
5

.3
(1

3
.2

–
1

8
)6

5
.0

4
(4

.8
–

5
.4

)
1

8
.6

6
(1

8
–

2
1

)6
4

.6
2

(3
.6

–
4

.8
)

1
9

.0
2

(1
8

–
2

1
)6

6
.1

2
(6

–
6

.6
)

M
ic

ro
b

.
B

-m
as

ti
g

o
p

h
o

re
2

1
0

4
.8

8
(1

0
0

.8
–

1
1

4
)6

2
5

.5
(2

4
–

2
8

.8
)

1
0

1
.9

7
(9

6
–

1
0

8
)6

2
6

.5
2

(2
1

–
3

0
)

1
1

2
.0

2
(1

0
7

.4
–

1
1

6
.4

)6
2

6
.7

9
(2

5
.2

–
2

7
.6

)
–

M
ic

ro
b

.
B

-m
as

ti
g

o
p

h
o

re
2

5
3

.6
4

(5
0

.4
–

5
9

.4
)6

7
.3

8
(7

.2
–

7
.8

)
4

9
.5

6
(4

3
.8

–
5

4
.6

)6
5

.8
2

(5
.4

–
6

)
6

8
.3

4
(6

3
–

7
2

)6
6

.6
6

(6
–

7
.8

)
6

1
.5

(5
7

–
6

6
)6

9
.0

6
(8

.4
–

9
.6

)

M
ic

ro
b

.
P

-m
as

ti
g

o
p

h
o

re
3

7
.9

8
(3

6
–

4
2

)6
4

.4
4

(4
.2

–
5

.4
)

3
5

.9
4

(3
1

.2
–

4
2

)6
4

.2
(4

.2
)

4
4

.5
8

(4
3

.2
–

4
6

.8
)6

5
.6

4
(5

.4
–

6
)

3
7

.9
2

(3
6

–
3

9
)
6

6
.1

8
(5

.4
–

7
.8

)

M
ic

ro
b

.
P

-m
as

ti
g

o
p

h
o

re
–

–
–

2
1

.7
2

(2
1

–
2

2
.8

)
6

3
.6

(3
.6

)

L
A

B
IA

L
T

E
N

T
A

C
L

E
S

A
tr

ic
h

4
8

.6
(4

3
.2

–
5

4
)
6

7
.1

4
(6

.6
–

7
.8

)
4

6
.3

8
(4

0
.8

–
5

2
.8

)
6

8
.7

(7
.2

–
9

)
6

0
.3

3
(5

2
.8

–
6

4
.8

)
6

8
.4

(7
.2

–
9

)
3

2
.3

4
(2

8
.8

–
3

6
)
6

6
.1

8
(6

–
6

.6
)

M
ic

ro
b

.
B

-m
as

ti
g

o
p

h
o

re
1

*
3

7
.0

8
(3

6
–

3
8

.4
)
6

5
.5

2
(5

.4
–

6
)

4
9

.9
8

(4
2

–
5

4
)
6

7
.2

(6
–

8
.4

)
1

8
.1

8
(1

6
.8

–
2

1
)
6

4
.6

2
(3

.6
–

4
.8

)
1

3
.4

4
(1

2
.6

–
1

5
.6

)
6

3
.6

(3
.6

)

M
ic

ro
b

.
B

-m
as

ti
g

o
p

h
o

re
2

7
5

.0
9

(7
2

–
7

9
.2

)
6

1
5

.2
7

(1
3

.8
–

1
6

.2
)

1
0

0
.0

8
(9

2
.4

–
1

0
8

)
6

2
4

.1
8

(2
1

–
2

7
.6

)
8

5
.7

1
(8

1
–

9
1

.2
)
6

1
5

.4
5

(1
5

–
1

6
.2

)
6

2
.9

4
(5

7
–

6
6

)
6

9
(8

.4
–

9
.6

)

M
ic

ro
b

.
B

-m
as

ti
g

o
p

h
o

re
2

5
3

.5
8

(4
8

–
5

9
.4

)
6

8
.5

2
(7

.2
–

9
.6

)
7

4
.2

8
(6

9
–

7
8

.6
)
6

1
4

.6
4

(1
4

.4
–

1
5

)
6

9
.9

6
(6

7
.8

–
7

5
)
6

1
1

.0
4

(1
0

.2
–

1
1

.4
)

2
7

.9
(2

7
–

3
0

)
6

6
.4

8
(6

–
6

.6
)

M
ic

ro
b

.
P

-m
as

ti
g

o
p

h
o

re
3

3
.6

6
(3

0
–

3
8

.4
)
6

5
.6

4
(5

.4
–

6
)

3
2

.8
2

(3
0

–
3

5
.4

)
6

4
.3

8
(4

.2
–

4
.8

)
4

1
.1

3
(3

6
–

4
6

.8
)
6

5
.4

(5
.4

)
2

2
.5

(2
0

.4
–

2
4

)
6

3
.4

2
(3

–
3

.6
)

S
T

O
M

O
D

E
U

M

A
tr

ic
h

4
8

.1
2

(4
3

.2
–

5
2

.8
)
6

7
.0

8
(6

.6
–

7
.8

)
5

9
.8

8
(5

1
–

6
9

.6
)
6

9
.5

4
(9

–
9

.6
)

7
7

.4
6

(6
6

–
8

5
.2

)
6

9
.1

2
(7

.2
–

9
.6

)
4

1
.7

6
(3

9
–

4
7

.4
)
6

7
.3

2
(6

.6
–

8
.4

)

M
ic

ro
b

.
B

-m
as

ti
g

o
p

h
o

re
1

3
8

.1
6

(3
6

–
4

0
.8

)
6

5
.7

6
(5

.4
–

6
.6

)
2

1
.4

8
(2

0
.4

–
2

2
.8

)
6

4
.2

(4
.2

)
4

4
.8

2
(4

1
.4

–
4

8
.6

)
6

6
.5

4
(6

–
6

.6
)

2
2

.0
2

(2
1

–
2

3
.4

)
6

6
.8

4
(6

.6
–

7
.2

)

M
ic

ro
b

.
B

-m
as

ti
g

o
p

h
o

re
2

7
4

.5
2

(7
3

.4
–

7
8

)
6

1
5

.3
(1

5
–

1
5

.6
)

6
7

.0
2

(6
3

–
7

5
)
6

1
4

.9
4

(1
4

.4
–

1
5

.6
)

8
1

.2
4

(7
8

–
8

7
)
6

1
6

.5
(1

5
.6

–
1

8
)

5
9

.7
(5

7
–

6
3

)
6

9
.6

6
(9

–
1

0
.8

)

M
ic

ro
b

.
B

-m
as

ti
g

o
p

h
o

re
2

#
5

3
.6

4
(4

9
.2

–
5

9
.4

)
6

8
.5

2
(7

.2
–

9
.6

)
5

0
.5

2
(4

8
–

5
4

)
6

9
.1

8
(8

.4
–

9
.6

)
–

–

M
ic

ro
b

.
P

-m
as

ti
g

o
p

h
o

re
3

3
.8

4
(3

1
.2

–
3

8
.4

)
6

5
.5

8
(4

.8
–

6
)

3
6

.7
2

(3
3

–
3

9
.6

)
6

7
.0

8
(6

.6
–

7
.2

)
6

3
.9

6
(5

7
–

7
0

.8
)
6

1
1

.6
4

(1
0

.2
–

1
2

.6
)

2
3

.4
(2

1
.6

–
2

4
.6

)
6

3
.6

(3
.6

)

C
O

L
U

M
N

A
tr

ic
h

a
–

4
6

.0
2

(4
3

.2
–

5
1

.6
)
6

1
5

.8
4

(1
4

.4
–

1
8

)
6

2
.8

8
(5

7
–

6
9

)
6

8
.7

(8
.4

–
9

)
4

2
.9

(3
6

–
4

8
)
6

7
.8

6
(6

.6
–

8
.4

)

A
tr

ic
h

b
*

3
7

.8
6

(3
6

–
4

0
.8

)
6

6
.1

8
(5

.4
–

7
.2

)
3

1
.4

4
(2

8
.8

–
3

1
.4

4
)
6

6
.9

6
(6

.6
–

7
.2

)
2

8
.9

2
(2

1
–

3
3

)
6

6
.7

5
(6

–
7

.8
)

2
2

.6
2

(2
1

–
3

0
)
6

5
.7

(5
.4

–
6

)

P
ti

co
cy

st
s

4
4

.9
7

(3
6

–
5

4
)
6

1
1

.2
5

(9
.6

–
1

2
.6

)
6

7
.3

8
(6

3
–

6
9

.6
)
6

1
4

.1
6

(1
3

.2
–

1
5

)
8

5
.9

5
(8

1
.6

–
9

3
)
6

1
8

.3
(1

7
.4

–
1

9
.8

)
4

3
.1

4
(3

6
–

4
8

)
6

1
2

.1
8

(9
.6

–
1

3
.2

)

M
ic

ro
b

.
B

-m
as

ti
g

o
p

h
o

re
1

2
2

.8
(2

0
.4

–
2

5
.2

)
6

5
.8

2
(5

.4
–

6
.6

)
2

2
.2

6
(1

8
–

2
4

)
6

5
.8

2
(5

.4
–

6
)

3
0

.1
8

(2
7

.6
–

3
3

.6
)
6

8
.1

3
(7

.2
–

9
)

2
1

.8
4

(1
9

.2
–

2
5

.2
)
6

6
.0

6
(6

–
6

.6
)

M
ic

ro
b

.
B

-m
as

ti
g

o
p

h
o

re
2

8
9

.0
4

(8
4

–
9

6
)
6

2
2

.0
2

(1
9

.2
–

2
4

)
8

9
.4

6
(8

6
.4

–
9

6
)
6

1
4

.0
4

(1
3

.2
–

1
5

)
7

1
.2

8
(6

9
–

7
5

.6
)
6

9
.2

4
(9

–
9

.6
)

4
8

.3
(3

9
–

5
4

)
6

8
.8

8
(7

.8
–

9
)

M
ic

ro
b

.
B

-m
as

ti
g

o
p

h
o

re
2

#
7

8
.4

2
(7

2
–

8
1

)
6

1
4

.1
6

(1
2

–
1

5
.6

)
6

6
.7

2
(5

7
–

7
2

.6
)
6

1
1

.7
6

(1
0

.8
–

1
2

.6
)

–
–

M
ic

ro
b

.
P

-m
as

ti
g

o
p

h
o

re
#

2
2

.8
(2

0
.4

–
2

5
.2

)
6

5
.8

2
(5

.4
–

6
.6

)
2

3
.1

(2
2

.2
–

2
4

)
6

7
.5

(7
.2

–
7

.8
)

–
–

M
-M

E
S

E
N

T
E

R
IE

S
(D

O
U

B
L

E
C

O
R

D
)

A
tr

ic
h

3
6

.2
4

(3
1

.2
–

4
2

)
6

6
.0

6
(6

–
6

.6
)

4
9

.3
2

(4
5

.6
–

5
5

.2
)
6

9
.0

6
(8

.4
–

9
.6

)
6

3
.6

(5
7

–
7

2
)
6

9
.6

9
(9

.6
–

1
0

.2
)

4
2

.7
8

(3
9

–
4

5
.6

)
6

8
.4

(7
.8

–
9

)

M
ic

ro
b

.
B

-m
as

ti
g

o
p

h
o

re
1

#
–

–
2

3
.2

8
(1

9
.2

–
2

6
.4

)
6

5
.9

4
(5

.4
–

6
)

2
2

.6
2

(2
1

–
2

4
.6

)
6

8
.2

8
(7

.2
–

9
.6

)

M
ic

ro
b

.
B

-m
as

ti
g

o
p

h
o

re
2

#
8

7
.0

6
(8

3
.4

–
9

2
.4

)
6

2
3

.8
2

(2
1

.6
–

2
7

)
6

9
(6

6
–

7
1

.4
)
6

1
4

.4
(1

3
.8

–
1

5
)

–
–

M
ic

ro
b

.
B

-m
as

ti
g

o
p

h
o

re
2

7
7

.9
4

(7
2

–
8

4
)
6

1
4

.0
4

(1
2

.6
–

1
6

.2
)

5
8

.9
8

(5
7

–
6

1
.2

)
6

9
.6

6
(9

–
1

0
.2

)
7

5
.8

4
(7

2
–

7
8

.6
)
6

1
5

.6
(1

5
–

1
7

.4
)

4
6

.1
4

(4
2

–
4

8
.6

)
6

8
.9

4
(8

.4
–

9
)

M
ic

ro
b

.
B

-m
as

ti
g

o
p

h
o

re
2

1
8

.6
(1

6
.8

–
2

1
)6

6
.9

(6
.6

–
7

.8
)

–
–

–

M
ic

ro
b

.
P

-m
as

ti
g

o
p

h
o

re
4

0
.1

4
(3

7
.2

–
4

2
.6

)6
6

.1
8

(6
–

6
.6

)
3

2
.2

4
(2

8
.8

–
3

4
.8

)
6

4
.8

6
(4

.8
–

5
.4

)
3

7
.8

6
(3

5
.4

–
3

9
.6

)
6

6
(6

)
3

9
.5

4
(3

6
–

4
5

)
6

6
.3

6
(6

–
7

.2
)

Diversification of Banded Tube-Dwelling Anemones

PLoS ONE | www.plosone.org 3 July 2012 | Volume 7 | Issue 7 | e41091



metazoans with lowest rate of mitochondrial evolution, i.e., more

than 100 times slower than in most other marine invertebrates

[31]. These results call our attention to ressurrect the discussion on

the systematic position of Ceriantharia as an independent lineage

from traditional Anthozoans groups. Slow mitochondrial diver-

gence were considered as a shared characteristic of basal metazoan

and cnidarian groups [32] and rates of mitochondrial genome

evolution were used to argue for cnidarian relationships and

patterns of evolution. For example, mitochondrial genetic

divergence was presented as evidence to suggest that the

Medusozoa clade is a cnidarian ‘‘derived group’’. New medu-

sozoan mitochondrial genomes had been published [33] [2] and

their results sustain these general evolutionary profile, even

considering the mitochondrial linear genomic arquitecture in

medusozoans [34]. Previous results present Ceriantharia possibly

as sister group of all other anthozoans [12]; [35] and our

observations support this hypothetic phylogenetic position.

While the morphological differences between Isarachnanthus

maderensis and Isarachnanthus nocturnus were subtle and only

observable after detailed microscopic analyses, a molecular

approach successfully supported the distinction of two Atlantic

species. This suggests that ecological traits (e.g. physiology, life

cycle, substrate preference) rather than morphological character-

istics could drive speciation in this genus. Based on our results and

[13], Isarachnanthus nocturnus shows a large latitudinal distribution in

comparison with Isarachnanthus maderensis. The environmental

conditions presented in the coast of southeastern Brazil to

northern Argentina are different (e.g. temperature, water turbidity)

from those found in the areas of the Caribbean Islands and

Northeast Atlantic (Madeira) [36]; [37]. From this perspective, I.

nocturnus occurs across a larger gradient of environmental

conditions than I. maderensis thus potentially reflecting its wider

tolerance or adaptability to varying environmental conditions.

Distribution of the Species
The species Isarachnanthus maderensis has a distribution restricted

to the part of the North Atlantic that is subjected to the

Subtropical Gyre (Gulf Stream, North Equatorial Current):

Madeira Island (also the type locality) and the Caribbean Sea,

but also to Rocas Atoll (off northeast Brazil) which is under the

influence of the South Equatorial Current [38]. The South

Equatorial Current meets the Brazil Current (around latitude 6u
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Table 2. Mann-Whitney test comparing the measurements
(length and width) of cnidae (* in Table 1) between the
species Isarachnanthus maderensis and Isarachnanthus
nocturnus. Since p-value smaller than 0,05 infers that samples
are different.

Cnidae Body part Measure P-value

Microbasic Marginal tentacle length ,0.0001

B-mastigophore 1 width ,0.0001

Labial tentacle length ,0.0001

width ,0.0001

Atrich Column length ,0.0001

width 0.006

Acontiods length ,0.0001

width ,0.0001

Since p-value smaller than 0,05 infers that samples are different.
doi:10.1371/journal.pone.0041091.t002
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and 10u S) [39], but no individuals of Isarachnanthus maderensis were

found in Brazilian coastal waters. The area under the influence of

the Brazil Current was only inhabited by individuals of

Isarachnanthus nocturnus. Therefore, two possibilities exist that

explain the occurrence of Isarachnanthus maderensis in Rocas Atoll.

The first is that the Rocas Atoll sometimes comes under the

influence of the North Equatorial Current as evidenced by the fact

that European garbage was found in the region of the Rocas Atoll

[40]. The second explanation involves physiological or ecological

restrictions to the species, which prevent it to inhabit the coastal

regions of Brazil.

Figure 2. Phylogenetic reconstructions (Maximum likelihood) of the analyzed specimens of Isarachnanthus using the nuclear
markers ITS1 and ITS2. Number on the branches represent the estimated values of maximum likelihood (ML), maximum parsimony (MP), neighbor
joining (NJ) and Bayesian inference (BI), respectively.
doi:10.1371/journal.pone.0041091.g002

Figure 1. Phylogenetic reconstructions (Maximum likelihood) of the analyzed specimens of Isarachnanthus using the mitochondrial
markers 16s and COI. Number on the branches represent the estimated values of maximum likelihood (ML), maximum parsimony (MP), neighbor
joining (NJ) and Bayesian inference (BI), respectively.
doi:10.1371/journal.pone.0041091.g001
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Tempo and Spatial Dynamics of Ceriantharia Speciation
(Molecular Clock)

The minimum age for the divergence between the Isarachnanthus

maderensis and Isarachnanthus nocturnus + Isarachnanthus bandanensis

clades is estimated to have occurred around 8.5 million years ago,

i.e., the late Miocene (Tortonian Period). For this time period two

possible speciation scenarios can be proposed. The first scenario

would have occurred by subsequent peripatric and allopatric

speciation events (Figure 4). During the Tortonian period an

internal seaway formed between the Caribbean Sea and the

Southwest Atlantic [41–42] (Figure 4 - I). The existence of this

internal sea connection in the middle of the South American

continent during the Late or Middle Miocene (Figure 4) has been

accepted by many authors [41–42]. Some authors estimated that

the Atlantic Ocean moved over the South America continent

about 11 to 9 million years ago which is supported by both

geological [43] and biological/paleontological data [44], but see:

[45]. The seaway could have allowed the ancestral species to enter

the southwest Atlantic (Figure 4 - II). After the seaway closed, one

population became restricted to what is now northern Argentina,

Uruguay and southern Brazil (Figure 4 - III). The other population

remained in the tropical Atlantic. These populations remained

isolated for a long time, probably during all Messinian period [46]

after which the southern population moved back to the equatorial

zone by longshore current or drift see more in [47] and [48]

(Figure 4 - IV). However this possibility could only have taken

place after the great ice age during the late Tortonian and

Messinian [49]. During this period, a large reduction in sea level

caused a major change in ocean currents, including a large

ascending current of the southern Argentina to present Caribbean

Sea [50]. Apparently this distribution expansion occurred just

before the closing of the Isthmus of Panama which segregated the

coastal South American species, resulting in the species currently

recognized, Isarachnanthus nocturnus (Atlantic) and Isarachnanthus

bandanensis (Pacific) (Figure 4 - V). Here, we assumed that

Isarachnanthus maderensis originated during the first speciation event

(Figure 4 - III) and was already present in the Caribbean Sea

region during the second speciation event (Figure 4 - V).

The second scenario could have occurred by subsequent events

of allopatric and sympatric speciation (Figure 5). In this hypothesis

the first speciation event occurred through sympatric speciation

[51] (Figure 5 - II). One of the species formed during this

speciation may have been able to expand its distribution to coastal

environments in the southwest Atlantic Ocean and the Pacific

Figure 3. Analysis of maximum likelihood with estimation of relaxed molecular clock dating the node Isarachnanthus bandanensis X
Isarachnanthus nocturnus with the closure of Isthmus of Panama. Note that each bar represents a marker used in the analysis and the last with
three concatenated markers. Myr – Millions of years. A – The ancestral species of I. bandanensis + I. maderensis + I. nocturnus; B – Isarachnanthus
maderensis; C – The ancestral species of I. bandanensis + I. nocturnus; D – Isarachnanthus nocturnus and E – Isarachnanthus bandanensis.
doi:10.1371/journal.pone.0041091.g003

Figure 4. Possible scenario to explain the recent distribution of Isarachnanthus species and the patterns of species differentiation.
Scenario 1– The hypothesis of peripatric and allopatric speciation through the intracontinental seaway. I – scenario around 16 myr before today; II –
scenario around 11 myr before today; III – scenario around 8 myr before today; IV – scenario around 6 myr before today and V – currently scenario. A
– The ancestral species of I. bandanensis + I. maderensis + I. nocturnus; B – Isarachnanthus maderensis; C – The ancestral species of I. bandanensis + I.
nocturnus; D – Isarachnanthus nocturnus and E – Isarachnanthus bandanensis.
doi:10.1371/journal.pone.0041091.g004
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Ocean (Figure 5 - III). This pattern of two species was then broken

up during the closure of the Isthmus of Panama, resulting in

allopatric speciation and the distribution of species as they were

found in this study (Figure 5 - IV).

The two scenarios mentioned above are both plausible and

difficult to prove. Marine species can originate through allopatric

divergence, where new species arise from geographically isolated

populations of one ancestral species [52]; [53]. The first scenario is

interesting given that the proposed period during which speciation

occurred coincides with a debated geological event [28].

Meanwhile explaining the absence of the ancestral species (A) in

the Pacific Ocean region is difficult. The obstacle of the second

scenario is to understand the first speciation event, sympatric

(ARB+C). Sympatric/ecological speciation has become more

accepted in recent decades, however in general it remains difficult

to conclusively prove that sister species have speciated through

sympatric processes alone [54–55].

The use of DNA barcode (COI) in Anthozoa was tested in

Ceriantharia. Although not appropriate in other groups e.g. [24]

this tool is fully useful for identification of species of Ceriantharia,

mainly by the genetic distance observed. The mitochondrial DNA

barcode ‘‘approach’’ is often deemed unsuitable to study Anthozoa

due to the extremely low rate of mitochondrial divergence

between species. Our study advocates the use of morphological

characters in association with molecular data from both genomes,

in an integrative approach, to better understand and explain the

diversity patterns observed nowadays.

Figure 5. Possible scenario to explain the recent distribution of Isarachnanthus species and the patterns of species differentiation.
Scenario 2 - The hypothesis of sympatric and allopatric speciation. I – scenario around 16 myr before today; II – scenario around 11–8 myr before
today; III – scenario around 6 myr before today; IV – currently scenario. A – The ancestral species of I. bandanensis + I. maderensis + I. nocturnus; B –
Isarachnanthus maderensis; C – The ancestral species of I. bandanensis + I. nocturnus; D – Isarachnanthus nocturnus and E – Isarachnanthus
bandanensis.
doi:10.1371/journal.pone.0041091.g005
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Materials and Methods

Specimens Sampling
Specimens were sampled by SCUBA using a shovel in the areas

listed in Table 3. Each animal was directly preserved in Ethanol

95%. The molecular analyses were based on 25 individuals of

Isarachnanthus nocturnus, 13 of Isarachnanthus maderensis and one of

Isarachnanthus bandanensis. For the morphological study we used the

same individuals of the molecular analyses with the addition of 10

specimens of I. nocturnus and 6 specimens of I. maderensis. Specimens

from the type localities of each previously described species were

used in the molecular and morphological analysis.

All necessary permits were obtained for the described field

studies (sampling). Samples that occurred inside Environmental

Protected Areas of Brazil were covered by license SISBIO 10508.

Data Collection
Molecular study. DNA was extracted using InstaGene (Bio-

Rad) from single tentacles removed from the specimens. Genes

were amplified using the PCR technique, then PCR products

purified with AMPureH kit (AgencourtH). The PCR primers CB1

(forward - TCGACTGTTTACCAAAAACATA) and CB2 (re-

verse - ACGGAATGAACTCAAATCATGTAAG) [56] were

used to amplify part of the 16S gene (expected fragment of 435

to 681 bp), LCO1490 (GGTCAACAAATCATAAAGA-

TATTGG) and HCO2198 (TAAACTTCAGGGTGAC-

CAAAAAATCA) [57] to amplify part of the COI gene (expected

fragment of 670 to 804 bp) (mitochondrial markers, ribosomal and

protein coding genes respectively). Primers jfITS-5f

(GGTTTCCGTAGGTGAACCTGCGGAAGGATC) [1], and

CAS28sB1d (TTCTTTTCCTCCSCTTAYTRATATGCTTAA)

[58] were used to amplify the target fragment of the nuclear

ribosomal unit, including the complete Internal Transcriber

Spacer 1 (expected fragment of 121 to 129 bp), the 5.8S

Ribosomal Subunit and the Internal Transcriber Spacer 2

(expected fragment of 203 to 227 bp). Purified PCR’s products

were made ready to sequencing using the BigDyeH Terminator

v3.1 kit (Applied Biosystems), with the same primers and

temperature conditions of the PCR’s reactions. The sequencing

procedure was carried out on an ABI PRISMH3100 genetic

analyzer (Hitachi).

Data Analysis
DNA Analysis. Sequences were assembled and edited

(removing ambiguous base calls and primer sequences) using

GeneiousTM 5.4.4 [59]. The alignment in every molecular marker

were made using MUSCLE in default parameters [60]. New

sequences were submitted to GenBank (Table 3). Kimura’s two-

parameter model of base substitution was used to calculate genetic

distances in MEGA5 software [61]. The maximum likelihood

phylogenetic analysis was conducted via RAxML (500 replicates)

(random accelerated maximum likelihood analysis) with general

time reversible model and gamma rate heterogeneity

(GTR+GAMMA) [62]. Neighbor joining and maximum parsimo-

ny analysis were conducted via Mega 5.5 [60]. In the case of

maximum parsimony, trees were obtained by the search of trees

algorithm of CNI [63] with support estimation assessed with 500

bootstrap replicates and Kimura’s two-parameter model. The NJ

tree was obtained by bootstrap method (500 replicates) with

uniform rates, Kimura’s two-parameter model and gaps as

complete deletion. Finally, Bayesian inference were performed

via MrBayes 3.2 [64] implemented in GeneiousTM 5.4.4 [59] with

GTR+GAMMA Model (chain length = 1100000, subsampling

frequency = 200, burn-in length = 100000 and random seed

27265) and other parameters in default.

To estimate the divergence time between clades and time of

speciation of the sister species, we used the software Mega 5.5 [61],

BEAST 1.6.2, BEAUTi 1.6.2 and Tree Annotator 1.6.2 [65]. In

this test the tree obtained via maximum likelihood analysis

(RAxML) was dated to the node known (closure of the Isthmus of

Panama 24.5 million years on conservative estimates) [66]; [67];

[68]. The NEXUS file was obtained in BEAUTi 1.6.2 with

general time reversible (GTR) model and Gamma distributed rate

variation across sites. The Gamma distribution was assumed with

Table 3. Taxa included in this study with sampling area of the analyzed material and GENBANK number of each molecular marker.

Sampling area Lat/Long Species* 16S COI ITS1/ITS2

Brazil/REBio Arvoredo – SC –27.27/248.36 I. nocturnus JX125673 JX128315 JX125636

Brazil/São Sebastião
Channel – SP

–23.82/245.42 I. nocturnus JX125669/
JX125675/JX125698
/JF915194/JF915192

JX128316/
JX128318
JF915196-97/
JX128341-42

JX125637/JX125639-41/
JX125632-33

Brazil/Forno Beach – RJ –22.96/242.01 I. nocturnus JX125684 JX128327 JX125650

Brazil/Boa Viagem Beach – BA –12.94/238.50 I. nocturnus JX125674 JX128317 JX125638

Brazil/Frances Beach – AL –9.71/235.79 I. nocturnus JX125676 JX128319 JX125642

Brazil/Rocas Atoll – RN –3.86/233.80 I. maderensis JX125685-87 JX128328-30 JX125651-54

Curaçao – Piscadera Bay 12.12/268.96 I. nocturnus JX125677-78/81/83
JX125688-97

JX128320-21/24/26 JX125643-44/47/49
JX125658-67

Curaçao – Piscadera Bay 12.12/268.96 I. maderensis JX125679-80/82 JX128334-40 JX125645-46/48

Portugal – Madeira Island 32.63/216.84 I. maderensis JX125670-JX125672 JX128322-23/25
JX128331-33

JX125634-36/
JX125655-57

French Polynesia –
Moorea Island

–17.47/2149.81 I.bandanensis JX125699 – JX125668

Brazil/Florianopolis – SC –27.43/248.45 Ceriantheomorphe
brasiliensis

JF915193 JF915195 JX138232

*Defined a posteriori – AL – Alagoas, BA – Bahia, RJ – Rio de Janeiro, RN – Rio Grande do Norte, SC – Santa Catarina and SP – São Paulo.
doi:10.1371/journal.pone.0041091.t003
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an error of 61 million years. Tree prior was defined as Yule

Process. The Markov chain Monte Carlo (MCMC) parameters

were defined in 1 million cycles to length chain and MCMC

samples were printed to the screen and logged to files every 1000

cycles. Two independent replicates were performed to check for

the convergence of the estimates. The programs TreeAnnotator

v1.6.2 and FigTree v1.3.1 were used to summarize the posterior

tree distribution and to visualize the annotated maximum clade

credibility (MCC) tree, respectively.

Morphological Analysis
The anatomical study of the polyps and cnidome were based on

criteria defined by several authors [69]; [70]; [10]. The

classification of studied cnidae followed [10]. The cnidome was

based on thirty measures of undischarged cnidae of specimens

preserved in 4% formaldehyde solution. Measurements were taken

from each cnida type for each body region of specimens from the

four distinct geographic areas (Brazil coast, Rocas Atoll, Carib-

bean Sea and Madeira Island). The specimens were dissected

through the ventral side with a cut using surgical scalpels (carbon

steel), then the opened body was fixed using acupuncture needles.

The cnidome was analyzed under a Nikon Eclipse 80i microscope.

All parts of the body were analyzed separately so that any

contamination would be avoided. The cnidae that showed no

overlap in size were tested via Mann-Whitney test in order to

check the consistency of divergence between species.
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às desembocaduras dos rios São Francisco (SE-AL), Jequitinhonha (BA), Doce

(ES) e Paraı́ba do Sul (RJ). Revista Brasileira de Geologia 13: 98–105.
48. Bruun P (2005) Port and Coastal Engineering: Developments in Science and

Technology Royal Palm Beach: Coastal Education and Research Foundation.

553 p.
49. Hodell DA, Elmstrom KM, Kennett JP (1986) Latest Miocene benthic d18O

changes, global ice volume, sea level and the ‘Messinian salinity crisis’. Nature
320: 411–414.

50. Nisancioglu KH, Raymo ME, Stone PH (2003) Reorganization of Miocene deep

water circulation in response to the shoaling of the Central American Seaway.
Paleoceanography 18: 6–1–6–12.

51. Dieckmann U, Doebeli M (1999) On the origin of species by sympatric

speciation. Nature 400: 354–357.

52. Mayr E (1963) Animal Species and Evolution. Cambridge: Harvard Univ. Press.

53. Coyne JA (1992) Genetics and speciation. Nature 355: 511–515.

54. Via S (2001) Sympatric speciation in animals: the ugly duckling grows up.

TRENDS in Ecology & Evolution 16: 381–390.

55. Bird CE, Fernandez-Silva I, Skillings DJ, Toonen RJ (2012) Sympatric

Speciation in the Post ‘‘Modern Synthesis’’ Era of Evolutionary Biology.

Evolutionary Biology 39: 158–180.

56. Cunningham CW BLBSE (1993) Molecular evidence for multiple episodes of

paedomorphosis in the family Hydractiniidae. Biochemical Systamatics and

Ecology 21: 57–69.

57. Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for

amplification of mitochondrial cytochrome c oxidase subunit I from diverse

metazoan invertebrates. Molecular Marine Biology & Biotechnology 3: 294–299.

58. Ji Y-J, Zhang D-X, He L-J (2003) Evolutionary conservation and versatility of a

new set of primers for amplifying the ribosomal internal transcribed spacer

regions in insects and other invertebrates. Molecular Ecology Notes 3: 581–585.

59. Drummond AJ, Ashton B, Buxton S, Cheung M, Cooper A, et al. (2011)

Geneious v5.4. pp. http://www.geneious.com/. Accessed 2012 Feb 15.

60. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy

and high throughput. Nucleic Acids Research 32: 1792–1797.

61. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, et al. (2011) MEGA5:

Molecular Evolutionary Genetics Analysis using Maximum Likelihood,

Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology

and Evolution 28: 2731–2739.

62. Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for

the raxml web servers. Systematic Biology 57: 758–771.

63. Nei M, Kumar S (2000) Molecular Evolution and Phylogenetics. New York:

Oxford University Press. 333 p.

64. Ronquist F, Huelsenbeck J (2003) MrBayes 3: Bayesian phylogenetic inference

under mixed models. Bioinformatics 19: 1572–1574.

65. Drummond AJ, Nicholls GK, Rodrigo AG, Solomon W (2002) Estimating

mutation parameters, population history and genealogy simultaneously from

temporally spaced sequence data. Genetics 161: 1307–1320.

66. Haug GH, Tiedemann R (1998) Effect of the formation of the Isthmus of

Panama on Atlantic Ocean thermohaline circulation. Nature 393: 673–676.

67. Lunt DJ, Valdes PJ, Haywood A, Rutt IC (2008) Closure of the Panama Seaway

during the Pliocene: implications for climate and Northern Hemisphere

glaciation. Climate Dynamics 30: 1–18.

68. Molnar P (2008) Closing of the Central American Seaway and the Ice Age: A

critical review. Paleoceanography 23: PA2201.

69. van Beneden E (1897) Les Anthozoaires de la ‘‘Plankton-Expedition’’.

Ergebnisse der Plankton-Expedition der Humbolt-Stiftung 2: 1–222.

70. Carlgren O (1912) Ceriantharia. The Danish Ingolf-Expedition 5: 1–78+75 plates.

Diversification of Banded Tube-Dwelling Anemones

PLoS ONE | www.plosone.org 11 July 2012 | Volume 7 | Issue 7 | e41091


