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Acute as well as chronic disorders of the nervous system lead to significant morbidity and mortality for millions of individuals
globally. Given the ability to govern stem cell proliferation and differentiated cell survival, mammalian forkhead transcription
factors of the forkhead box class O (FoxO) are increasingly being identified as potential targets for disorders of the nervous
system, such as Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and auditory neuronal
disease. FoxO proteins are present throughout the body, but they are selectively expressed in the nervous system and have diverse
biological functions.The forkhead O class transcription factors interface with an array of signal transduction pathways that include
protein kinase B (Akt), serum- and glucocorticoid-inducible protein kinase (SgK), I𝜅B kinase (IKK), silentmating type information
regulation 2 homolog 1 (S. cerevisiae) (SIRT1), growth factors, and Wnt signaling that can determine the activity and integrity of
FoxO proteins. Ultimately, there exists a complex interplay between FoxO proteins and their signal transduction pathways that can
significantly impact programmed cell death pathways of apoptosis and autophagy as well as the development of clinical strategies
for the treatment of neurodegenerative disorders.

1. Clinical Significance of
Nervous System Disorders

Nervous system disorders lead to disability and death in a
significant proportion of theworld’s population. For example,
almost ten percent of the global population suffers from the
sporadic form of Alzheimer’s disease (AD) while familial
cases of AD account for less than 2% of all presentation
[1, 2]. In the United States alone, greater than 5 million
individuals have AD and another 3.5 million individuals
are under treatment at an annual cost of almost 4 billion
US dollars. In regards to cerebrovascular disease, stroke is
presently ranked as the fourth leading cause of death and
can also affect the lives of millions of individuals [3]. A
number of factors are responsible for stroke no longer being
ranked higher as a cause of death. These factors include
improved management of hypertension and diabetes, reduc-
tion in tobacco consumption, heightened public awareness
for seeking rapid care [3, 4], treatment with recombinant
tissue plasminogen activator [5], andnovel new strategies that
focus on trophic factors, improved biomarkers, and cellular
pathways of oxidative stress [3, 6–10].

Yet, the availability of treatments that can prevent the
initiation of acute or chronic neurodegenerative disorders or

block the progression of these diseases is scarce. Therapeutic
strategies that can aggressively treat AD and stroke continue
to remain limited for most individuals. Furthermore, mul-
tiple other neurodegenerative disorders also greatly impact
the global population with treatments that are not always
optimal. By the year 2030, epilepsy is predicted to affect over
50million people, neuropathies are estimated to afflict almost
300 million individuals, and neurological injuries may alter
the lives of 243 million individuals [11].

2. Targeting Forkhead Transcription Factors

Given the need for novel directions that can potentially
diminish or resolve the onset and progression of neurological
disorders, mammalian forkhead transcription factors are
surfacing as potential effective targets that can offer new
developments for drug discovery. Since the documentation
of the Drosophila melanogaster gene forkhead, greater than
100 forkhead genes, and 19 human subgroups that range
from FOXA to FOXS is now known to exist [12]. Prior
terminology for forkhead proteins included forkhead in
rhabdomyosarcoma (FKHR) (FOXO1), FKHRL1 (forkhead in
rhabdomyosarcoma like protein 1) (FOXO3a), theDrosophila
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Table 1: Forkhead box class O (FoxO) in the nervous system.

Pathway Function

Tissue expression

FoxO proteins are expressed in all tissues of the body
FoxO proteins appear to have selective expression in the nervous system that may offer insight into the biology
of specific FoxO proteins
FoxO proteins may be applicable for multiple neurodegenerative disorders that include Alzheimer’s disease,
Parkinson’s disease, Huntington’s disease, amyotrophic lateral sclerosis, and auditory neuronal disease

Epigenetic and
posttranslational
modification

FoxO proteins are controlled by posttranslation protein modifications that involve phosphorylation, acetylation,
and ubiquitylation that involve Akt, SgK, MST1, IKK, SIRT1, and Wnt signaling with WISP1

Oxidative stress

FoxO proteins may be required for oxidative stress to result in apoptosis and can disrupt proliferative pathways
of Wnt signaling
FoxO proteins have been linked to disease progression and oxidative stress can modify FoxO interactions with
other proteins that can ultimately influence cell neuronal survival

Autophagy and
apoptosis

During oxidative stress, FoxO proteins can lead to the induction of autophagy and promote cell survival to clear
the presence of toxic proteins such as mHtt, 𝛼-synuclein, and A𝛽
Under some circumstances with autophagy, a reduction in autophagy is required for protection indicating that
FoxO cytoprotection may not always be directly tied to the induction of autophagy
Protection against apoptosis usually requires inhibition or gene knockdown of FoxO proteins to protect against
injuries such as cerebral ischemia, microglial and inflammatory cell demise, and A𝛽 exposure. Protection with
metabotropic glutamate receptors, NAD+ precursors, and trophic factors such as EPO requires inhibition and
nuclear export of FoxO proteins

Stem cells

Activity of FoxO proteins can be necessary for the development of hematopoietic stem cells, dopaminergic cells,
muscle regeneration, and oligodendrocyte progenitor development and myelination
At times, reduction in FoxO protein activity is required for cell development and differentiation such as with
pancreatic beta cell survival, osteoblast precursors, embryonic stem cells, and enteric nervous system precursors

Akt: protein kinase B; A𝛽: beta-amyloid; EPO: erythropoietin; IKK: I𝜅B kinase; MST1: mammalian sterile 20-like kinase-1; mHtt: mutant Huntingtin; SgK:
NAD+: nicotinamide adenine dinucleotide; serum- and glucocorticoid-inducible protein kinase; SIRT1: silent mating type information regulation 2 homolog
1 (S. cerevisiae); WISP1: wnt1 inducible signaling pathway protein 1.

gene fork head (fkh), Forkhead Related Activator- (FREAC-)
1 and FREAC-2, and the acute leukemia fusion gene located
in chromosome X (AFX) (FOXO4) [13, 14]. For the current
nomenclature, an Arabic number is provided with the des-
ignation of “Fox,” and then a subclass or subgroup letter is
provided, and finally the member number is listed within the
subclasses of the Fox proteins [15]. All letters are capitalized
for human Fox proteins. For the mouse, only the initial letter
is listed as uppercase and for all other chordates the initial and
subclass letters are uppercased [16–19].

Mammalian FOXO proteins are assigned to the O class
of the forkhead box class transcription factors and consist of
FOXO1, FOXO3, FOXO4, and FOXO6 [20]. With a butterfly-
like appearance on X-ray crystallography [21] and nuclear
magnetic resonance [22], the forkhead box (FOX) family
of genes has a conserved forkhead domain (the “forkhead
box”) described as a “winged helix.” The forkhead domain
in FoxO proteins has three 𝛼-helices, three 𝛽-sheets, and two
loops that compose the “wings” of the domain [23] which is
specific for the forkhead proteins, since not all winged helix
domains are considered to be Fox proteins [24].The 𝛼-helices
and 𝛽-sheets have high sequence homology with variations
in either absent 𝛽-sheets and loops or additional 𝛼-helices.
As transcription factors, FoxO proteins bind DNA through
the FoxO-recognized element in the C-terminal basic region
of the forkhead DNA binding domain [25, 26]. Target gene
expression is repressed or activated through fourteen protein-
DNA contacts with the primary recognition site located at
𝛼-helix H3 [21]. Phosphorylation or acetylation that can

block FoxO activity may alter the binding of the C-terminal
basic region to DNA to prevent transcriptional activity [27].
However, multiple mechanisms may contribute to forkhead
DNAbinding that involve variations in theN-terminal region
of the recognition helix, changes in electrostatic distribution,
and nuclear translocation of FoxO proteins [28–31].

FoxO proteins are expressed in all tissues of the body
(Table 1). In relation tometabolic signaling, function of FoxO
proteins appears to be conserved among multiple species
that includeCaenorhabditis elegans, Drosophila melanogaster,
and mammals. FoxO proteins are homologous to the tran-
scription factor DAuer Formation-16 (DAF-16) in the worm
Caenorhabditis elegans that can determine metabolic insulin
signaling and lead to lifespan extension [32, 33]. Furthermore,
individual FoxO proteins appear to have selective expression
in the nervous system that may provide clues to the biology
for specific FoxO proteins [26, 34]. FoxO6 may oversee
memory consolidation and emotion [35], since it is present
in several regions of the brain, such as the hippocampus,
the amygdala, and the nucleus accumbens [36, 37]. FoxO1
may have a vital role in a number of functions given its
broad expression that may relate to astrocyte survival [38],
modulation of embryonic endothelial stem cell survival [39],
regulation of ischemic brain injury [10], vascular disease
[40], and motor and memory pathways in the striatum and
subregions of the hippocampus [36]. FoxO3may have amore
critical role in auditory synaptic transmission [41], cerebral
endothelial vascular cell survival [42, 43], oxidative stress
injury in mouse cerebellar granule neurons [44], neonatal
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hypoxic-ischemic encephalopathy [45], erythroid cell growth
[46], and hippocampal neuronal injury [47, 48].

3. Epigenetic and Posttranslation Modification
of Forkhead Transcription Factors

Activity of FoxO proteins is controlled by epigenetic [44,
49] and posttranslation protein modifications that involve
phosphorylation [28, 30, 46–48, 50–56], acetylation [44, 50,
57], and ubiquitylation [26, 58–60] of these proteins (Table 1).
Phosphorylation of forkhead transcription factors can be
mediated by the serine-threonine kinase protein kinase B
(Akt) [2, 61–66]. In the nervous system, Akt can protect
cells during ischemic preconditioning [67], beta-amyloid
(A𝛽) toxicity [68–70], oxidative stress injury in the retina
[71], inflammatory vascular injury [72], cerebral ischemia
[73], experimental subarachnoid hemorrhage [74], flavonoid-
dependent neuroprotection [75], lipoic acid protection [76,
77], epidermal growth factor receptor transactivation [78],
neuroinflammation [79], tau homeostasis [80], senile plaque
memory impairment [81], and growth factor administration
[28, 71, 82–89]. Akt phosphorylates FoxO proteins that will
bind FoxOs to 14-3-3 proteins prevent nuclear translocation
and block the transcription of target genes that promote
apoptosis [47, 52, 90, 91]. Akt also may control FoxO proteins
activity and subsequently block caspase cleavage to prevent
the induction of apoptotic cell death. Akt suppresses caspase
activity that ultimately leads to mitochondrial pore opening
and cytochrome c release [42, 66, 92–101]. Enhanced activity
of FoxO proteins such as FoxO3a also can lead to cytochrome
c release and caspase-induced apoptotic death [28, 51, 57, 66,
102–104]. As a result, one mechanism by which Akt prevents
apoptotic cell death is through the blockade of FoxO protein
activity that would prevent caspase activation. In addition,
pathways such as Akt that block caspase 3 activity appear
to offer another unique regulatory mechanism. Caspase 3
cleavage of FoxO3a may result in “proapoptotic” amino-
terminal (Nt) fragments that can lead to cell death [105].
However, during caspase 3 inhibition such as that by Akt,
phosphorylated FoxO3a remains intact and does not lead to
apoptotic cell injury during oxidative stress [53, 106].

In addition to Akt, other pathways can lead to the
phosphorylation and inactivation of FoxO proteins. The
serum- and glucocorticoid-inducible protein kinase (SgK),
a member of a family of kinases termed AGC (protein
kinase A/protein kinase G/protein kinase C) kinases that
includes Akt and phosphorylates FoxO3a and maintains
this protein in the cytoplasm [107]. Importantly, Akt and
SgK can phosphorylate FoxO proteins at different sites,
suggesting greater options to control FoxO protein activity.
However, some protein kinases such as mammalian sterile
20-like kinase-1 (MST1) can phosphorylate FOXO proteins
and disrupt the binding to 14-3-3 which then allows FOXO
nuclear translocation and subsequent death in neurons [29],
indicating that the phosphorylation site of FoxO proteins is
crucial in determining the activity of forkhead transcription
factors. The ability of MST1 to activate FoxO proteins may
be linked to c-Jun N-terminal kinase (JNK), since MST1 can
increase JNK activation [108] which phosphorylates 14-3-3

protein, blocks binding to FoxO, and results in the nuclear
localization of FoxO proteins [109].

Pathways associated with ubiquitylation and acetylation
also control posttranslational modification of FoxO proteins
[110, 111]. For example, Akt also leads to the ubiquitination
and degradation through the 26S proteasome of FoxO pro-
teins [111, 112]. Agents that can prevent the ubiquitination
and degradation of FoxO proteins may serve as important
agents to induce apoptotic cell death in cancers that can be
tied to silent mating type information regulation 2 homolog
1 (S. cerevisiae) (SIRT1) [50, 113]. In a similar vein, SIRT1
activity also can lead to enhanced cell survival such as
in the nervous system through inhibition of FoxO activity
[57, 114–117]. Mammalian forkhead transcription factors can
bind to the SIRT1 promoter region that contains a cluster
of five putative core binding repeat motifs (IRS-1) and a
forkhead-like consensus-binding site (FKHD-L) to affect
FoxO transcription [118]. FoxO proteins, such as FoxO1, can
subsequently regulate SIRT1 transcription and increase SIRT1
expression [119]. In some cases, SIRT1 and FoxO proteins
may function synergistically to promote cell survival. In
differentiated chondrocytes exposed to oxidative stress, loss
of the forkhead transcription factors FoxO1 and FoxO3 in
combination with decreased SIRT1 activity lead to cell death
with reduced production of autophagic related proteins,
indicating that SIRT1 with FoxO proteins may be necessary
for cellular survival [120]. I𝜅B kinase (IKK) also can directly
phosphorylate and block the activity of FoxO proteins that
results in the proteolysis of FoxO3a via the Ub-dependent
proteasome pathway [121]. Acetylation of FoxO proteins
provides another avenue for the control of these proteins.
FoxO proteins are acetylated by histone acetyltransferases
that include p300, the CREB-binding protein (CBP), and the
CBP-associated factor. Once acetylated such as CBP, FoxO
proteins translocate to the cell nucleus but have diminished
activity since acetylation of lysine residues on FoxO proteins
has been shown to limit the ability of FoxO proteins to
bind to DNA [122]. Furthermore, acetylation can increase
phosphorylation of FoxO proteins through Akt [122]. FoxO
proteins are deacetylated by histone deacetylases, such as
SIRT1 [13, 112, 123, 124]. Histone deacetylase 2 (HDAC2)
also forms a physical complex with FoxO3a. This complex
can influence FoxO3a-dependent gene transcription and
oxidative stress-induced mouse cerebellar granule neuron
cell death [44].

4. Forkhead Transcription Factors,
Oxidative Stress, Apoptosis, and Autophagy

FoxO proteins are important components in the control of
cell survival and neurodegenerative disorders determined by
apoptosis and autophagy in the presence of oxidative stress
[7, 125–128]. During oxidative stress, reactive oxygen species
(ROS) are generated that include nitric oxide, peroxynitrite,
superoxide free radicals, hydrogen peroxide, and singlet
oxygen [97, 129–135].These ROS can lead to cellular organelle
injury, protein misfolding, DNA destruction, and neuronal
synaptic dysfunction [48, 132, 136–138]. Endogenous systems
exist in the body to prevent cellular injury during oxidative
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stress, but these systems can become overwhelmed such
as glutathione peroxidase [139, 140], superoxide dismutase
[120, 132, 138, 141–148], and vitamins B, C, D, and K [59,
140, 149–151]. FoxO proteins have been linked to disease pro-
gression and oxidative stress such as that with vitiligo [134]
(Table 1). In patients with polymorphism of the FOXO3A
gene, FOXO3A levels and catalase enzyme activity in vitiligo
patients were decreased compared with control groups, sug-
gesting in this case that FoxO proteinsmay confer protection.
In other systems such as thematernal decidua, FoxO proteins
may function independently in regards to oxidative stress
with FOXO1 preventing oxidative stress damage and FOXO3a
promoting oxidative cell death [152]. In addition, oxidative
stress can serve as an epigeneticmodifier of FoxO interactions
with other proteins that can influence neuronal cell survival
[44].

Autophagy is a process that recycles cytoplasmic com-
ponents while removing dysfunctional organelles for tissue
remodeling [7, 153–156]. Macroautophagy is the most preva-
lent type of autophagy that sequesters cytoplasmic proteins
and organelles into autophagosomes [6, 157–160] and plays
a role with FoxO proteins [2, 49, 127]. Autophagosomes,
once produced, combine with lysosomes for degradation
and are recycled for future cellular processes [125, 159, 161–
163]. Under conditions of oxidative stress, FoxO proteins can
lead to the induction of autophagy and promote cell sur-
vival (Table 1). During exposure with the oxidant tert-butyl
hydroperoxide, constitutive active form of FoxO3 increases
human articular chondrocyte cell viability and the expres-
sion of autophagy related proteins [120]. SIRT1-mediated
deacetylation of FoxO1 also appears to mediate starvation-
induced increases in autophagic flux that can maintain
left ventricular function during periods of starvation [164].
Cardiac expression of constitutively active FoxO3 results in
reversible heart atrophy through the activation of autophagic
pathways [165]. In experimental models of full-lengthmutant
Huntingtin (mHtt) transgenic mice, ectopic expression of
FoxO1 enhances autophagy and toxic mHtt protein clear-
ance in neuronal cell cultures [160]. However, under some
conditions, a reduction in autophagy has been reported in
the presence of increased FoxO expression, suggesting that
FoxO cytoprotection may not always be directly tied to the
induction of autophagy. Upregulation of FoxO3 and SIRT1
with a reduction in autophagy occurs in human bronchial
epithelial cells exposed to cigarette smoke condensates in the
presence of Amurensis H (Vam3), a dimeric derivative of
resveratrol that can reduce oxidative stress [166].

In regards to the programmed cell death pathway of apop-
tosis, a later phase that leads to genomic DNA degradation is
preceded by an early phase with the loss of plasmamembrane
lipid phosphatidylserine (PS) asymmetry [156, 167, 168].
The later phase of apoptosis results in DNA destruction
[8, 19, 169–171], but the early phase of apoptosis represents
an important target to save injured cells. Prevention or
reversal of membrane PS externalization [68, 172–177] can
result in the salvage of neurons and prevent inflammatory
cells such as microglia from removing otherwise functional
neurons [174, 178, 179]. During oxidative stress, FoxO pro-
teins can lead to initial membrane PS externalization and

subsequent DNA degradation (Table 1). In the presence of
high glucose exposure, the development of endothelial cell
dysfunction occurs with a reduction in SIRT1 expression
and an increase in FoxO1 expression [180]. It has been
suggested that FoxO proteins, such as FoxO1 and FoxO3a,
must be present for oxidative stress to result in apoptosis
[181].This observation is supported by cell culture and animal
studies demonstrating that inhibition or gene knockdown
of FoxO1 or FoxO3a results in stroke reduction by estradiol
[91], protects against microglial cell demise during oxidative
stress [106] and A𝛽 exposure [182], promotes the protective
effects of metabotropic glutamate receptors [102], increases
neuronal cell survival through nicotinamide adenine dinu-
cleotide (NAD+) precursors [51], and provides trophic factor
protection with erythropoietin (EPO) [28, 42, 46, 52] and
neurotrophins [183–185]. However, under some scenarios
that may impact other cellular signal transduction pathways,
the activation of FoxO proteins may prevent apoptotic cell
injury during oxidative stress such as chondrocytes [120].
Other studies show that in some cellular populations such
as mouse hematopoietic stem cells, the conditional deletion
of FoxO1, FoxO3a, and FoxO4 can lead to an increase in
ROS [186], suggesting that FoxO proteins may be beneficial
in regulation ROS in some cellular environments.

FoxO proteins such as FoxO3a can lead to the induction
of “proapoptotic genes” and disrupt proliferative pathways of
Wnt signaling [50]. A converse relationship exists between
Wnt signaling and FoxO proteins. For example, FoxO3a
can block prostate cell malignant phenotypes through the
downregulation of Wnt signaling and 𝛽-catenin [187]. Wnt
signaling includes the family member Wnt1 that can oversee
neuronal development, angiogenesis, immunity, tumorigen-
esis, and stem cell proliferation [188–192]. Wnt1 expression is
increased during injury of endothelial cells [28], metabolic
disturbance [28], nonneuronal cell activation [69, 104, 193–
195], spinal cord injury [196], stroke [197], and oxidative
stress [104, 179, 197]. This increased expression of Wnt1
appears to be protective since loss of Wnt1 translates into
progressive spinal cord injury [198], impaired neurogenesis
[199], and apoptosis [156, 193, 200]. Wnt1 signaling pathways
can prevent cellular injury during experimental diabetes
[28, 201], ischemic brain injury [197, 202], dopaminergic
neuronal cell injury [179, 189, 195, 203], toxic environments
for microglia and other inflammatory cells [69, 104, 191, 193],
and neuronal synaptic dysfunction [204]. Wnt signaling can
afford cellular protection against apoptotic cell death through
the inactivation of FoxO proteins. Phosphorylation and
inhibition of FoxO3a activity by 𝛽-catenin during oxidative
stress can protect hepatocytes from apoptotic cell death [54].
Osteoblastic differentiation can be preserved in the presence
of oxidative stress through the increased expression of Wnt
signaling pathways and the inhibition of FoxO3a [205]. In
microglial cells of the central nervous system, Wnt1 prevents
apoptosis through the posttranslational phosphorylation and
maintenance of FoxO3a in the cytoplasm to prevent the
loss of mitochondrial membrane permeability, cytochrome
c release, Bad phosphorylation, and activation of caspases
[104]. Neuroprotective trophic factors and cytokines, such as
EPO [83, 87, 206, 207], also useWnt signaling to offer cellular
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protection through the inhibition of FoxOproteins. EPOpro-
tects cerebral endothelial cells during oxygen-glucose depri-
vation by phosphorylating FoxO3a and preventing its sub-
cellular trafficking to the nucleus [42, 208]. During elevated
glucose exposure, EPO relies upon Wnt1 to block FoxO3a
activity andmaintain cerebral endothelial survival [28].Wnt1
inducible signaling pathway protein 1 (WISP1), also known as
CCN4, is a target of Wnt1 and affects programmed cell death,
cancer cell growth, extracellular matrix production, cellular
migration, and mitosis [159, 209–213]. WISP1 also protects
neurons through the posttranslational phosphorylation of
FoxO3a, by sequestering FoxO3a in the cytoplasm with
protein 14-3-3, and by limiting deacetylation of FoxO3a [47].
Overexpression of FoxO3a during oxidative stress results in
caspase 1 and caspase 3 [58, 214]. Through an autoregulatory
loop, WISP1 has been shown to increase neuronal survival
by limiting FoxO3a deacytelation, blocking caspases 1 and
3 activation, and fostering SIRT1 nuclear trafficking [47]. It
should be noted that, under some conditions, Wnt signaling
through 𝛽-cateninmay increase FoxO transcriptional activity
and competitively limit 𝛽-catenin interaction with members
of the lymphoid enhancer factor/T cell factor family [215].

5. Forkhead Transcription Factors,
Development, Stem Cell Proliferation, and
Neurodegeneration

FoxO proteins have a prominent role not only in new cell
development and differentiation, but also in determining
the survival of mature cells in the nervous system (Table 1).
Each of forkhead transcription factors may have different
biological effects during development. For example, Foxo3a
−/− and Foxo4 −/−mice can develop without incidence and
have similar weight gain [216]. Yet, mice singly deficient in
Foxo1 die by embryonic day eleven and lack development of
the vascular system [216]. Overexpression of FoxO1, such as
in skeletal muscle in mice, can lead to weight loss, reduced
skeletal muscle mass, and impaired glycemic control [217].
On further analysis, FoxO3a −/− null animals experience
a number of developmental abnormalities that were not
present in mice singly deficient for FoxO4. Foxo3a −/−
mice are known to become infertile with ovarian follicles
that are depleted of oocytes [218]. FoxO3a overexpression
retards oocyte growth and follicular development and leads
to anovulation and luteinization of unruptured follicles [219],
indicating a specific function for FoxO3a in the development
and maintenance of the reproductive system. This work
may suggest a role for FoxO3a in relation to oocyte and
follicular development [220]. Mutations in FOXO3a and
FOXO1a have been reported in a small percentage of women
who suffer from premature ovarian failure [221]. Deletion of
Foxo1, Foxo3a, and Foxo4 or a single deletion of Foxo3a also
blocks the repopulation of hematopoietic stem cells inmurine
models [186, 222], illustrating the need for FoxO proteins to
maintain hematopoietic stem cells. Other work suggests that
FoxO3a alone may play a role in maintaining hematopoietic
stem cells, since hematopoietic stem cells are decreased in
aged FoxO3 −/− mice compared to the littermate controls
[222]. FoxO3 in combination with type 2 deiodinase (D2)

and circulation thyroid hormone also is necessary for normal
mouse myogenesis and muscle regeneration [223]. Nuclear
translocation of FoxO1 in cooperation with SMAD3/4 and
Sp1 by transforming growth factor 𝛽 (TGF𝛽) is required for
oligodendrocyte progenitor development and myelination in
the central nervous system [224].

In contrast, other studies suggest that inhibition of FoxO
protein activity or prevention ofWnt pathway disruptionmay
be necessary for stem cell survival. FoxO1 may negatively
affect pancreatic beta cell survival [225]. Work that examines
osteoblastogenesis demonstrates that FoxO proteins during
oxidative stress and aging may antagonize Wnt signaling
pathways and block the proliferation of osteoblast precursors
[226]. SIRT1 deficiency in mouse embryonic stem cells has
been shown to enhance the acetylation and phosphorylation
FoxO1, block nuclear localization of FoxO1, and prevent
apoptotic cell death that would otherwise ensue with FoxO1
activity [227]. SIRT1 is also necessary to promote cortical
bone formation with osteoblast progenitors by deacetylating
FoxOs and preventing FoxOprotein binding to𝛽-catenin and
inhibiting Wnt signaling [228].

In the nervous system, FoxO proteins similarly determine
the fate of neuronal precursors and the maintenance of neu-
rons [137, 229]. Studies that employ genetic deletions of Foxa1
and Foxa2 in mice result in the decline of striatal dopamine
metabolites, reduction in dopaminergic cells, and locomotor
deficits [230]. Stem cell maintenancemay also be governed by
the interactions betweenWISP1 and FoxO proteins. WISP1 is
upregulated during stem cell migration [231] andWISP1 may
be one of several components that affect induced pluripotent
stem cell reprogramming [232, 233]. WISP1 requires 𝛽-
catenin for the differentiation of marrow derived mesenchy-
mal stem cells [234]. During oxidative stress, FoxO may
bind to 𝛽-catenin and prevent stem cell development similar
to the previously described pathways with Wnt signaling
[212, 235]. Cellular mechanisms that utilize Wnt signaling
such as EPO also control FoxO protein activity for stem cell
growth [236–241]. EPO promotes erythroid progenitor cell
development that requires the modulation of FoxO3a activity
[46, 172, 242, 243].Other trophic factors, such as glial cell line-
derived neurotrophic factor, require the inhibition of FoxO1
and FoxO3a to promote rat enteric nervous system precursor
development [244].

In relation to neurodegenerative disorders and neuronal
cell survival, activation of FoxO proteins under most condi-
tions leads to cell death [13, 245]. Manganese toxicity that
may be a factor in neurodegenerative disorders such as
Parkinson’s disease has been associated with the cell death
of astrocytes through increased expression and activation
of FoxO proteins [246]. Iron-induced oxidative stress that
results in apoptotic death of hippocampal neurons can
lead to a protective response that activates Akt and blocks
FoxO protein translocation to the nucleus [55]. Protection
of primary hippocampal neurons by group I metabotropic
receptors during exposure to ROS requires the phosphory-
lation and inactivation of FoxO3a as well as the prevention
of caspase cleavage of FoxO3a [102] to block the generation
of potentially “proapoptotic” amino-terminal (Nt) fragments
[105]. Antioxidant administration to protect cortical neurons
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and hippocampal neuronal cell lines during excitotoxicity
[247] and in experimental models of AD with A𝛽 toxicity
[48] employs FoxO3 inactivation and blocked translocation
to the cell nucleus [247]. Independent of Wnt signaling,
EPO has been shown to offer neuronal and vascular cell
protection through pathways that inactivate FoxO proteins,
such as FoxO3a [46, 52]. During cerebral ischemia, FoxO3a
expression increases in the hippocampus [248] and FoxO3a
interaction with cell cycle induction proteins may play a
role in neuronal apoptotic cell death [44]. Toxin exposure in
cortical neurons that fosters FoxO3a activation and p27 (kip1)
transcription leads to apoptosis [249]. In microglial cells of
the nervous system as well as neurons, knockdown of FoxO3a
and prevention of nuclear shuttling lead to the increased
survival during oxidative stress [47, 104]. During periods of
elevated glucose, cortical neurons [250] and vascular cells [28,
42, 53, 58] are protected through inhibitory phosphorylation
of FoxO3a and the nuclear export of this protein.

However, it is important to recognize the antiproliferative
and anticancer effects of FoxO proteins that make these
transcription factors attractive targets for the inhibition of
tumor growth [14, 50]. Increased activity of FoxO3a with
cyclin-dependent kinase inhibitor p27 in isolated human
breast cancer cells can suppress breast cancer progression
[251]. Colorectal cancer progression may be checked by the
activation of FoxO1 [252] and angiogenesis that is necessary
for tumor growth can be blocked by the activation of FoxO3a
[253]. Through the disruption of proliferative pathways such
as Wnt signaling, a number of cancers that include breast
cancer, gastric cancer, central nervous system tumors, and
lung carcinoma [190, 209, 212, 254–257] can be inhibited
through FoxO protein activity [187] while loss of FoxO
activity may signal an increased risk for cancer development
[258]. As a result, pathways that inactivate FoxOproteinsmay
have some potential risk for latent tumor growth.

In some experimental scenarios, FoxO protein activation
may be required for neuronal protection. Blockade of neu-
rodegenerative disease and adverse behavioral deficits during
selenium exposure that may be linked to the development of
amyotrophic lateral sclerosis occurs during increased FoxO
protein expression [259]. FoxO3a also may be necessary for
cochlear auditory activity and the maintenance of synaptic
function [41]. In Drosophila models of A𝛽 toxicity, loss of
FoxO results in decreased survival and locomotive activity
[260]. FoxO proteins such as FoxO3 may also be important
for the control of autophagic flux in Parkinson’s disease
[261]. In dopaminergic neurons, overexpressing human 𝛼-
synuclein, inhibition of FoxO3 is protective. However, a
small degree of FoxO3 activity prevents nigral neuron cell
death in the presence of human 𝛼-synuclein accumulation
by reducing the amount of 𝛼-synuclein and fostering the
accumulation of autophagic vacuoles containing lipofuscin
[261]. Interestingly, a controlled upregulation of FoxO3a and
SIRT1 expression in cardiac tissue may be important during
exercise [262]. Levels of SIRT1 that are less than 7.5-fold are
associated with catalase expression that is also controlled by
FoxO1a to possibly reduce cell injury during oxidative stress.
Conversely, elevated levels of SIRT1 at 12.5-fold can result
in cardiomyocyte apoptosis and decreased cardiac function

[263]. Activation of FoxO proteins may also be protective
during aging. Loss of FoxO3a activity leads to decreased
manganese-superoxide dismutase and enhanced cell injury
with aging [264]. This extension of cellular lifespan that
may be provided by FoxO proteins can be dependent on
the negative regulation of Akt to allow for the activation of
FoxO3a [265].

6. Conclusions

Neurodegenerative disorders result in significant death and
disability for millions of individuals throughout the world
but remain for the most part with limited treatment options
and palliative therapies. Forkhead transcription factors and
especially those of the FoxO subgroup are increasingly being
identified as potential targets for disorders of the nervous
system. FoxOproteins are expressed throughout the body, but
their varied expression in the nervous system suggests that
specific FoxO proteins may be vital for selective cellular and
biological function andmay be applicable forAlzheimer’s dis-
ease, Parkinson’s disease, Huntington’s disease, amyotrophic
lateral sclerosis, and auditory neuronal disease. For example,
FoxO3 may be important for auditory synaptic transmission,
cerebral endothelial vascular cell survival, and erythroid
cell growth. In contrast, FoxO6 may be critical for mem-
ory consolidation and emotion. FoxOs are regulated by
epigenetic and posttranslational modifications that involve
phosphorylation, ubiquitylation, and acetylation by cellular
pathways that involve Akt, SgK, MST1, IKK, SIRT1, and
Wnt signaling to control the activity and integrity of these
proteins.The ability of FoxO proteins to ultimately determine
cell development and survival in the nervous system during
oxidative stress resides with FoxO control of the programmed
cell death pathways of apoptosis and autophagy. During
oxidative stress cell injury, activation of FoxO proteins often
leads to apoptotic cell death that initially fosters membrane
PS residue externalization and subsequent DNAdegradation.
FoxO activity also can disrupt proliferative pathways of Wnt
signaling involving 𝛽-catenin to result in apoptotic cell death.
Conversely, Wnt signaling that includes WISP1 can phos-
phorylate, limit deacetylation, and sequester FoxO proteins
in the cytoplasm to block apoptotic pathways that include
caspase activation. FoxO proteins can promote autophagy
to preserve cell survival during oxidative stress and clear
toxic proteins from the cell. Yet, under some conditions,
FoxO proteins may be tied to enhanced cell survival that
is independent of autophagy. These observations do not
always provide crisp conclusions and suggest the presence
of a complex interplay between FoxO proteins and multiple
signal transduction pathways in the cell. Furthermore, the
degree of FoxO activity as well as companion pathways that
involve SIRT1 can significantly impact cell development and
survival. Elevated FoxO or SIRT1 activity can be detrimental
to cells, but a minimal level of activity that can shepherd
autophagic accumulation of toxic proteins may be beneficial.
Importantly, these considerations provide further insight
for the targeting of FoxO in the nervous system that may
involve Wnt signaling, SIRT1, and trophic factors such as
EPO to block cellular injury during oxidative stress. In
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addition, one should be cognizant of the nonproliferative
role FoxO proteins play in tumorigenesis. Inactivation of
FoxO proteins could yield unexpected cell growth not only
in the nervous system but also in other regions of the body.
Focusing upon FoxO proteins for the consideration of new
therapeutic strategies against neurodegenerative disorders
that oversee early cell development as well as differentiated
cellular function can offer potentially high returns for new
drug development.
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[150] J. A. Miret and S. Munné-Bosch, “Plant amino acid-derived
vitamins: biosynthesis and function,” Amino Acids, vol. 46, no.
4, pp. 809–824, 2014.

[151] Y.-J. Xu, P. S. Tappia, N. S. Neki, andN. S. Dhalla, “Prevention of
diabetes-induced cardiovascular complications upon treatment
with antioxidants,” Heart Failure Reviews, vol. 19, no. 1, pp. 113–
121, 2014.

[152] T. Kajihara, M. Jones, L. Fusi et al., “Differential expression of
FOXO1 and FOXO3a confers resistance to oxidative cell death
upon endometrial decidualization,” Molecular Endocrinology,
vol. 20, no. 10, pp. 2444–2455, 2006.

[153] Z. Cai and L. J. Yan, “Rapamycin, autophagy, and Alzheimer’s
disease,” Journal of Biochemical and Pharmacological Research,
vol. 1, no. 2, pp. 84–90, 2013.

[154] W. Chen, Y. Sun, K. Liu, and X. Sun, “Autophagy: a double-
edged sword for neuronal survival after cerebral ischemia,”
Neural Regeneration Research, vol. 9, no. 12, pp. 1210–1216, 2014.

[155] Y. Chen, X. Liu, Y. Yin et al., “Unravelling the multifaceted roles
of Atg proteins to improve cancer therapy,” Cell Proliferation,
vol. 47, no. 2, pp. 105–112, 2014.

[156] K. Maiese, Z. Z. Chong, Y. C. Shang, and S. Wang, “Targeting
disease through novel pathways of apoptosis and autophagy,”
Expert Opinion onTherapeutic Targets, vol. 16, no. 12, pp. 1203–
1214, 2012.

[157] J. H. Fox, T. Connor, V. Chopra et al., “The mTOR kinase
inhibitor Everolimus decreases S6 kinase phosphorylation but
fails to reduce mutant huntingtin levels in brain and is not
neuroprotective in the R6/2 mouse model of Huntington’s
disease,” Molecular Neurodegeneration, vol. 5, no. 1, article 26,
2010.

[158] K.Maiese, “Novel applications of trophic factors,Wnt andWISP
for neuronal repair and regeneration in metabolic disease,”
Neural Regeneration Research, vol. 10, no. 4, pp. 518–528, 2015.

[159] K. Maiese, “Programming apoptosis and autophagy with
novel approaches for diabetes mellitus,” Current Neurovascular
Research, vol. 12, no. 2, pp. 173–188, 2015.

[160] R. L. Vidal, A. Figueroa, F. A. Court et al., “Targeting the UPR
transcription factor XBP1 protects against Huntington’s disease
through the regulation of FoxO1 and autophagy,” Human
Molecular Genetics, vol. 21, no. 10, pp. 2245–2262, 2012.

[161] C. He, H. Zhu, H. Li, M.-H. Zou, and Z. Xie, “Dissociation
of Bcl-2-Beclin1 complex by activated AMPK enhances cardiac
autophagy and protects against cardiomyocyte apoptosis in
diabetes,” Diabetes, vol. 62, no. 4, pp. 1270–1281, 2013.

[162] Y. M. Lim, H. Lim, K. Y. Hur et al., “Systemic autophagy
insufficiency compromises adaptation to metabolic stress and
facilitates progression from obesity to diabetes,” Nature Com-
munications, vol. 5, article 4934, 2014.

[163] H. Vakifahmetoglu-Norberg, H. Xia, and J. Yuan, “Pharmaco-
logic agents targeting autophagy,” Journal of Clinical Investiga-
tion, vol. 125, no. 1, pp. 5–13, 2015.

[164] N. Hariharan, Y. Maejima, J. Nakae, J. Paik, R. A. Depinho,
and J. Sadoshima, “Deacetylation of FoxO by Sirt1 plays an
essential role in mediating starvation-induced autophagy in
cardiac myocytes,” Circulation Research, vol. 107, no. 12, pp.
1470–1482, 2010.

[165] T. G. Schips, A. Wietelmann, K. Höhn et al., “FoxO3 induces
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