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Abstract

COVID-19 is a disease characterized by its seemingly unpredictable clinical outcomes. In

order to better understand the molecular signature of the disease, a recent multi-omics

study was done which looked at correlations between biomolecules and used a tree- based

machine learning approach to predict clinical outcomes. This study specifically looked at

patients admitted to the hospital experiencing COVID-19 or COVID-19 like symptoms. In

this paper we examine the same multi-omics data, however we take a different approach,

and we identify stable molecules of interest for further pathway analysis. We used stability

selection, regularized regression models, enrichment analysis, and principal components

analysis on proteomics, metabolomics, lipidomics, and RNA sequencing data, and we deter-

mined key molecules and biological pathways in disease severity, and disease status. In

addition to the individual omics analyses, we perform the integrative method Sparse Multiple

Canonical Correlation Analysis to analyse relationships of the different view of data. Our

findings suggest that COVID-19 status is associated with the cell cycle and death, as well as

the inflammatory response. This relationship is reflected in all four sets of molecules ana-

lyzed. We further observe that the metabolic processes, particularly processes to do with

vitamin absorption and cholesterol are implicated in COVID-19 status and severity.

1. Introduction

As of July 13, 2021 4,103,278 people have died as a result of the severe acute respiratory syn-

drome coronavirus 2 (SARS-CoV-2), more commonly known as COVID-19 (coronavirus dis-

ease of 2019). Since the first outbreak of COVID-19 was reported in 2019, the world has

experienced a vast change in lifestyle in response to the unpredictable nature of the disease.

One of the primary characteristics of the disease which concerns health experts worldwide is

the varying severity individuals experience, which correlates with distinct genetic and physio-

logical conditions of the infected patients. Deaths from the disease worldwide have been

related to acute respiratory distress syndrome (ARDS), a serious lung injury which allows
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fluids to leak into the lungs [1]. In order to better understand the molecular signatures of

COVID-19, we performed an analysis of multi-omics data from patients experiencing

COVID-19 or COVID-19 like symptoms admitted to the hospital for ARDS.

A recent multi-omics study by Overmyer et al., 2020 [2] quantified transcripts, proteins,

metabolites, and lipids from patients with COVID-19 and patients experiencing COVID-19

like symptoms. These molecules were then associated with clinical outcomes including comor-

bidities, ICU (intensive care unit) status, and disease severity through correlation analysis and

machine learning techniques. From these analyses, the unique signature of the disease was

apparent in a dysregulated lipid transport system, complement activation, and neutrophil acti-

vation. We have taken an alternative approach in analyzing this dataset by identifying stable
molecules of interest for further enrichment analysis. More specifically, in order to determine

key molecules in COVID-19 status and severity, we employed stability selection [3] and regu-

larized regression models to each set of molecules. These molecules were further analyzed

through enrichment analysis, which revealed key pathways enriched in COVID-19. The signif-

icant pathways were then summarized through their first two principal components, which

were then used as predictors in multivariate regression models. From these multivariate

regression models, we were able to assess the significance of the pathways in COVID-19 status

and severity. In addition to the individual analyses of each view we take the integrative

approach Sparse Multiple Canonical Correlation Analysis (smCCA) to assess relationships

between the views of data [4].

2. Materials and methods

2.1 Dataset

The data used for this multi-omic analysis was collected from April 6, 2020, through May 1,

2020, by Overmyer et al., 2020. A total of 128 patients experiencing respiratory issues were

admitted to the Albany Medical Center in Albany, NY and had blood taken and clinical data

collected. A summary of the clinical variables is provided in S1 Table in S1 File. After the

blood samples were taken it was determined which patients had the SARS-CoV-2 infection

and resulted in 102 patients testing positive for COVID-19, and the remaining 26 patients test-

ing negative. The data from these patients were used to explore the possible correlation of cer-

tain biomarkers with status and severity of COVID-19. The blood samples collected were used

for multiple omics analyses. RNAseq was performed on leukocytes isolated from the blood

samples. From the blood plasma, mass spectrometry (MS) technology was used to identify and

quantify proteins, lipids and metabolites. The data were filtered in two layers. Any molecules

which were not significant in either disease status or severity at an alpha of 0.1 were removed

from the sample. Following this first layer of filtering, low variance molecules were removed.

A more detailed description of the filtering process for these datasets is provided in the meth-

odology section. One of the main goals of our paper is to determine which molecules and

molecular pathways are key determinants in disease severity. Two methods were used to mea-

sure disease severity in the Overmyer et al., 2020 paper. These methods were the World Health

Organization (WHO) 0–8 disease specific scale where 8 denotes death, as well as a score out of

45 indicating the number of hospital free days (HFD-45). A HFD-45 value of 0 indicates the

individual was still admitted in the hospital after 45 days, or that the individual died. As men-

tioned in the Overmyer et al., 2020 paper, the scores give comparable outcomes. However, the

HFD-45 measurement is favoured as it is more granular and not a disease specific measure-

ment hence it is easily applied to patients without COVID-19. For the main analyses in this

paper, only clinical covariates which were present in all of the samples were used. Specifically,

we focus on the Charlson comorbidity index (CCI) score, age and sex. The CCI score is a score
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to assess the comorbidities of a patient based on the number and severity of comorbid condi-

tions, with higher scores indicating more comorbidities and higher severity. Comorbidities

have been shown to be strongly related to COVID-19 outcomes, so this is crucial to fit in the

models [5]. Age has also been shown to have a significant effect on the disease severity [6] so

models were adjusted to incorporate age. The initial dataset contains 18,212 genes, 517 pro-

teins, 111 molecules from metabolomics analysis, and 3,357 lipids, which were filtered as dis-

cussed in the following section.

2.2 Filtering the data

The omics data were normalized and transformed with a log base 2. Further details on normal-

ization and initial quality control filtering are available in the Overmyer et al., 2020 paper. For

this paper we used the normalized data which passed quality control. These 517 proteins, 111

molecules from metabolomics analysis, and 3,357 lipids were read in from the Sqlite database

[7]. Due to some missing clinical data critical to the study, some patients were excluded result-

ing in 99 patients with COVID-19 and 24 patients without COVID-19. For this study the raw

RNAseq data on 18,212 genes was read from the National Center for Biotechnology Informa-

tion. Once reading in the data we apply our own filtering methods. All genes which were miss-

ing in over 70% of the samples were removed from the dataset and 15740 genes remained. Any

remaining missing values were imputed via the K-nearest neighbourhood algorithm (k = 11).

The algorithm is easily implemented using the Impute package in R [8]. The resulting log base

2 transformed data were filtered via univariate regression at the significance level alpha of 0.1.

Any molecule which was not statistically significantly associated with COVID-19 or severity

was removed from the data. To determine significance with COVID-19, logistic regression

models were fit using COVID-19 status as the outcome. Linear regression models were fit

using HFD-45 as a continuous response to determine significance with severity. Each molecule

was tested for significance using the likelihood-ratio test adjusting for age and sex. This filter-

ing method resulted in 14499 genes, 80 molecules from metabolomics analysis, 352 proteins,

and 2031 lipids. Following this layer of filtering, the molecules with low variation were

removed from the analysis. The threshold for low variation was determined separately for each

molecule type by analyzing a histogram of the variances. A visual of this filtering process is

provided in S1 Fig in S1 File. Following filtering, the dataset to be analyzed consists of 5800

genes, 72 molecules from metabolomics analysis, 264 proteins, and 1015 lipids. Some of the

molecules remaining after the filtering process were unidentified, specifically we were left with

unidentified lipids and metabolites. Of the 863 unidentified lipids we were able to identify 693

using LIPID MAPS1 comprehensive classification system for lipids, which uses retention

time and mass per charge (m/z) to make an identification, and we allowed a tolerance of 0.05

[9]. Unfortunately, none of the 31 unknown molecules from metabolomics were annotated in

the original Overmeyer et al. paper and could not be identified via a search of the HMDB data-

base. Any unknown molecules were excluded from enrichment analysis.

2.3 Stability selection

In order to select the biomolecules we would like to analyze, we used the elastic net regulariza-

tion method coupled with stability selection [10] with error control as implemented in the

stabs package in R. Stability selection is a resampling method to control for type 1 error [29].

In order for a variable to be included in the selection process, it must be selected over a set

threshold proportion of the subsamples. Typically, this threshold is set between 0.6 and 0.9,

and in the study, we specifically set the threshold to 0.6. It should be noted that increasing the

threshold had little to no effect on the results. In addition to this tuning parameter, stability
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selection also requires either a restriction on the per-family-error rate or the parameter which

specifies the average number of variables to be selected at each subsampling iteration. This

parameter can easily be calculated to set the error rate at a fixed level and will be dependent on

the total number of molecules which we are selecting from and the specified threshold. In this

case the parameter was specified to set the family wise error rate to 0.05. For each of the four

molecule types, stability selection was used three times. Stability selection was used with i) all

patients and COVID-19 status as the response, ii) all patients with severity measured by HFD-

45 as the outcome, and iii) only patients with COVID-19 and HFD-45 as the outcome. The

groups of selected molecules are then independently inspected via enrichment analysis.

2.4 Enrichment analysis

To further examine the selected biomolecules, we performed enrichment analyses. For the

metabolomics, proteomics, and RNAseq data, the Ingenuity Pathway Analysis (IPA) [11] soft-

ware was used. The lipid set enrichment analyses were performed with Lipid Pathway Enrich-

ment Analysis (LIPEA), which is an online tool specifically designed for the analysis of

lipidomics data. Both of these methodologies are similar in how they operate. From the output

from IPA, we will focus on the predicted pathways that are enriched (top canonical pathways)

and a prediction of affected biology (top diseases and biological functions). IPA calculates the

p-values using a right-tailed Fisher’s exact test to determine whether molecules indicate a path-

way is significant hence the p-values provide insight into the probability the molecules were

selected randomly. The LIPEA software gives less information than IPA. The enriched path-

ways are given along with the p-values of their significance, however, LIPEA uses the over-

representation analysis methodology (ORA) to calculate p-values and determine enriched

pathways [12].

2.5 Associating molecules with clinical outcomes

Following enrichment analysis, we performed further analysis to determine pathways strongly

associated with clinical outcomes. Specifically, we performed principal components analysis

(PCA) on the molecules in enriched pathways. Principal components (PCs) are useful because

they are orthogonal and hence make sure we are getting uncorrelated modes of variation.

With these principal components we are able to assess the correlation with clinical covariates

and fit regression models to assess how well the enriched pathways are able to predict clinical

outcomes. The first two PCs of the significant pathways were fit as covariates in regression

models. The pathways selected for COVID-19 status were fit with disease status as the outcome

in a logistic regression model adjusting for age and sex. The pathways selected for disease

severity for all patients were fit in a model with HFD-45 as the response adjusting for age and

sex. The process is the same for molecules selected specifically for COVID-19 severity, however

the models are fit using the subset of patients which tested positive for COVID-19.

2.6 Unsupervised integrative analysis

In order to better assess the relationships between the views of data we implement the unsu-

pervised method Sparse Multiple Canonical Correlation Analysis (smCCA) [4]. smCCA is an

integrative method that works to determine key features in multiple views of data, while maxi-

mizing the correlation across the views. This method uses penalized matrix decomposition to

identify sparse linear combinations of the correlated datasets and an L1 penalty to induce spar-

sity on coefficients. Inducing sparsity allows us to determine a smaller amount of key mole-

cules that captured the correlation of the multi-view data. In order to choose the parameters

for the L1 penalty, we permute the data 100 times and smCCA is performed on each
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permutation, and a Fisher z-statistic is used to select the optimal parameters. Once the penalty

parameters have been selected, smCCA is performed on the four views of data using 100

iterations.

3. Results

In Section 5.1, we first discuss the results with respect to COVID-19 status, while the next two

sections (Section 5.2 and 5.3) focus on the results related to disease severity. Sections 5.2 and

5.3 include results found from analysis performed on data from all patients, and those with

COVID-19 only, respectively. The final section (Section 5.4) presents the results of the smCCA

analysis. In addition, violin plots of the top stability selected genes and proteins for COVID-19

status are provided in the S2, S3 Figs in S1 File.

3.1 COVID-19 status

Stability selection on the RNA seq data identified 16 stable genes that were associated with

COVID-19 status (refer to S2A Table in S1 File). A core analysis using the Ingenuity Pathway

Analysis (IPA) software on these 16 genes revealed the top five enriched canonical pathways,

and top ten predicted effects on biology. This output is summarized in Table 1. Principal com-

ponents analysis was performed on each pathway and the first two principal components

(PCs) were used to summarize the pathways. A Pearson’s correlation matrix displays how the

different PCs relate to some of our clinical covariates. The heatmaps of these correlation matri-

ces are available in Fig 1 where we notice that the PCs are significantly correlated with multiple

clinical covariates. This correlation is especially evident in the fibrinogen measurements (mg/

dL). Fibrinogen is a clotting factor protein which plays a key role in blood clot formation [13].

In order to assess which pathways are significantly associated with disease status, we addition-

ally fit multivariate logistic regression models with COVID-19 status as the response and PCs

as predictors. We adjusted the models for age, sex and Charlson score. In Table 2 the summa-

ries for each regression model are supplied. We only focused on the two first pathways as

genes in other pathways belong also to those two pathways, and the last pathway only contains

one molecule. Refer to Table 1 to see which genes were selected from each pathway. From the

regression models, the PCs are significant predictors of COVID-19 status for all of the selected

pathways. Notably, the top two pathways are involved in the regulation of the cell cycle. Other

than the G2/M DNA damage checkpoint regulation and control of chromosomal replication

pathways, we find that the mitotic roles of Polo-Like Kinase pathway are also enriched. This

pathway plays a role in cell separation. The ATM-signaling pathway is also enriched which

plays a role in activating the DNA damage checkpoint. Together, these findings suggest that

the most unique aspects of COVID-19 are its effects on the cell cycle, which aligns with a study

performed on Vero E6 cells that further explores dysregulation of the cell cycle [14]. A visual

of the overlapping networks is available in Fig 2 where we observe overlapping genes between

all the networks.

The same procedure was applied to the proteomics data, and 22 molecules were determined

to be associated with COVID-19 status (refer to S2 Table in S1 File). A summary of the enrich-

ment analysis performed in IPA is available in Table 3. Of note, 9 of the molecules determined

to be associated with COVID-19 status are suggested to be involved in neurological disease.

These findings align with current studies which indicate that COVID-19 may be associated

with certain neurological conditions such as ischemic strokes [15]. Further, a retrospective

cohort study investigating psychiatric and neurological associations with COVID-19 diagnosis

[16] found some evidence to show that incidences of multiple neurological conditions (e.g.,

strokes, anxiety) were higher in patients recovering from COVID-19 than the influenza. As in
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the case with the genes selected to be related to COVID-19 status (using RNAseq data), we

observed a strong signature in the cell cycle. The top biological functions and diseases are also

related to the cycle and inflammation and organismal injury. The top pathways enriched in

the protein list are linked to the metabolic processes. For instance, the LXR/RXR activation

pathway, which plays a key role in regulation of lipid metabolism, inflammation, and the cho-

lesterol to bile acid catabolism process, was enriched [16]. The FXR/RXR activation pathway,

which plays a role in the metabolic process and a moderator of bile, lipid and glucose homeo-

stasis, was also enriched [17]. These findings are in agreement with the original study [2]

which determined that a dysregulated lipid transport system is likely a key signature of

COVID-19. The acute phase response signalling pathway which was also found to be signifi-

cantly enriched plays a key role in the inflammatory response, which again indicates to us the

unique immune response to COVID-19. Four of the top enriched pathways had more than

one molecule selected so PCA was performed on the four pathways. The PC scores of the indi-

viduals relating to each pathway were further correlated with clinical covariates. A heat map of

Table 1. Enrichment analysis of genes associated with COVID-19 status.

Top Diseases and Biological Functions

P-value

range

Selected Molecules

Connective Tissue Disorders 4.04E-03–

1.18E-05

CDC45, CDC6, TYMS

Developmental Disorder 4.04E-03–

1.18E-05

CDC45, CDC6, TYMS, CCNB1, OBSL1

Gastrointestinal Disease 1.21E-02–

1.18E-05

CCNB1, CDC25C, CDC45, CDC6, DEPDC1B DIAPH3,

GINS2, MCM10, OBSL1, PBK, TYMS
Organismal Injury and Abnormalities 1.21E-02–

1.18E-05

CCNB1, CDC25C, CDC45, CDC6, DEPDC1B, DIAPH3,

FHL2, GINS2, MCM10, OBSL1, PBK, TYMS
Skeletal and Muscular Disorders 7.57E-03-

1.18E-05

CDC45, CDC6, TYMS, DIAPH3

Cell Cycle 1.14E-02–

5.08E-07

CCNB1, CDC25C, CDC45, CDC6, DIAPH3, FHL2, MCM10,

OBSL1, TYMS
DNA Replication, Recombination,

and Repair

9.40E-03–

1.51E-05

CCNB1, CDC6, CDC45, MCM10, PBK

Cell-To-Cell Signalling and

Interaction

4.04E-03–

8.80E-05

CCNB1, TYMS

Cell Death and Survival 1.01E-02–

1.24E-04

CCNB1, CDC25C, CDC45, CDC6, FHL2, MCM10, PBK,

TYMS
Post-Translational Modification 6.72E-03-

1.25E-04

CDC25C, CDC6, DIAPH3

Top Canonical Pathways

Pathway P-value Selected Molecules

Cell Cycle: G2/M DNA Damage

Checkpoint Regulation

4.87E-04 CCNB1, CDC25C

Cell Cycle Control of Chromosomal

Replication

6.36E-04 CDC6, CDC45

Mitotic Roles of Polo-Like Kinase 8.05E-04 CCNB1, CDC25C
ATM Signaling 1.86E-03 CCNB1, CDC25C
dTMP De Novo Biosynthesis 3.37E-03 TYMS

This table contains the enrichment analysis results for genes associated with COVID-19 status. For the gene set

enrichment analysis the IPA output contains the top five canonical pathways and top ten biological functions and

disease associations.

https://doi.org/10.1371/journal.pone.0267047.t001
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these correlations is provided in Fig 3. From the PCs of the pathways, some strong correlations

with clinical covariates emerge. For instance, the strongest correlations in the LXR/RXR and

FXR/RXR pathways, as well as the acute phase response signalling pathways are with the white

blood cell count and albumin levels. This correlation is expected considering white blood cells

Fig 1. The Pearson correlations of principal components of pathways associated with disease status. The Pearson correlations of

clinical variables and principal components used to summarize the enriched pathways in COVID-19 as predicted by IPA. These are the

pathways predicted to be enriched based on 16 genes determined to be associated with COVID-19 via stability selection. Only the

correlations which were significant (p-value<0.05) are reported. Some of the strongest correlations are with ferritin, CRP, and lactate.

https://doi.org/10.1371/journal.pone.0267047.g001

Table 2. Regression models for genes associated with COVID-19 status.

Pathway (Intercept) PC1 PC2 Age Gender

(Male)

Charlson

Score

Cell Cycle: G2/M DNA Damage Checkpoint, Mitotic Roles of

Polo-Like Kinase & ATM Signaling

Coef (SE) 1.703 (1.791) 3.221

(0.687)

1.824

(1.292)

0.025

(0.036)

1.742

(0.937)

-0.091

(0.230)

p-values
�LRT

- <2e-16 0.370 0.349 0.047 0.696

95% Conf.int (-1.711,

5.509)

(2.101,

4.870)

(-0.515,

4.595)

(-0.045,

0.098)

(0.030,

3.800)

(-0.529,

0.380)

%Var

Explained

- 92.79% 7.21% - - -

Cell Cycle Control of Chromosomal Replication Coef (SE) 5.645 (2.573) -3.334

(0.861)

-3.781

(1.624)

-0.010

(0.042)

1.902

(1.012)

-0.179

(0.287)

p-values
�LRT

- <2e-16 0.022 0.393 0.043 0.526

95% Conf.int (1.267,

11.687)

(-5.504,

-2.015)

(-7.359,

-0.694)

(-0.096,

0.073)

(0.080,

4.176)

(-0.789,

0.368)

%Var

Explained

- 95.36% 4.64% - - -

Summary of multivariate logistic regression models with COVID-19 status as the outcome and the first two principal components used to summarize the enriched

pathways associated with COVID-19 status as the predictors. The models are also adjusted for the clinical covariates: age, sex and Charlson comorbidity score. P-values

for significance are determined via the likelihood ratio test (LRT).

https://doi.org/10.1371/journal.pone.0267047.t002
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Fig 2. Overlapping networks associated with COVID-19. Visual of the overlapping networks enriched in COVID-19 as determined from the

RNAseq data. The nodes represent the networks and the edges represent the overlapping genes between the networks. The edge labels give the

number of overlapping molecules between the networks.

https://doi.org/10.1371/journal.pone.0267047.g002

Table 3. Enrichment analysis of proteins associated with COVID-19 status.

Top Diseases and Biological Functions

P-value

range

Selected Molecules

Neurological Disease 4.85E-02–

1.25E-05

C4A/C4B, CSF1R, HLA-B, HRG, HSPD1, LGALS3BP, LUM, PLTP,

TTR
Organismal Injury and

Abnormalities

4.99E-02–

1.25E-05

APMAP, C4A/C4B, CKM, CRTAC1, CSF1R, HLA-B, HRG, HSPD1,

IGHV1-2, LCP1, LGALS3BP, LUM, PLTP, SFTPB, TTR
Metabolic Disease 2.15E-02–

5.18E-05

C4A/C4B, CKM, CSF1R, HRG, HSPD1, PLTP, SFTPB, TTR

Psychological Disorders 3.78E-02–

5.18E-05

C4A/C4B, CSF1R, HLA-B, HRG, HSPD1, PLTP, TTR

Inflammatory Response 4.50E-02–

1.05E-04

C4A/C4B, CKM, CSF1R, HLA-B, HRG, HSPD1, IGKV2-30, IGLV3-1,

LCP1, LGALS3BP, PLTP, TTR
Cellular Movement 3.75E-02–

7.82E-06

C4A/C4B, CSF1R, HRG, HSPD1, IGKV2-30, IGLV3-1, LCP1,

LGALS3BP
Protein Synthesis 3.22E-03–

3.28E-05

C4A/C4B, H3C15, HSPD1, SFTPB, TTR

Cellular Compromise 1.38E-02–

1.82E-04

C4A/C4B, HLA-B, HRG, LGALS3BP, TTR

Cell Death and Survival 4.75E-02-

2.62E-04

C4A/C4B, CSF1R, HLA-B, HRG, HSPD1, SFTPB

Cellular Development 4.75E-02–

2.62E-04

C4A/C4B, CSF1R, HLA-B, HSPD1, LUM, TTR

Top Canonical Pathways

Pathway P-value Selected Molecules

LXR/RXR Activation 1.48E-04 C4A/C4B, PLTP, TTR
FXR/RXR Activation 1.63E-04 C4A/C4B, PLTP, TTR
Acute Phase Response

Signalling

4.67E-04 C4A/C4B, HRG, TTR

Type I Diabetes Mellitus

Signaling

3.81E-03 HLA-B, HSPD1

Creatine-phosphate

Biosynthesis

4.33E-03 CKM

This table contains the enrichment analysis results for proteins associated with COVID-19 status. For the protein set

enrichment analysis the IPA output contains the top five canonical pathways and top ten biological functions and

disease associations.

https://doi.org/10.1371/journal.pone.0267047.t003
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and albumin are directly related to the inflammatory response [18]. In addition, logistic regres-

sion models were fitted using clinical covariates and the first two principal components from

the pathways as predictors, and COVID-19 status as the outcome. The p-values associated

with the predictors are reported in Table 4. As in the case with the RNAseq data, the PCs are

statistically significant in the logistic regression models. Further, the Charlson comorbidity

score is found to be significant in these models. A visual of the overlapping networks is avail-

able in Fig 4.

When stability selection was used to select metabolites associated with COVID-19 status, 25

molecules were selected, however only 11 of the molecules were able to be mapped to known

pathways. A summary of the enrichment analysis performed on these molecules in IPA is pro-

vided in Table 5. Similar to the RNAseq and proteomics analyses we notice that one of the

main effects of COVID-19 seems to be on the cell cycle. We observe molecules that are related

to infectious disease and antimicrobial response involved in the signature of COVID-19. In

addition, two molecules which were selected are related to neurological disease which is in

agreement with findings from the proteomics data. As none of the top pathways contain more

than one molecule, PCA was not used to further look into these pathways. Notice that most of

the selected pathways are centred around myo-inositol which plays a role in pathways that syn-

thesize vitamin C. Further analysis into these pathways could reveal if vitamin C is a potential

treatment for COVID-19.

From the lipidomics data, 12 molecules were selected to be associated with COVID-19 sta-

tus via stability selection, however only 9 of these were annotated and input into LIPEA

Fig 3. The Pearson correlations of principal components of pathways associated with disease status. The Pearson

correlations of clinical variables and the principal components used to summarize the enriched pathways with COVID-

19 status as predicted by IPA. These are the pathways predicted to be enriched based on the 22 proteins determined to

be associated with COVID-19 status via stability selection. Only the correlations which were significant (p-value<0.05)

are reported. The strongest correlations with the LXR/RXR activation and FXR/RXR activation pathways are with

SOFA score and white blood cell count. The strongest correlation with the acute phase response signalling pathway is

with HFD-45. With the diabetes mellitus signalling pathway, the top correlation is with fibrinogen.

https://doi.org/10.1371/journal.pone.0267047.g003
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software [19] for enrichment analysis. Ten (10) pathways were determined to be enriched. The

summary of the top five pathways is available in Table 6. The pathways which have more than

one molecule selected and a p-value less than 0.05 were further analyzed through their princi-

pal components. The same molecules were selected for four statistically significant pathways

(based on unadjusted p-values). These pathways include cholesterol metabolism, fat digestion

and absorption, vitamin digestion and absorption, and ovarian steroidogenesis. This results in

one correlation matrix with clinical covariates and PCs as shown in Fig 5, as well as one regres-

sion model with COVID-19 status as the response. The cholesterol metabolism pathway was

enriched and this aligns with other research papers which show a unique effect of COVID-19

on cholesterol metabolism [20]. The fact that much of the molecules selected are related to

ovarian steroidogenesis is in agreement with current studies that ovarian injury and reproduc-

tive endocrine disorder can be observed in women with COVID-19 [21]. A summary of the

regression model is available in Table 7. It shows that the first PC scores are significant in the

Table 4. Regression models for proteins associated with COVID-19 status.

Pathway (intercept) PC1 PC2 Age Gender (Male) Charlson Score

LXR/RXR Activation FXR/RXR Activation Coef (SE) 36.911 (6.645) -3.915 (2.181) 5.363 (2.418) -0.135 (0.132) -2.315 (3.225) -1.561 (0.836)

p-values �LRT - 0.003 0.010 0.002 0.741 0.062

95% Conf.int (23.886, 49.936) (-8.190, 0.361) (0.623, 10.102) (-0.393, 0.123) (-8.636, 4.005) (-3.199, 0.076)

%Var Explained - 40.97% 34.26% - - -

Acute Phase Response Signalling Coef (SE) 38.192 (6.196) 2.337 (0.849) 3.028 (0.903) -0.106 (0.122) -1.899 (3.041) -2.446 (0.818)

p-values �LRT - 0.029 0.001 <2e-16 0.921 0.003

95% Conf.int (26.048, 50.336) (0.674, 4.000) (1.259, 4.797) (-0.346, 0.134) (-7.860, 4.062) (-4.049, -0.843)

%Var Explained - 49.99% 33.18% - - -

Type I Diabetes Mellitus Signaling Coef (SE) 2.358(1.358) -0.938 (0.198) 1.179 (0.369) 0.008 (0.025) 0.706 (0.654) -0.163 (0.154)

p-values �LRT - <2e-16 <2e-16 0.976 0.274 0.291

95% Conf.int (-0.162, 5.243) (-1.373, -0.586) (0.547, 2.008) (-0.043, 0.058) (-0.565, 2.041) (-0.471, 0.144)

%Var Explained - 61.52% 38.48% - - -

Summary of multivariate logistic regression models with COVID-19 status as the outcome and the principal components used to summarize the enriched pathways

associated with COVID-19 status as the predictors. The models are also adjusted for the clinical covariates age, sex and Charlson comorbidity score. P-values for

significance are determined via the likelihood ratio test (LRT).

https://doi.org/10.1371/journal.pone.0267047.t004

Fig 4. Overlapping networks associated with COVID-19. Visual of the overlapping networks enriched in COVID-19 as determined

from the proteomics data. The nodes represent the networks, and the edges represent the overlapping proteins between the networks.

The edge labels give the number of overlapping molecules between the networks.

https://doi.org/10.1371/journal.pone.0267047.g004

PLOS ONE Enriched pathways associated with COVID-19

PLOS ONE | https://doi.org/10.1371/journal.pone.0267047 April 25, 2022 10 / 30

https://doi.org/10.1371/journal.pone.0267047.t004
https://doi.org/10.1371/journal.pone.0267047.g004
https://doi.org/10.1371/journal.pone.0267047


model. The lipidomics analysis gives us similar results to the proteomics data, as the significant

pathways tend to be related to metabolic processes. The top correlations with the principal

components are found to be the Charlson comorbidity score, and both the SOFA and

APACHE II scores (see Fig 5).

3.2 COVID-19 severity (all patients)

When stability selection was employed on the RNAseq data for all patients (i.e. patients with/

without COVID-19), with severity (measured as hospital free days) as the outcome, 25 genes

were selected. None of these selected genes were previously selected in relation to disease sta-

tus. These genes again were processed in IPA software and the results are summarized simi-

larly in Table 8. All of the pathways selected had only one molecule so further analysis into the

Table 5. Enrichment analysis of metabolites associated with COVID-19 status.

Top Diseases and Biological Functions

P-value range Selected Molecules

Antimicrobial Response 1.22E-04–1.22E-04 Sucrose
Dermatological Diseases and Conditions 1.22E-04–1.22E-04 Sucrose
Herditary Disorder 7.32E-04–1.22E-04 Myo-inositol
Infectious Diseases 9.12E-03–1.22E-04 Sucrose
Neurological Disease 7.91E-03–1.22E-04 Myo-inositol, sucrose
Small Molecule Biochemistry 4.56E-02–1.22E-04 Sucrose, L-kynurenine
Cell Cycle 2.44E-04–2.44E-04 L-kynurenine
Cell Morphology 2.44E-04–2.44E-04 Sucrose
Cellular Compromise 1.73E-02–2.44E-04 Sucrose, L-kynurenine
Cellular Assembly and Organization 4.72E-02–3.66E-04 Myo-inositol, sucrose
Top Canonical Pathways

Pathway P-value Selected Molecules

Myo-inositol Biosynthesis 1.10E-03 Myo-inositol
Sucrose Degradation V 2.32E-03 Sucrose
D-myo inositol(1,4,5)-triphosphate Degradation 2.68E-03 Myo-inositol
Superpathway of D-myo inositol(1,4,5)-triphosphate Metabolism 3.90E-03 Myo-inositol
D-myo inositol(1,4,5)-triphosphate Biosynthesis 4.26E-03 Myo-inositol

This table contains the enrichment analysis results for metabolites associated with COVID-19 status. For the

metabolite set enrichment analysis the IPA output contains the top five canonical pathways and top ten biological

functions and disease associations.

https://doi.org/10.1371/journal.pone.0267047.t005

Table 6. Enrichment analysis of lipids associated with COVID-19 status.

Enriched Pathways

Pathway p-value Benjamini correction Bonferroni correction Selected Molecules

Fat digestion and absorption 0.006718104 0.036949572 0.073899145 ST32:5;O10, ST24:4;O6
Cholesterol metabolism 0.006718104 0.036949572 0.073899145 ST32:5;O10, ST24:4;O6
Basal cell carcinoma 0.016853933 0.061797753 0.185393258 ST32:5;O10
Vitamin digestion and absorption 0.023682416 0.065126643 0.260506571 ST32:5;O10, ST24:4;O6
Ovarian steroidogenesis 0.033605179 0.073931393 0.369656964 ST32:5;O10, ST24:4;O6

This table contains the enrichment analysis results for lipids associated with COVID-19 status. For the lipidomics set enrichment analysis from LIPEA the top 10

enriched pathways are summarized.

https://doi.org/10.1371/journal.pone.0267047.t006
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pathways was not done. Though no PCA was performed on these pathways, there are some

interesting points to note. For one, we again observe that the cell cycle is one of the most signif-

icant bio functions. We also observe that the airway inflammation in asthma pathway is

enriched which aligns with current studies that show that asthma plays a significant role in

respiratory disease and COVID-19 outcomes. The other top pathways that were selected based

on the RNAseq data are related to inflammatory response and metabolic processes. Specifi-

cally, we find the enriched pathways centered around vitamin A metabolism. The retinoate

biosynthesis pathways as well as the visual cycle are all centered around the metabolism of vita-

min A. Vitamin A plays many important roles in human biology but some of the most impor-

tant roles are found in human vision and bone fragility/formation. We find the focus on

vitamin A interesting as recently vitamin A has been explored as an option to treat COVID-19.

Further investigation into vitamin A regulating pathways could provide more insight into the

Fig 5. The Pearson correlations of principal components of pathways associated with disease status. The Pearson correlations of clinical covariates and the

principal components used to summarize the enriched pathways with COVID-19 status as predicted by LIPEA. These are the pathways predicted to be

enriched based on the 9 lipids determined to be associated with COVID-19 status via stability selection. Only the correlations which were significant (p-

value<0.05) are reported. The strongest correlation is with the Charlson score.

https://doi.org/10.1371/journal.pone.0267047.g005

Table 7. Regression models for proteins associated with COVID-19 status.

Pathway (intercept) PC1 PC2 Age Gender

(Male)

Charlson

Score

Cholesterol metabolism, Ovarian steroidogenesis, Vitamin

digestion and absorption, Fat digestion and absorption

Coef (SE) -3.200

(1.208)

-0.315

(0.104)

-0.346

(0.116)

0.023

(0.021)

-0.494

(0.519)

0.058 (0.142)

p-values
�LRT

- 0.001 0.001 0.518 0.279 0.111

95% Conf.

int

(-0.537, -

0.124)

(-0.588,

-0.129)

(-0.019,

0.066)

(-1.530,

0.526)

(-0.227,

0.331)

%Var

Explained

- 51.77% 36.71% - - -

Summary of multivariate logistic regression models with COVID-19 status as the outcome and the principal components used to summarize the enriched pathways

associated with COVID-19 status as the predictors. The models are also adjusted for the clinical covariates age, sex and Charlson comorbidity score. P-values for

significance are determined via the likelihood ratio test (LRT).

https://doi.org/10.1371/journal.pone.0267047.t007
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potential efficacy of the treatment [22]. We also find that 23 of the molecules selected are deter-

mined to be associated with cancer. This is further evidence to support current studies which

state that individuals with cancer or recently recovered from cancer are at higher risk of severe

outcomes due to a weakened immune system [23, 24].

From the stability selection of proteins for HFD-45 using all patients, we ended up with 69

molecules which were put into IPA for enrichment analysis. Of these molecules, there were 2

which were unable to be mapped to any pathways. None of the 69 proteins were selected in

association with COVID-19 status. The summary of the IPA outputs is available in Table 9 and

the pathways with more than one molecule are further analyzed through PCA. We observed

similar results in the significant bio functions as was indicated in the RNAseq data, with the

cell cycle being one of the significant mechanisms. There were also 38 molecules associated

with inflammatory response that are related to disease severity, which emphasizes the unique

immune response that plays a significant role in clinical outcomes. From the proteomics data

Table 8. Enrichment analysis of genes associated with COVID-19 severity (all patients).

Top Diseases and Biological Functions

P-value

range

Selected Molecules

Cancer 4.98E-02–

1.11E-03

C17orf97, CNR1, CXXC4, DNAAF1, EPAS1, GOLGA8T, HEPHL1,

LRGUK, MEIS3, MFAP4, MYO5B, NECAB2, NFIB, OR52N4,

PRSS50, RBP5, RIPK4, RNASE2, SEZ6L, SPATA20, TMEM52B,

UGT2B11, ZNF221
Connective Tissue Disorders 4.47E-02–

1.11E-03

ESPAS1, NFIB, HEPHL, MFAP4, CNR1

Dermatological Diseases and

Conditions

1.11E-03–

1.11E-03

RIPK4, HEPHL1

Developmental Disorder 4.23E-02–

1.11E-03

EPAS1, RIPK4, NFIB, HEPHL1, MYO5B, DNAAF1, MFAP4, CNR1

Endocrine System Disorders 1.10E-02–

1.11E-03

EPAS1, CNR1

Cellular Movement 3.16E-02–

1.11E-03

CNR1, DNAAF1

Cellular Development 4.78E-02–

5.33E-03

CXXC4, EPAS1, RNASE2, RIPK4, NFIB

Cellular Growth and

Proliferation

4.78E-02–

5.33E-03

CXXC4, EPAS1, RIPK4, NFIB

Cell Death and Survival 6.63E-03–

6.63E-03

RNASE2

Amino Acid Metabolism 1.54E-02–

7.73E-03

EPAS1, CNR1

Top Canonical Pathways

Pathway P-value Selected Molecules

Retinoate Biosynthesis II 4.42E-03 RBP5
The Visual Cycle 2.08E-02 RBP5
Thyroid Hormone

Metabolism II

3.38E-02 UGT2B11

Airway Inflammation in

Asthma

3.49E-02 RNASE2

Retinoate Biosynthesis I 3.49E-02 RBP5

This table contains the enrichment analysis results for genes associated with disease severity when using all patients.

For the gene set enrichment analysis the IPA output contains the top five canonical pathways and top ten biological

functions and disease associations.

https://doi.org/10.1371/journal.pone.0267047.t008
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Table 9. Enrichment analysis of proteins associated with COVID-19 severity (all patients).

Top Diseases and Biological Functions

P-value

range

Selected Molecules

Inflammatory Response 2.10E-02–

4.69E-13

AGT, APOA2, ANPEP, APOM, ACSL6, B4GALT1, C4A/C4B,

CHI3L1, CFHR1, CTSD, CD5L, FCGR3A/FCGR3B, HBA1/
HBA2, HBB, HLA-A, HLA-C, HP, HRG, ITIH3, IGKV1D-8,

JCHAIN, LTA4H, LCP1, MRC1, PPBP, PSMA5, SERPINA3,

SPP2, TIMP1, TNC, TNXB, THBS4, VNN1, IGHV1OR15-1,

IGHV2-70, IGLC7, IGLV1-44, MASP1
Infectious Diseases 1.51E-02–

6.74E-12

ANPEP, AGT, APOA2, APOD, APOM, B4GALT1, C4A/C4B,

FCGR3A/FCGR3B, H2BC15, HBA1/HBA2, HBB, HLA-A,

HLA-C, HP, HRG, ITIH3, LTA4H, MRC1, PCYOX1, PPBP,

PSMA5, SERPINA3, SFTPB, TIMP1, VNN1
Endocrine System Disorders 3.47E-03–

7.74E-09

AGT, APOD, APOM, C4A/C4B, CETP, CHI3L1, COL18A1,

CTSD, FBLN5, FCGR3A/FCGR3B, HBA1/HBA2, HBB, HLA-A,

HLA-C, HP, IGFBP7, TNC, TNXB
Gastrointestinal Disease 2.10E-02–

7.74E-09

AGT, APOA2, APOD, APOF, APOM, C4A/C4B, CD5L, CETP,

CHI3L1, CNDP1, COL18A1, CTSD, FBLN5, FCGR3A/FCGR3B,

HBA1/HBA2, HBB, HLA-A, HLA-C, HP, IGFBP7, JCHAIN,

MRC1, PROZ TIMP1, TNC, TNXB
Metabolic Disease 9.07E-03–

7.74E-09

ANGPTL3, AGT, APOA2, APOC4-APOC2, APOD, APOM,

B4GALT1, C4A/C4B, CETP, CHI3L1, CHL1, COL18A1, CTSD,

FBLN5, FCGR3A/FCGR3B, GNPTG, HBA1/HBA2, HBB,

HLA-A, HLA-C, HP, HRG, IGFBP7, MRC1, PROZ, SERPINA3,

SFTPB, TIMP1, TNC, TNXB
Cellular Compromise 1.21E-02–

4.69E-13

ANPEP, B4GALT1, C4A/C4B, CHI3L1, CTSD, FCGR3A/
FCGR3B, HBB, HLA-C, HP, HRG, ITIH3, JCHAIN, LTA4H,

PPBP, PSMA5, SERPINA3, SPP2, TIMP1, VNN1
Cellular Movement 2.10E-02–

2.32E-10

AGT, ANGPTL3, ANPEP, APOD, C4A/C4B, CFHR1, CHI3L1,

CHL1, COL18A1, CTSD, FBLN5, HLA-A, HRG, IGFBP7,

IGHV1OR15-1, IGHV2-70, IGLC7, IGLV1-44, JCHAIN, LCP1,

PPBP, SERPINA3, SPARCL1, THBS4, TIMP1, TNC, WARS1
Cellular Function and

Maintenance

1.86E-02–

1.47E-09

ANK1, ANPEP, APOD, CD5L, COL18A1, FCGR3A/FCGR3B,

HBA1/HBA2, HBB, HP, HRG, IGHV1OR15-1, IGHV2-70,

IGLC7, IGLV1-44, JCHAIN, LCP1, MASP1, MRC1, TIMP1
Protein Synthesis 6.06E-03–

1.97E-08

AGT, APOA2, C4A/C4B, CCT6A, CNDP1, CTSD, IGFBP7,

LTA4H, PCYOX1, SFTPB, SPARCL1, SPP2, TIMP1, TNC,

WARS1
Cell Death and Survival 1.81E-02–

1.62E-06

ANK1, ANPEP, APOD, C4A/C4B, CHI3L1, CFHR1, COL18A1,

CTSD, FCGR3A/FCGR3B, HBA1/HBA2, HBB, HRG, PPBP,

PSMA5, SERPINA3, SFTPB, TIMP1, TNC
Top Canonical Pathways

Pathway P-value Selected Molecules

LXR/RXR Activation 1.04E-10 AGT, APOA2, APOD, APOF, APOM, C4A/C4B, CETP,

PCYOX1, PON3
FXR/RXR Activation 1.39E-10 AGT, APOA2, APOD, APOF, APOM, C4A/C4B, CETP,

PCYOX1, PON3
Acute Phase Response Signalling 1.16E-06 AGT, APOA2, C4A/C4B, HP, HRG, ITIH3, SERPINA3
Atherosclerosis Signalling 1.97E-06 APOA2, SPOD, APOF, APOM, COL18A1, PCYOX1
Neuroprotective Role of THOP1 in

Alzheimers Disease

2.00E-05 AGT, HLA-A, HLA-C, MASP1, SERPINA3

This table contains the enrichment analysis results for proteins associated with disease severity when using all

patients. For the protein set enrichment analysis the IPA output contains the top five canonical pathways and top ten

biological functions and disease associations.

https://doi.org/10.1371/journal.pone.0267047.t009
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the enriched pathways are once again determined to be the FXR/RXR and LXR/RXR path-

ways, and the acute phase response signalling pathway. These were again found to be signifi-

cant in the regression models with HFD as the outcome, summarized in Table 10. We also

find that the atherosclerosis signalling pathway is enriched which again is closely related to

metabolic processes especially cholesterol metabolism. It has been shown that COVID-19 may

magnify the evolution of atherosclerosis, which is a disease when plaque builds up in the arter-

ies [25]. The principal components from this pathway were also found to be significant in the

regression model, and had a strong correlation with SOFA score and lymphocyte volumes as

displayed in the correlation heatmaps for the PCs found in Fig 6. The final enriched pathway

was the neuroprotective role of THOP1 in Alzheimer’s disease; this pathway has a strong cor-

relation with lymphocyte levels and neutrophil percent. This relationship with Alzheimer’s has

been analyzed in other studies which explore the long term effects of COVID-19 [26]. The PCs

of this pathway were also significant in the disease severity regression model. Again a visual of

the overlapping networks is provided in Fig 7.

Stability selection of the metabolomics data resulted in 41 selected molecules with respect

to disease severity as measured by HFD-45. Twenty of these molecules were found to be

Table 10. Regression models for proteins associated with COVID-19 severity (all patients).

Pathway (Intercept) PC1 PC2 Age Gender

(Male)

Charlson

Score

LXR/RXR Activation/FXR/RXR Activation Coef (SE) 33.585 (5.321) -4.715 (0.737) 2.468 (0.941) -0.066

(0.102)

-3.022 (2.544) -1.088 (0.661)

p-values �LRT - <2e-16 0.002 0.024 0.328 0.100

95% Conf.int (23.157,

44.013)

(-6.159,

-3.271)

(0.623, 4.314) (-0.265,

0.134)

(-8.008, 1.963) (-2.383, 0.207)

%Var

Explained

- 37.37% 22.96% - - -

Acute Phase Response Signalling Coef (SE) 33.709 (4.689) -7.417 (0.883) 4.620 (0.976) -0.041

(0.090)

-4.843 (2.249) -1.258 (0.583)

p-values �LRT - <2e-16 <2e-16 0.010 0.058 0.031

95% Conf.int (24.519,

42.899)

(-9.147,

-5.687)

(2.708, 6.533) (-0.218,

0.136)

(-9.251,

-0.436)

(-2.401,

-0.114)

%Var

Explained

- 35.29% 27.82% - - -

Atherosclerosis Signalling Coef (SE) 37.090 (5.250) -4.756 (0.671) -5.971 (1.469) -0.116

(0.103)

-3.809 (2.569) -1.208 (0.677)

p-values �LRT - <2e-16 <2e-16 0.002 0.245 0.075

95% Conf.int (26.801,

47.379)

(-6.072,

-3.441)

(-8.850,

-3.092)

(-0.319,

0.086)

(-8.844, 1.226) (-2.535, 0.119)

%Var

Explained

- 64.54% 16.81% - - -

Neuroprotective Role of THOP1 in Alzheimers

Disease

Coef (SE) 42.017 (6.043) 2.078 (0.795) -0.012 (0.905) -0.184

(0.117)

-5.208 (2.981) -1.049 (0.772)

p-values �LRT - 0.011 0.956 0.001 0.103 0.174

95% Conf.int (30.172,

53.862)

(0.521, 3.636) (-1.786,

1.762)

(-0.413,

0.045)

(-11.051,

0.635)

(-2.561, 0.464)

%Var

Explained

- 46.06% 32.61% - - -

Summary of multivariate linear regression models with COVID-19 severity as the outcome using all patients, and the principal components used to summarize the

enriched pathways associated with disease severity status as the predictors. The models are also adjusted for the clinical covariates age, sex and Charlson comorbidity

score. P-values for significance are determined via the likelihood ratio test (LRT).

https://doi.org/10.1371/journal.pone.0267047.t010
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associated with COVID-19 status as well. Of the 41 molecules, 18 were able to be mapped to

known pathways and hence were analyzed. Because there is significant overlap with the mole-

cules selected with respect to COVID-19 status we observe similar results here as summarized

in Table 11.

From the lipidomics data, 53 lipids were selected via stability selection with HFD-45 as the

outcome. Only 36 of the molecules were annotated and hence were put into the LIPEA soft-

ware. Of these 36 molecules, only 11 were able to be mapped to pathways. The top five

Fig 6. The Pearson correlations of principal components of pathways associated with disease severity (all patients). The Pearson correlations of clinical

covariates and the principal components used to summarize the enriched pathways with disease severity as predicted by IPA. These are the pathways predicted

to be enriched based on the 67 proteins determined to be associated with disease severity via stability selection. Only the correlations which were significant (p-

value<0.05) are reported. These pathways all have multiple significant correlations with clinical covariates.

https://doi.org/10.1371/journal.pone.0267047.g006

Fig 7. Overlapping networks associated with COVID-19 visual of the overlapping networks enriched in COVID-19 as determined from the proteomics

data. The nodes represent the networks and the edges represent the overlapping proteins between the networks. The edge labels give the number of

overlapping molecules between the networks.

https://doi.org/10.1371/journal.pone.0267047.g007
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enriched pathways are presented in Table 12. The sphingolipid metabolism pathway was

selected based on more than one molecule hence it is further analyzed via principal compo-

nents analysis. The first PC is found to be significant in the linear regression model

Table 11. Enrichment analysis of metabolites associated with COVID-19 severity (all patients).

Top Diseases and Biological Functions

P-value range Selected Molecules

Cardiovascular Disease 2.23E-02–

5.73E-04

Myo-inositol, sucrose, uric acid

Endocrine System Disorders 3.99E-02–

5.73E-04

Myo-inositol, sucrose, uric acid

Hemtological Disease 3.11E-02–

5.73E-04

Myo-inositol, sucrose, uric acid

Metabolic Disease 3.11E-02–

5.73E-04

Myo-inositol, salicylic acid, sucrose, uric acid

Organismal Injury and Abnormalities 4.64E-02–

5.73E-04

L-kynurenine, myo-inositol, salicylic acid,

sucrose, uric acid
Cell Death and Survival 3.99E-02–

4.50E-04

L-kynurenine, salicylic acid, sucrose, uric acid

Cellular Compromise 2.67E-02–

4.50E-04

L-kynurenine, sucrose, uric acid

Carbohydrate Metabolism 3.33E-02–

7.87E-04

Myo-inositol, salicylic acid, sucrose, uric acid

Cell-To-Cell Signaling and Interaction 4.86E-02–

2.20E-03

L-kynurenine, sucrose, uric acid

Cell Morphology 2.25E-03–

2.25E-03

Sucrose

Top Canonical Pathways

Pathway P-value Selected Molecules

Myo-inositol Biosynthesis 8.97E-03 Myo-inositol
D-myo inositol(1,4,5)-triphosphate Degradation 1.12E-02 Myo-inositol
Urate Biosynthesis/Inosine 5’-phosphate

Degradation

2.01E-02 Uric acid

Superpathway of D-myo inositol(1,4,5)-

triphosphate Metabolism

2.01E-02 Myo-inositol

Sucrose Degradation V 2.23E-02 Sucrose

This table contains the enrichment analysis results for metabolites associated with disease severity when using all

patients. For the metabolite set enrichment analysis the IPA output contains the top five canonical pathways and top

ten biological functions and disease associations.

https://doi.org/10.1371/journal.pone.0267047.t011

Table 12. Enrichment analysis of lipids associated with COVID-19 severity (all patients).

Enriched Pathways

Pathway p-value Benjamini correction Bonferroni correction Selected Molecules

Sphingolipid metabolism 6.94137E-06 0.000104121 0.000104121 HexCer36:2;O2, HexCer40:2;O2, HexCer44:0;O2, SPBP18:1;O2
Fat digestion and absorption 0.018723372 0.084269663 0.280850581 CE.18.0
Cholesterol metabolism 0.018723372 0.084269663 0.280850581 CE.18.0
Sphingolipid signaling pathway 0.023682416 0.084269663 0.355236233 SPBP18:1;O2
Basal cell carcinoma 0.028089888 0.084269663 0.421348315 CE.18.0

This table contains the enrichment analysis results for lipids associated with disease severity when using all patients. For the lipidomics set enrichment analysis from

LIPEA the top 10 enriched pathways are summarized.

https://doi.org/10.1371/journal.pone.0267047.t012
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summarized in Table 13. The first PC also has a strong correlation with hemoglobin levels and

fibrinogen levels as shown in Fig 8. It appears this pathway displays less significance in disease

outcome than the pathways enriched in the previous omics data. The sphingolipid metabolism

is particularly interesting as this class of lipids is known for participation in the immune sys-

tem and current studies are looking at these lipids as a possible treatment for COVID-19 [27].

Another point of interest is that cholesterol esters are selected as driving molecules of clinical

outcomes. In another study analysing COVID-19 relationship with lipophagy in Vero E6 cells,

these lipids were found to be significantly decreased in COVID-19 [28].

3.3 COVID-19 severity (COVID-19 patients only)

Stability selection of genes significant in predicting HFD-45 from the 99 patients with

COVID-19 resulted in 17 selected genes. These genes were input into the IPA software and

again the outputs are summarized in Table 14. Of the 17 molecules selected via stability selec-

tion, 8 were previously selected in relation to severity when all patients were used. None of the

molecules selected in relation to COVID-19 status were selected. Compared with the analysis

using all patients we end up with only two repeat pathways, which are the airway inflammation

in asthma pathway and thyroid hormone metabolism II pathway. The new pathways selected

Table 13. Regression models for lipids associated with COVID-19 severity (all patients).

Pathway (Intercept) PC1 PC2 Age Gender (Male) Charlson Score

Sphingolipid metabolism Coef (SE) 38.733 (6.040) 1.2801 (0.580) -0.648 (0.758) -0.144 (0.116) -2.279 (3.01) -1.318 (0.768)

p-values �LRT - 0.031 0.394 0.001 0.310 0.061

95% Conf.int (26.772,50.694) (0.130, 2.430) (-2.150, 0.853) (-0.374, 0.087) (-8.234, 3.676) (-2.840, 0.203)

%Var Explained - 39.35% 23.08% - - -

Summary of multivariate linear regression models with COVID-19 severity as the outcome using all patients, and the principal components used to summarize the

enriched pathways associated with disease severity as the predictors. The models are also adjusted for the clinical covariates age, sex and Charlson comorbidity score. P-

values for significance are determined via the likelihood ratio test (LRT).

https://doi.org/10.1371/journal.pone.0267047.t013

Fig 8. The Pearson correlations of principal components of pathways associated with disease severity (all patients). The Pearson correlations of clinical

covariates and the principal components used to summarize the enriched pathways with disease severity using all patients as predicted by LIPEA. These are the

pathways predicted to be enriched based on the 11 lipids determined to be associated with disease severity via stability selection which were able to be mapped

to known pathways. Only the correlations which were significant (p-value<0.05) are reported. The strongest correlations are with fibrinogen and hemoglobin.

https://doi.org/10.1371/journal.pone.0267047.g008
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are pathogenesis of multiple sclerosis, agranulocyte adhesion and diapedesis, as well as the

complement system. These pathways are all related to the inflammatory response, once again

highlighting the unique immune response to COVID-19. We have only one pathway with

more than one selected molecule, so we look further into the agranulocyte adhesion and diape-

desis pathway through a Pearson’s correlation coefficient between the PCs and clinical covari-

ates (Fig 9). The agranulocyte adhesion and diapedesis pathway was found to have strong

correlations with white blood cell count, as to be expected considering this pathway is directly

involved in white blood cell production [29]. There is also a strong correlation between the

PCs and different comorbidity scoring methods (SOFA, APACHE II, Charlson comorbidity

index) methods. We also assess Agranulocyte Adhesion and Diapedesis pathways relationship

with COVID-19 severity by fitting a linear regression model of HFD-45 on the first two PCs,

adjusted for some clinical covariates, using only patients with COVID-19. The p-values of the

Table 14. Enrichment analysis of genes associated with COVID-19 severity (patients with COVID-19).

Top Diseases and Biological Functions

P-value

range

Selected Molecules

Dermatological Diseases and

Conditions

2.71E-02–

2.16E-04

APBA1, C8B, CXCL9, CXXC4, ITGB4, LRGUK, MADCAM1, NFIB,

PI3, RIPK4, SPATA20, SYNDIG1L, UGT2B11
Organismal Injury and

Abnormalities

4.99E-02–

2.16E-04

APBA1, C8B, CXCL9, CXXC4, GOLGA8T, ITGB4, LRGUK,

MADCAM1, NFIB, PI3, RIPK4, RNASE2, SPATA20, SYNDIG1L,

UGT2B11
Renal and Urological Disease 2.43E-02–

2.54E-04

CXCL9, ITGB4

Connective Tissue Disorders 4.71E-02–

7.22E-04

NFIB, ITGB4, CXCL9, RNASE2

Developmental Disorder 4.94E-02–

7.22E-04

NFIB, RIPK4, C8B, ITGB4

Cell-To-Cell Signalling and

Interaction

4.11E-02–

3.93E-05

ITGB4, MADCAM1, PI3, CXCL9, RNASE2, APBA1

Cell Cycle 2.29E-02–

7.22E-04

ITGB4, IP3

Cell Morphology 4.87E-02–

7.22E-04

ITGB4, CXCL9

Cellular Assembly and

Organization

4.87E-02–

7.22E-04

ITGB4, MADCAM1, APBA1, CXCL9

Cell Death and Survival 3.76E-02–

1.44E-03

ITGB4, CXCL9, RNASE2, PI3

Top Canonical Pathways

Pathway P-value Selected Molecules

Pathogenesis of Multiple

Sclerosis

6.48E-03 CXCL9

Agranulocyte Adhesion and

Diapedesis

6.97E-03 CXCL9, MADCAM1

Thyroid Hormone

Metabolism II

2.22E-02 UGT2B11

Airway Inflammation in

Asthma

2.22E-02 RNASE2

Complement System 2.57E-02 C8B

This table contains the enrichment analysis results for genes associated with disease severity when using patients with

COVID-19 only. For the gene set enrichment analysis the IPA output contains the top five canonical pathways and

top ten biological functions and disease associations.

https://doi.org/10.1371/journal.pone.0267047.t014
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different predictors are presented in Table 15. This pathway seems to play a significant role in

COVID-19 severity outcome, along with age which is to be expected. From the regression

results, the Charlson comorbidity index score is not statistically significant; this is likely due to

the strong correlation with the first principal component. Further, the top affected biological

functions reveal thirteen molecules that are related to dermatological diseases and conditions.

This finding agrees with studies that found that severe cases of COVID -19 result in many

patients experiencing dermatological symptoms [30].

There were 64 proteins selected via the stability selection methodology to be associated with

COVID-19 severity, however 2 of the molecules were unable to be mapped to any pathways.

Of the 64 proteins, 2 were selected previously in relation to COVID-19 status. The output

from the IPA is summarized in Table 16 and the enriched pathways were further analyzed via

PCA, and regression models. The FXR/RXR Activation and LXR/RXR Activation pathways

selected the same molecules so we fit one model. Because these molecules were selected specifi-

cally looking at the disease severity of patients with COVID-19, the regression models are fit

using only the 99 COVID-19 patients. The results of correlations with clinical covariates are

Fig 9. The Pearson correlations of principal components of pathways associated with disease severity (COVID-19 patients). The Pearson correlations of

clinical covariates and the principal components used to summarize the enriched pathways with COVID-19 severity as predicted by IPA. These are the

pathways predicted to be enriched based on 17 genes determined to be associated with COVID-19 severity via stability selection. Only the correlations which

were significant (p-value<0.05) are reported. This pathway has many significant correlations with clinical covariates, especially measures of disease severity.

https://doi.org/10.1371/journal.pone.0267047.g009

Table 15. Regression models for genes associated with COVID-19 severity (all patients).

Pathway (Intercept) PC1 PC2 Age Gender (Male) Charlson Score

Agranulocyte Adhesion and Diapedesis Coef (SE) 40.446 (5.841) -6.515 (1.407) -5.438 (1.499) -0.288 (0.114) -2.010 (2.830) -0.108 (0.792)

p-values �LRT - <2e-16 0.001 <2e-16 0.486 0.891

95% Conf.int (28.998, 51.895) (-9.271, -3.758) (-8.375, -2.500) (-0.512, -0.064) (-7.58, 3.537) (-1.661, 1.444)

%Var Explained - 57.02% 42.98% - - -

Summary of multivariate linear regression models with COVID-19 severity as the outcome using COVID-19 patients only, and the principal components used to

summarize the enriched pathways associated with disease severity status as the predictors. The models are also adjusted for the clinical covariates age, sex and Charlson

comorbidity score. P-values for significance are determined via the likelihood ratio test (LRT).

https://doi.org/10.1371/journal.pone.0267047.t015
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Table 16. Enrichment analysis of proteins associated with COVID-19 severity (patients with COVID-19).

Top Diseases and Biological Functions

P-value

range

Selected Molecules

Inflammatory Response 1.69E-02–

2.27E-11

ACSL6, AGT, APOA2, APOM, B4GALT1, CD163, CHI3L1,

DEFA1 HBA1/HBA2, HBB, HLA-C, HSPD1, ICAM1, IGKV1D-8,

IGHV1OR15-1, IGKV1-12, IGLC7, ITIH3, JCHAIN, LTA4H,

MBL2, MCAM, MRC1, PIGR, PPBP, PVR, PYGL, SERPINA3,

SERPINE1, SPARC, SPP2, THBS4, TNC, TNXB, TUBB
Infectious Diseases 1.69E-02–

2.05E-09

APOA2, APOD, APOM, B4GALT1, DEFA1, HBA1/HBA2, HBB,

HLA-C, HSPD1, ICAM1, ITIH3, LTA4H, MBL2, MCAM, MRC1,

PCYOX1, PPBP, PVR, PYGL, SERPINA3, SERPINE1, SFTPB,

SPARC, TKT, TUBB
Metabolic Disease 1.30E-02–

4.96E-07

AGT, APOA2, APOC4-APC2, APOD, APOM, B4GALT1,

CHI3L1, CHL1, COL6A1, FBLN5, GNPTG, HBA1/HBA2, HBB,

HLA-C, HSPD1, ICAM1, IGFBP7, MBL2, MRC1, PYGL, SFTPB,

SERPINA3, SERPINE1, SPARC, TKT, TNC, TNXB, TUBB
Neurological Disease 1.69E-02–

4.96E-07

ACSCL6, AGT, ANK1, APOA2, APOD, APOF, CHI3L1, CHL1,

DBH, FBLN5, HBA1/HBA2, HBB, HSPD1, ICAM1, MCAM,

MRC1, NCAM1, OIT3, OLFM1, PYGL, PZP, SERPINA3,

SERPINE1, SPARC, SPARCL1, THBS4, TNC, TNXB, TUBB,

WARS1, ZSWIM9
Organismal Injury and

Abnormalities

1.97E-02–

4.96E-07

ACSL6, AGT, ANK1, APOA2, APOC4-APOC2, APOD, APOM,

APOF, B4GALT1, CD163, CD5L, CHI3L1, CHL1, COL6A1, DBH,

DEFA1, FBLN5, GNPTG, HBA1/HBA2, HBB, HLA-C, HSPD1,

ICAM1, IGFBP7, IGKV1D-8, ITIH3, JCHAIN, LTA4H, MBL2,

MBL2, MCAM, MRC1, NCAM1, NID1, OLFM1, OIT3, PCYOX1,

PIGR, PON3, PPBP, PROZ, PVR, PYGL, PZP, SERPINE1,

SERPINA3, SFTPB, SPARC, SPARCL1, TKT, THBS4, TNC,

TNXB, TUBB, WARS1, ZSWIM9
Cellular Compromise 1.41E-02–

2.27E-11

B4GALT1, CHI3L1, DEFA1, HBB, HLA-C, ITIH3, LTA4H,

MCAM, PIGR, PPBP, PVR, PYGL, SERPINA3, SERPINE1,

SPARC, SPP2, TUBB
Cellular Movement 1.69E-02–

6.06E-11

AGT, APOD, CHI3L1, CHL1, COL6A1, DEFA1, FBLN5, HSPD1,

ICAM1, IGFBP7, IGHV1OR15-1, IGKV1-12, IGLC7, JCHAIN,

MCAM, NCAM1, PIGR, PPBP, PVR, SERPINA3, SERPINE1,

SPARC, SPARCL1, THBS4, TNC, WARS
Cellular Function and

Maintenance

1.01E-02–

7.52E-10

APOA2, ANK1, CD163, CD5L, HBA1/HBA2, HBB, ICAM1,

IGHV1OR15-1, IGKV1-12, IGLC7, JCHAIN, MBL2, MCAM,

MRC1, PIGR, SERPINE1, SPARC, THBS4
Cell-To-Cell Signalling and

Interaction

1.97E-02–

1.30E-06

AGT, B4GALT1, DBH, CD163, DEFA1, ICAM1, IGFBP7, MBL2,

MCAM, MRC1, NCAM1, NID1, PIGR, PPBP, SERPINE1, SFTPB,

SPARC, SPARCL1, THBS4, TNC
Protein Synthesis 8.50E-03–

2.58E-06

AGT, APOA2, HSPD1, IGFBP7, LTA4H, PCYOX1, SFTPB,

SPARCL1, SPP2, TNC, WARS1
Top Canonical Pathways

Pathway P-value Selected Molecules

LXR/RXR Activation 5.07E-08 AGT, APOA2, APOD, APOF, APOM, PCYOX1, PON3
FXR/RXR Activation 6.35E-08 AGT, APOA2, APOD, APOF, APOM, PCYOX1, PON3
Atherosclerosis Signalling 1.33E-06 APOA2, APOD, APOF, APOM, ICAM1, PCYOX1
Acute Phase Response Signalling 1.16E-05 AGT, APOA2, ITIH3, MBL2, SERPINA3, SERPINE1
Maturity Onset of Young

Diabetes Signaling (MODY)

2.38E-05 APOA2, APOD, APOF, APOM

This table contains the enrichment analysis results for proteins associated with disease severity when using patients

with COVID-19 only. For the protein set enrichment analysis the IPA output contains the top five canonical

pathways and top ten biological functions and disease associations.

https://doi.org/10.1371/journal.pone.0267047.t016
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available in Fig 10 while the results of the regression models are available in Table 17. We find

that the Charlson score has significance, however we observe that the pathway’s PCs still tend

to be more significant with the exception of the FXR/RXR and LXR/RXR activation pathways.

Four of the enriched pathways were also found to be enriched when the full sample was used.

The maturity onset diabetes of young (MODY) signaling pathway was enriched in the analysis

of data from COVID-19 patients only. MODY develops slowly and impairs insulin secretion

so that the body cannot adequately control blood glucose levels [31]. This relationship is inter-

esting as it aligns with current studies that individuals with diabetes are experiencing more

severe symptoms of COVID-19. A visual of the overlapping networks is found in Fig 11.

The same metabolites were found in stability selection when the COVID-19 subset was

used as when the full sample was used, and the ranking of the metabolites was so similar that

the IPA results are the same.

Of the 31 stability selected lipids which were significant in COVID-19 severity, only 9 were

able to be mapped to pathways. The top 5 significant pathways are presented in Table 18.

None of the pathways contain more than one molecule so PCA was not performed. We note a

recurring theme here again of an improperly regulated cell cycle as ferroptosis is associated

with severity which is a form of programmed cell death.

Fig 10. The Pearson correlations of principal components of pathways associated with disease severity (COVID-

19 patients). The Pearson correlations of the principal components used to summarize the enriched pathways with

COVID-19 severity as predicted by IPA. These are the pathways predicted to be enriched based on the 62 proteins

determined to be significant in COVID-19 severity via stability selection which were able to be mapped to known

pathways. Only the correlations which were significant (p-value<0.05) are reported. These pathways have many strong

correlations with clinical covariates.

https://doi.org/10.1371/journal.pone.0267047.g010
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3.4 Unsupervised integrative analysis

From the unsupervised integrative analysis we look at two components which are able to cap-

ture the correlation structure, for each dataset plots of the absolute values of the coefficients

for the first component are available in Fig 12, and from the second components in Fig 13. It is

observed that the datasets with the most molecules selected are the lipidomics and genomics

data. The molecules selected from this analysis are compared with the molecules selected via

stability selection. The lipid PA34:2, which was selected in component 2, is the only lipid

which had previously been selected in stability selection. The only annotated metabolite

selected for component 2, Quinolinic acid 2TMS derivative, was selected for all three stability

selections performed on metabolites. Violin plots of these particular molecules are available in

S4 and S5 Figs in S1 File. The protein with gene name TNC, which was selected in component

1, was previously also selected in stability selection and a violin plot for this particular molecule

is available in S6 Fig in S1 File. There was no overlap with the stability selected genes and the

selected genes in smCCA. Plots of the 3 genes with the largest coefficients for component 1

and component 2 are provided in S7 and S8 Figs in S1 File respectively. IPA was performed

individually on the 88 genes selected in component 1, and the 111 molecules selected in

Table 17. Enrichment analysis of proteins associated with COVID-19 severity (patients with COVID-19).

Pathway (Intercept) PC1 PC2 Age Gender

(Male)

Charlson

Score

LXR/RXR Activation/FXR/RXR Activation Coef (SE) 36.911 (6.645) -3.915 (2.181) 5.363 (2.418) -0.135

(0.132)

-2.315 (3.225) -1.561 (0.836)

p-values �LRT - 0.003 0.010 0.002 0.741 0.062

95% Conf.int (23.886,

49.936)

(-8.190, 0.361) (0.623,

10.102)

(-0.393,

0.123)

(-8.636,

4.005)

(-3.199, 0.076)

%Var

Explained

- 51.64% 16.63% - - -

Atherosclerosis Signalling Coef (SE) 37.090 (5.250) -4.756 (0.671) -5.971 (1.460) -0.116

(0.103)

-3.809 (2.569) -1.208 (0.677)

p-values �LRT - <2e-16 <2e-16 0.002 0.245 0.075

95% Conf.int (26.801,

47.379)

(-6.072, -3.441) (-8.850,

-3.092)

(-0.319,

0.086)

(-8.844,

1.226)

(-2.535, 0.119)

%Var

Explained

- 58.49% 16.98% - - -

Acute Phase Response Signalling Coef (SE) 38.192 (6.196) 2.337 (0.849) 3.028 (0.903) -0.106

(0.122)

-1.899 (3.041) -2.446 (0.818)

p-values �LRT - 0.029 0.001 <2e-16 0.921 0.003

95% Conf.int (26.048,

50.336)

(0.674, 4.000) (1.259, 4.797) (-0.346,

0.134)

(-7.860,

4.062)

(-4.049,

-0.843)

%Var

Explained

- 39.37% 34.47% - - -

Maturity Onset Diabetes of Young (MODY)

Signalling

Coef (SE) 37.491 (6.121) -8.948 (1.278) -1.317 (2.195) -0.107

(0.113)

-4.442 (2.771) -1.292 (0.708)

p-values �LRT - <2e-16 0.009 0.013 0.210 0.068

95% Conf.int (25.494,

49.487)

(-11.453,

-6.443)

(-5.619,

2.985)

(-0.330,

0.115)

(-9.872,

0.989)

(-2.679, 0.095)

%Var

Explained

- 59.65% 18.97% - - -

Summary of multivariate linear regression models with COVID-19 severity as the outcome using patients with COVID-19 only, and the principal components used to

summarize the enriched pathways associated with disease severity status as the predictors. The models are also adjusted for the clinical covariates age, sex and Charlson

comorbidity score. P-values for significance are determined via the likelihood ratio test (LRT).

https://doi.org/10.1371/journal.pone.0267047.t017
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component 2 from the analysis. The results of these analyses are available in Tables 19 and 20

respectively. The top canonical pathways from both components were not pathways previously

determined to be enriched using the stability selected molecules, however we observe that

many of the top biological functions and diseases were previously also determined to be

enriched. It is of interest to determine the pairwise correlations of the datasets. The pairwise

correlations of the scores from the smCCA are available in Table 21. From the table, the stron-

gest associations are between the metabolomics and lipidomics, as well as the metabolomics

and proteomics data. All the correlations are quite strong, with only one of the correlations

being less than 0.5. To visually assess whether this unsupervised method is able to separate

patients by COVID-19 status, we provide scatter plots of the component scores for each dataset

in Fig 14. From these plots it appears that the pairwise component scores are not able to accu-

rately separate the patients according to disease status. To assess statistically whether using all

components can differentiate patients by disease status, we perform a simple logistic regres-

sion. The results of the regression are available in Table 22. From the regression, the metabolo-

mics and proteomics score are most significant in COVID-19 status. Also, the components are

87.8% accurate at identifying true positive COVID-19 cases.

Table 18. Enrichment analysis of lipids associated with COVID-19 severity (COVID-19 patients).

Enriched Pathways

Pathway p-value Benjamini correction Bonferroni correction Selected Molecules

Sphingolipid metabolism 6.94137E-06 0.000104121 0.000104121 HexCer36:2;O2, HexCer40:2;O2, HexCer44:0;O2, SPBP18:1;O2
Fat digestion and absorption 0.018723372 0.084269663 0.280850581 CE.18.0
Cholesterol metabolism 0.018723372 0.084269663 0.280850581 CE.18.0
Sphingolipid signaling pathway 0.023682416 0.084269663 0.355236233 SPBP18:1;O2
Basal cell carcinoma 0.028089888 0.084269663 0.421348315 CE.18.0

This table contains the enrichment analysis results for lipids associated with disease severity when using patients with COVID-19 only. For the lipidomics set

enrichment analysis from LIPEA the top 10 enriched pathways are summarized.

https://doi.org/10.1371/journal.pone.0267047.t018

Fig 11. Overlapping networks associated with COVID-19. Visual of the overlapping networks enriched in COVID-19 as determined from the proteomics

data. The nodes represent the networks and the edges represent the overlapping genes between the networks. The edge labels provide us with the number of

overlapping molecules between the networks.

https://doi.org/10.1371/journal.pone.0267047.g011
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4. Discussion

From these independent omics analyses we notice some unique patterns and signatures of

COVID-19 emerge. Specifically, when looking at associations with disease status we realize a

dysregulated cell cycle reflected in the RNAseq enrichment analysis. This dysregulated system

is also apparent in the proteomics and metabolomics analyses where we observe several of the

selected molecules to be related to cell function and survival. From these independent analyses

it is also apparent there is an association with neurological conditions and COVID-19 as

Fig 12. Absolute coefficients for first component of smCCA. These plots contain the absolute values of the weights for each

datasets’ first component in smCCA.

https://doi.org/10.1371/journal.pone.0267047.g012

Fig 13. Absolute coefficients for second component of smCCA. These plots contain the absolute values of the

weights for each datasets’ second component in smCCA.

https://doi.org/10.1371/journal.pone.0267047.g013
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Table 19. Enrichment analysis of genes in smCCA component 1.

Top Diseases and Biological Functions

P-value range Number of Molecules

Gastrointestinal Disease 2.06E-02–7.14E-11 80

Organismal Injury and Abnormalities 2.06E-02–7.14E-11 87

Cancer 2.06E-02–1.18E-09 87

Hematological Disease 2.06E-02–1.18E -09 42

Immunological disease 2.06E-02–1.18E -09 52

Cellular Compromise 2.06E-02–6.90E-08 14

Cellular Movement 2.06E-02–1.36E-07 28

Cellular Function and Maintenance 1.01E-02–1.36E-07 8

Cell-To-Cell Signalling and Interaction 2.06E-02–3.43E-07 31

Protein Synthesis 2.06E-02–4.29E-07 22

Top Canonical Pathways

Pathway P-value Selected Molecules

TH1 Pathway 1.37E-09 CD247, CD3D, CD3E, CD3G, CD8A, GATA3, NFATC2, PRKCQ, TBX21
TH1 and TH2 Activation Pathway 1.86E-09 CD247, CD3D, CD3E, CD3G, CD8A, GATA3, NFATC2, PRKCQ, TBX21, TGFBR3
TH2 Pathway 4.28E-09 CD247, CD3D, CD3E, CD3G, GATA3, NFATC2, PRKCQ, TBX21, TGFBR3
Natural Killer Cell Signalling 11.09E-07 CD247, FYN, KLRC4-KLRK1/KLRK1, LCK, NCR3, NFATC2, PLCG1, PRKCQ, SH2D1A
T-Cell Receptor Signalling 4.55E-07 CD247, CD3D, CD3E, CD3G, CD8A, FYN, LCK, NFATC2, PLCG1, PRKCQ, SKAP1

This table contains the enrichment analysis results for genes active in component 1 from smCCA For the gene set enrichment analysis the IPA output contains the top

five canonical pathways and top ten biological functions and disease associations.

https://doi.org/10.1371/journal.pone.0267047.t019

Table 20. Enrichment analysis of genes in smCCA component 2.

Top Diseases and Biological Functions

P-value range Number of Molecules

Cancer 3.07E-02–6.78E-06 109

Organismal Injury and Abnormalities 3.07E-02–6.78E-06 109

Gastrointestinal Disease 2.67E-02–9.89E-06 101

Inflammatory Response 2.68E-02–5.90E-05 16

Dermatological Disease and Conditions 3.07E-02–6.48E-04 84

Cell Death and Survival 3.07E-02–4.90E-05 21

Cell-To-Cell Signalling and Interaction 2.68E-02–5.90E-05 26

Cellular Growth and Proliferation 2.57E-02–6.81E-05 16

Cellular Development 2.38E-02–5.20E-04 18

Lipid metabolism 3.07E-02–2.33E-03 9

Top Canonical Pathways

Pathway P-value Selected Molecules

Cellular Effects of Sildenafil 1.37E-09 CACNA2D2, CAMK4, ITPR3, MPRIP, PRKACB, SLC4A10
Netrin Signaling 1.86E-09 ABLIM1, CACNA2D2, ITPR3, PRKACB
Chemokine Signaling 4.28E-09 CAMK4, CCL4, MPRIP, RRAS2
Role of NFAT in Cardiac Hypertrophy 11.09E-07 AKAP5, CACNA2D2, CAMK4, ITPR3, PRKACB, RRAS2
Role of NFAT in Cardiac Hypertrophy 4.55E-07 BCL2, CACNA2D2, CAMK4, ITPR3, PRKACB

This table contains the enrichment analysis results for genes active in component 2 from smCCA For the gene set enrichment analysis the IPA output contains the top

five canonical pathways and top ten biological functions and disease associations.

https://doi.org/10.1371/journal.pone.0267047.t020
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reflected in the 22 molecules determined to be significant from the proteomics, lipidomics,

and RNAseq data. In addition, the proteomics, metabolomics, and lipidomics datasets indicate

that regulation and activation of metabolic processes, especially of cholesterol and vitamins,

are significantly associated with COVID-19 status and severity. This gives us a broad insight

into the signature of the disease. When looking at disease severity we discern a common

theme across all the datasets of an association with comorbidities such as diabetes as reflected

in the proteomics data, cancer which is reflected in the RNAseq data where 23 cancer associ-

ated molecules are chosen, as well as the lipidomics data. Associated with disease status and

disease severity we also have molecules involved with dermatological conditions. This is

reflected in both the RNAseq enrichment analysis and the metabolomics enrichment analysis.

This association corroborates other studies which have demonstrated long term dermatologi-

cal symptoms associated with severe COVID-19 cases. It is apparent from this analysis that

Table 21. Pairwise correlations of smCCA scores.

Genes (1) Genes (2) Prot (1) Prot (2) Metab (1) Metab (2) Lipid (1) Lipid (2)

Genes (1) 1 0.95 0.75 0.54 0.62 0.49 0.79 0.6

Genes (2) 0.95 1 0.75 0.64 0.7 0.58 0.78 0.68

Prot (1) 0.75 0.75 1 0.66 0.75 0.72 0.78 0.76

Prot (2) 0.54 0.64 0.66 1 0.83 0.8 0.69 0.88

Metab (1) 0.62 0.7 0.75 0.83 1 0.84 0.8 0.92

Metab (2) 0.49 0.58 0.72 0.8 0.84 1 0.63 0.88

Lipid(1) 0.79 0.78 0.78 0.69 0.8 0.63 1 0.82

Lipid(2) 0.6 0.68 0.76 0.88 0.92 0.88 0.82 1

Pairwise correlations of scores from smCCA.

https://doi.org/10.1371/journal.pone.0267047.t021

Fig 14. smCCA scores. Plot of the pairwise scores from smCCA. Note the red points are patients with COVID-19 and the blue are patients

without.

https://doi.org/10.1371/journal.pone.0267047.g014
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COVID-19 is a disease which disrupts many biological systems, and the unique relationships

to diseases such as dermatological and neurological conditions could mean serious implica-

tions for individuals who have been infected with the disease. These associations should be fur-

ther analyzed to better understand the effects and develop treatments. The unsupervised

integrative method used is able to capture the correlation structure of the datasets and provide

a set of important molecules. The analysis of these molecules via IPA again displayed mole-

cules associated with cancer and enriched in COVID-19. For future research we will be con-

ducting a supervised integrative analysis of all the data sets and clinical data to get a broader

perspective on the disease and enriched pathways. A supervised integrative method will allow

us to assess associations across the datasets while considering clinical outcomes. These associa-

tions have been hinted at in the independent analysis with recurring molecular themes and

confirmed through smCCA.
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