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Abstract

Automation has been shown to improve the replicability and scalability of biomedical and bioindustrial research. Although
the work performed in many labs is repetitive and can be standardized, few academic labs can afford the time and money
required to automate their workflows with robotics. We propose that human-in-the-loop automation can fill this critical
gap. To this end, we present Aquarium, an open-source, web-based software application that integrates experimental
design, inventory management, protocol execution and data capture. We provide a high-level view of how researchers can
install Aquarium and use it in their own labs. We discuss the impacts of the Aquarium on working practices, use in biofoun-
dries and opportunities it affords for collaboration and education in life science laboratory research and manufacture.
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1 Introduction

As the scale of scientific research expands, systems to support
replicable methods are increasingly important (1). Critical to
replicability is the question of how experiments are described
and how closely these descriptions are followed. Working prac-
tices for conducting biology experiments fall on a continuum
between artisanal and highly standardized. On one end, idio-
syncratic decisions made on the fly by a few people appear
throughout the experimental design. At worst, these decisions
are poorly documented, while at best they introduce extra ex-
perimental factors that make results challenging to compare
and replicate. At the other end, researchers follow well-
established protocols and do not deviate from them. This is due

to either top-down enforcement, as with clinical research, or to
the fact that doing so is simpler and more reliable, as with kits
for common procedures such as plasmid DNA isolation.
Similarly, record keeping varies from hand-written laboratory
notebooks and manually curated digital records to fully struc-
tured electronic notebooks.

A consequence of less structured approaches is that many
experiments cannot be repeated by different researchers (2, 3).
These types of issues are typically described under the terms
replicability (reproducibility of results) (4–7). While replicability in
science is a complex and multifaceted issue (8, 9), enforcement
of standardization of experimental work can result in more rep-
licable data collection (10, 11). However, the reality is that main-
taining this standardization and record keeping is laborious and
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researchers often fail to enforce strict standards on themselves
at the bench (12).

Robotic automation has been proposed as a solution for rep-
licable large-scale experimentation by delivering consistent per-
formance of delicate high-throughput procedures (13).
However, commercially available liquid handling robots and
general-purpose manipulators have high-upfront costs and are
laborious to reconfigure or reprogram (14). While robotic sys-
tems are continually improving, labs solely reliant on robots to
carry out experimental work are rare. Many experiments in-
volve tasks for which a human operator is well suited and more
cost-effective than currently available robots; for example, tasks
involving delicate hand-eye coordination or variable inputs and
protocols. Hence, it seems likely that human researchers will be
involved in benchtop experimentation for some time, and thus
the potential for non-standardized execution and sub-optimal
record keeping will remain as a concern.

To address this challenge, we built Aquarium—a web-based
application that integrates experimental design, inventory
management, protocol execution, and data collection.
Aquarium supports flexible development and deployment of
standardized workflows, composed of modular protocols that
drive on-screen, step-by-step instructions for human techni-
cians. During execution, experimental data and metadata are
captured in forms or uploaded as files. The software automates
computations involved in preparing and tracking samples
through protocol execution. Aquarium also provides features to
plan complex experiments involving many samples and
protocols.

Aquarium integrates two key software innovations:
Aquarium Workflow Language (AWL) for defining custom labo-
ratory workflows and Krill, a protocol language for describing
replicable laboratory instructions. AWL is a dataflow program-
ming language (15) that represents a laboratory workflow as a
network of modular work units linked by inputs and outputs.
Borrowing concepts from visual programming languages, such
as Scratch (16), protocols are represented graphically as blocks
that can be wired together to create workflows. Krill is a Ruby
domain-specific language that complements AWL by capturing
granular instructions for a protocol as computer code. In addi-
tion to complex procedural steps such as if-then statements,
loops and calculations, Krill has methods to facilitate sample
flow management and render instructions for technicians
working at the bench. Through AWL and Krill, Aquarium pro-
vides interactive web-based interfaces to build executable pro-
tocols, design experimental workflows based on these
protocols, manage the execution of protocols in the lab and au-
tomatically record the resulting data.

Aquarium also features a Python application program inter-
face (API), called Trident that provides a common interface for
other applications and scripts to interact with Aquarium, for ex-
ample, in planning complex workflows or extracting detailed
datasets. These three programmatic interfaces, combined with
inventory management and human-centered execution, make
Aquarium a comprehensive, open-source software platform
that facilitates low-cost scaling of laboratory research while
retaining replicability and flexibility.

2 Results
2.1 Planning laboratory work with Aquarium

From the perspective of the researcher, planning laboratory
work is the primary interaction with Aquarium. Researchers

design plans using a graphical user interface (GUI) that resem-
bles a sketch board (Figure 1). Plans are built from workflows,
essentially stereotyped series of procedures, in which materials
pass from an initial state to a final state. Within plans, each in-
put sample passes through a series of work modules termed
operations (Figure 2b), to produce desired output samples and
data. For example, a plan that ends with a sequence-verified
plasmid stock (Figure 1) might include a series of operations
such as PCR, DNA assembly, bacterial transformation and plas-
mid DNA purification. A plan may represent a fixed workflow
that always executes in the same way, or it may be extended as
it is executed. Thus, enabling the use of Aquarium for either
manufacturing or exploratory research and development.

Operations correspond to units of work that can be per-
formed on one sample, by one person, within a single work ses-
sion. Each operation will generally output a sample that can be
stored or used in a variety of other operations. Operations are
wired together such that the output of one operation is auto-
matically routed to and triggers the execution of one or more
subsequent operations (Figure 2b). Each operation is defined by
valid inputs and outputs as well as a detailed laboratory proto-
col, written in Krill, that renders on-screen instructions to guide
technicians. An Aquarium plan can encode arbitrarily large and
complex programs of work that progress automatically. As the
plan is executed, the state of inventory is automatically updated
and data are captured, stored and made available through the
GUI as well as the Python API.

2.2 Executing laboratory work

Aquarium contains its own laboratory information manage-
ment system (LIMS) that tracks lab inventory. Through the
LIMS, changes in inventory are recorded automatically as a part
of protocol and workflow execution, rather than requiring man-
ual updates. Hence, the workflow planner and Krill can reliably
use the LIMS as an up-to-date representation of the laboratory.

In Aquarium, a physical object is referred to as an item. Each
item has a recorded location and may have associated data
(Figure 3). An item is an instance of a sample, which is a class of
physical objects in the laboratory defined by a set of descriptors
determined by a sample type. The information fields used to de-
fine each sample type are chosen by the user and then apply to
every sample of that sample type. For example, a user may de-
fine a ‘plasmid’ sample type, including fields for information on
sequence, length and selectable markers, which would have to
be defined for each plasmid sample in the database. Using sam-
ple types ensures that inventory descriptions are standardized
while allowing the flexibility of custom definitions based on
user needs.

Each item belongs to a user-defined object type. One key pa-
rameter for the definition of an object type is the default location
wizard for items of this object type. Location wizards correspond
to storage locations such as fridges and freezers and are repre-
sented as matrices with unique numbered positions for items
within boxes, organized into rows and shelves (Figure 3b). Other
than the location wizard, the name of each object type is its
most important defined parameter and will indicate a physical
state of the sample, reflecting how it manifests or is used in the
laboratory. For example, a plasmid sample might have items as-
sociated with it belonging to a number of object types such as
‘Plasmid miniprep’, ‘Gibson assembly reaction product’ or ‘E. coli
overnight culture’. As items are generated in the course of labo-
ratory work, they are automatically assigned ID numbers as
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well as locations according to the location wizard defined by the
item’s object type.

Once the items required to initiate an operation in a plan are
available in the lab, the inputs to the operation are satisfied and
the operation can be executed. In the manager subsystem, an
executable operation is batched into a job with operations of the
same type to be executed together (Figure 2). A job may include
operations from many different plans and researchers but can
only be created from operations of the same type. A strict exe-
cution policy governs how and when operations can be batched
into jobs and executed in the lab (Supplementary Figure S1).
Running a job launches a graphical user interface that displays
step-by-step instructions to guide a technician through the
steps of the operation protocol (Figure 4).

2.3 Rendering instructions using the krill protocol
language

The Krill protocol language produces detailed, context-specific
instructions for how materials and data should be handled for
each operation (Figure 4). To accomplish this, Krill provides
methods that allow arbitrary computations to be rendered dy-
namically, so that specific instructions presented to the techni-
cian can be made to reflect not only the number of items being
processed, their locations and ID numbers, but also the results of
calculations such as pipetting volumes based on the molarity of
a solution. Thus, a Krill protocol describes a procedure in enough
detail that it can be replicated by another person or lab by follow-
ing specific instructions on a tablet or computer screen. Krill
methods include those to execute complex calculations, retrieve

and generate data, add and remove inventory, display videos
and photos, retrieve user input, create interactive timers, output
audio alarms and send emails, among other functions. Krill
extends Ruby (17), a popular, dynamic, object-oriented language
used in web development. To facilitate development, Krill pro-
vides ways of creating libraries of reusable code. A version con-
trol system allows a lab to record changes to their protocols over
time, or revert their protocols to past versions.

The Krill protocol is supplemented by two functions that fa-
cilitate the proper execution of the protocol (Figure 4). The cost
model calculates how much an operation may cost at the time of
execution. Cost models can use any information from
Aquarium to perform cost calculations, but typically calcula-
tions use properties of samples or items used in an operation.
For example, an operation that orders a synthesized piece of
DNA may use the length and sequence of the DNA and check
with a vendor website to establish an accurate monetary cost.
Some protocols may be labor-intensive, and so operation cost
models can include an estimation of the ‘labor rate’ and the av-
erage length of time required to complete the protocol.
Additional features in Aquarium allow the generation of
monthly spending reports and budget tracking for each user or
user group. The precondition defines conditions required for a
protocol to be run; the default precondition is always true.
Preconditions are a critical part of an operation’s execution pol-
icy (Supplementary Figure S1) and can be used to institute more
complex experimental workflows. For instance, enforcing a 12 h
delay to wait for an E. coli plate to grow. Like the cost model, pre-
condition code may use any of the other subsystems to estab-
lish running conditions. For example, an operation that runs a

Figure 1. Workflow designer interface. Experimental plans can be created by dragging operation types (not shown) onto the designer canvas (right side) to create opera-

tions. Selecting a given operation input or output node users are prompted to select from a list of compatible up or downstream operations to create a custom work-

flow. Available inventory for each operation input is selected in the input view (bottom) and the I/O view (left). Designer tools are available for creating templates and

modifying/copying plans. Additionally there are several plan tools (top left) available for investigating input/output specifications, managing existing plans, and

launching plans. The designer also features annotation capabilities, allowing embedded text (such as Markdown; https://daringfireball.net/projects/markdown/),

images or links.
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colony PCR on a bacterial plate may halt operation if there are
data associated with the plate indicating there was contamina-
tion, or if the plate is less than 12 h old and thus not ready to be
run. Finally, the documentation contains human-readable mark-
down text that describes how the protocols are used and
executed.

2.4 Recording and accessing experimental data

Aquarium records data in several ways. By default, Aquarium
automatically logs protocol metadata during job execution.
These metadata include operations batched within the job as
well as the identity of submitting users and IDs of source plans
for each operation. Job logs also capture technician identity, job
start and end time, timestamps for each step in a protocol,
job error records, and inventory handled. In addition to the job
metadata, Aquarium has generic data associations that record

data as attachments to inventory items, operations or plans.
Data associations may include numerical (e.g. DNA concentra-
tion), text (e.g. experiment notes) or file uploads (e.g. sequenc-
ing results). Data associations can be created manually through
the GUI or automatically by a protocol during a job. During exe-
cution, protocols may include specific steps instructing the
technician to record or upload data (Figure 4-vii). Post-
execution, data can be accessed by researchers through the GUI,
or by scripting via Aquarium’s Python API, known as Trident.
Trident allows custom Python applications that power visual-
izations, interfaces, reports or machine-learning workflows to
communicate easily with Aquarium.

2.5 Interacting with Aquarium

There are five major interfaces in Aquarium: designer, plans,
manager, samples and developer. The designer tab provides

(a) (b)

(c) (d)

Figure 2. AWL. Depictions of operation, operation type, plan, and job models that comprise an AWL. (a) An example of a ‘Bacterial Transformation’ operation type is

displayed. Operation types define specific ways in which input samples and items can be processed to produce outputs. Each operation type contains specifications for

its input and output types. For example, the ‘DNA’ input of a hypothetical bacterial transformation operation type may be satisfied by a ‘maxiprep of plasmid library’

or a ‘miniprep of plasmid’. Input and output types are entirely customizable and may include any number of sample type and object type specifications. Sample rout-

ing, if provided, ensures the input and output samples are mapped correctly upon operation execution; here the input ‘DNA’ sample will be mapped to the

‘Transformed Cells’ output sample. Non-inventory inputs (i.e. parameters) can also be defined as inputs to operation types. (b) An example of a bacterial transforma-

tion connected to a colony PCR operation. Operations types are instantiated to operations when their input and output types are satisfied by items. Here, a bacterial

transformation uses specific items in the LIMS and a parameter (37�C) to produce a bacterial plate. After executing the transformation, the output plate is wired to the

colony PCR operation. The colony PCR outputs the amplicon to an empty well in a stripwell. Notice that the operation type sample routing ensures sample information

(here pUC19-GFP, sample 442) is maintained throughout the series of tasks. (c) Operations from several different researchers and different plans can be batched to-

gether into jobs if they have the same operation types. For instance, all ‘Colony PCR’ operations from all users can be run as a single job. (d) Once operations have been

batched into jobs, jobs can be run divorced from Aquarium plans because all necessary information for execution is included in the job. These jobs can then be per-

formed concurrently by separate technicians.
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access to the AWL interface, in which users can draft and
launch plans, selecting from available operation types. The
plans interface offers a summary of launched plans including
up to date sample and status data. The manager tab is used to
batch operations into jobs and run them. Within the manager
interface, all operations are accessible, grouped by category, op-
eration type and status. Launching a job from the manager in-
terface starts with the on-screen instructions used by
technicians (Figure 4). The samples interface provides search-
able access to inventory. The developer tab provides access to
an Interactive Development Environment (IDE) where Krill code
for protocols can be written and tested directly in the web
browser (Figure 5).

3 Discussion
3.1 Specialization of roles

Aquarium facilitates, but does not require, a division of person-
nel roles roughly corresponding to the different front-end inter-
faces, thereby facilitating the standardization of laboratory
workflows as a low-cost and flexible alternative to robotic auto-
mation systems. The module composition approach imple-
mented by AWL is intended to allow for flexible workflow
design, reflecting the reality of discovery-phase research, while
gaining the benefits of standardization, including replicability
and efficiency gains from batched jobs. Laboratory roles can fur-
ther be divided into lab managers, scheduling and assigning
jobs, and technicians, executing jobs. The following role

descriptions are based on our experience using the system
while recognizing that individual members of laboratory per-
sonnel have often adopted multiple or blended roles.

Researchers, including graduate students and postdocs, use
Aquarium’s LIMS to define new samples and the AWL (Figure 1)
to design and launch plans. Once a researcher is ready to launch
a plan, costs are computed with the operation cost models, and
the researcher assigns the total to a budget that Aquarium uses
to automatically track spending and generate reports. After
launching, plans become visible within the plans interface,
where the researcher can see the status of each operation in the
plan, as well as access collected data. Some power users in the
researcher role entirely bypass the Aquarium browser front-end
and instead add sample definitions, submit plans and retrieve
data through the Trident API. We have found that these tools al-
low researchers to spend minimal time at the lab bench, and
more time reading literature, planning experiments and analyz-
ing data.

Developers use Aquarium’s IDE to specify operation types and
associate code (Figure 4). In our experience Aquarium protocol
drafting typically begins with a pre-existing paper-based or digi-
tal protocol as references, with the developer often working
with an experimentalist for guidance. Once a protocol has been
tested in the IDE, it can be deployed, making it available to add
to plans and run in jobs. Developers also work with researchers
and managers to develop the cost model, documentation and
preconditions to create cohesive workflows (Figure 4d).

Managers batch operations and schedule and launch jobs, in
the process deciding how many operations to include in each
job, when each job should be executed and which technician
should run the job.

Technicians execute jobs at the lab bench in accordance with
the on-screen instructions provided by the protocol code
(Figure 4). Instructions typically include item retrieval and stor-
age, sample preparation and handling, operation of laboratory
instruments and data uploading. Technicians may be guided to
directly upload data files from cameras or other equipment, or
asked to create data based on prompts (e.g. answering whether
or not a band of a given length is present on a gel).

As well as formalizing personnel roles, Aquarium facilitates
a conceptual shift to thinking about all laboratory work, includ-
ing both manufacturing and experimentation, as composed of
modular units, with the steps of each modular unit standard-
ized. Standardization of laboratory methods can be beneficial
for replicability (10, 11) and Aquarium provides a means to en-
sure that standardized procedures are both established and fol-
lowed. This arrangement can also reduce experimental bias and
shield sensitive sample information.

3.2 Aquarium use cases

Aquarium has been used for a number of applications beyond
the work of academic research groups. These include biofoun-
dries, service laboratories and laboratory skills training.

Biofoundaries are facilities providing laboratory services to
the synthetic biology research community, generally including
plasmid assembly and strain construction (1). Aquarium’s built-
in abstraction barrier between design and execution, and sys-
tem for efficient task management are well suited to support
biofoundries. Aquarium has supported a biofoundry at the
University of Washington, the UW BIOFAB that was first devel-
oped for internal use in 2014 and then made publically accessi-
ble in 2016. Between 2014 and 2020, the UW BIOFAB has run
over 30 000 jobs, serving 319 different users. BIOFAB technicians

(a)

(b)

Figure 3. Aquarium inventory types. The procedures of a given research lab will

require handling of multiple different sample types, representing things like

DNA plasmid, various cell lines or chemical reagents. (a) For instance samples of

type ‘Plasmid’ may be defined by a marker, length or sequence. Properties for

sample types are defined by the user allowing for custom definition of inven-

tory. In Aquarium, there are no hardcoded concepts of ‘Plasmids’ or any other

form of laboratory inventory. Once a sample type has been defined samples can

then be added to the database. Items are physical manifestations of samples

and always have a location, as well as the ability to carry data associations. Each

item is of a given type, known as an object type defining relevant physical prop-

erties relevant to laboratory handling. (b) Each item produced automatically gets

assigned a location. How this location is assigned is reconfigurable in Aquarium.

Here, a �20C freezer is designated ‘M20’ and has three dimensions (shelf, box

and position). The location designation and capacity along the dimensions are

customizable. Which types of items go into which locations are defined in the

item’s object type. Proper management of item locations in Aquarium is critical

as this feeds into protocol execution, which may use (or alter) item location dur-

ing execution.
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have assembled 23 million base pairs of DNA using 8.8 million
base pairs of fragment DNA amplified in-house, and have built
over 5700 different yeast strains. This work has supported syn-
thetic biology research efforts of the Klavins lab and collabora-
tors (18–22), as well as other users with no shared research
interests. The UW BIOFAB first implemented cloning and yeast
construction services but has since moved on to offer plant cul-
tivation and transformation, mammalian cell culturing, protein
engineering, and next-generation sequencing and other
workflows.

Operated by private companies or public institutions, service
laboratories support clinical diagnostics, agricultural soil and

crop analytics, and forensics. The impacts of the global pan-
demics (such as COVID-19) highlighted the importance of low-
cost, flexible tools that can support the rapid scaling of labora-
tory services both in terms of throughput and geographical
reach. Aquarium was recently used to support an HIV-
resistance screening workflow for use in the developing world
(23), taking advantage of Aquarium’s graphical technician inter-
face, data collection management and options for rapid deploy-
ment into new devices and locations.

Given the instructional efficacy of the technician interface,
we have also found utility for using Aquarium as an education
tool, teaching university laboratory courses with the software.

(a)

(b)

Figure 4. Krill protocol. An example of Krill protocol code and its corresponding rendered protocol instructions. Operation types have four sets of code that govern op-

eration behavior and scheduling: Krill protocol, precondition, documentation and cost. (a) Shown here is a snippet of Krill protocol code for the load template step in a

PCR amplification protocol with lettering highlighting aspects of the code. Operations are batched into a single job; when the job is executed, Krill code can access the

input and output information of all batched operations. (i) In this simple example, the template volume is calculated for each operation before generating instructions

for loading template DNA into wells. (ii) A new protocol step is rendered with a show block. (i–vii) Within the show block, various elements are rendered for the techni-

cian. (iii, iv) A title is displayed and has two checkboxes. Checkboxes must be checked before proceeding to the next step, forcing the user to be attentive. Operations

are iterated to display a table that uses the computed template volume, inputs and outputs of the operations. (v) Tables can be interactive and may include text inputs

or checkable boxes. (vi) A visible warning is displayed. (vii) A selection input instructs the user to select from a list of options; numerical, textual and file upload inputs

are also possible through Krill. (viii) Finally, an SVG graphics element can be rendered on the fly using operation information. (b) Optional precondition code governs

when operations can be scheduled into jobs. Cost model computes monetary costs prior to plan launch and documentation provides readable instruction about the un-

derlying protocol.
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Aquarium’s technician interface (Figure 4) delivers step-by-step
instructions at the lab bench, reducing the need to front load
learning of methods, similar to Just-in-Time Teaching (24). It
has also been used to support undergraduate laboratory train-
ing courses at the University of Washington and elsewhere.

3.3 Comparison with other software

Aquarium is part of a growing ecosystem of laboratory research
software that we believe will become central to the working
practices of researchers over the next decade. Similar to
Aquarium, existing software platforms like those provided by
Benchling, Riffyn, Teselagen and Transcriptic have fully fea-
tured LIMS capabilities that connect to protocols and workflows
in meaningful ways. However, as far as we are aware, Aquarium
is unique in its support for human-centric workflow execution
which allows labs to leverage existing equipment and person-
nel. This is in contrast to robotic automation approaches, like
those provided by Transcriptic, that integrate workflow execu-
tion primarily via laboratory robotics, which allows high-
throughput experimental automation. Other platforms special-
ize in other aspects of the laboratory research process, such as
Riffyn, which provides sophisticated tools for connecting and
integrating workflow processing to data analytics; Benchling
and Teselagen integrate aspects of biodesign to LIMS and work-
flow processes. Unlike these tools, Aquarium has limited capa-
bilities for data processing and biodesign. Instead, Aquarium
focuses on flexible workflow planning and execution, leaving
design and data analytics to other software better suited to that
task, such as those mentioned above. Aquarium’s open-source
Python API and flexible LIMS invite future integrations of
Aquarium with other software systems.

3.4 Future development of Aquarium

We support a growing Aquarium user community and are
aware of at least eight groups that have set up and operated in-
dependent Aquarium servers for applications ranging from
plant transgenics, to microbial strain construction to biomedical
diagnostics. Aquarium is distributed under the MIT license to
promote adoption by, and contributions from, users in any set-
ting, whether academic, commercial or educational.

An online hub (https://www.aquarium.bio/) for sharing and

peer-curation of Aquarium workflows supports the growing
user community. Aquarium workflows currently can be
exported and published as Github repositories. Current develop-
ment plans include simplification of the Krill protocol language
to lower barriers and allow for wider use of Aquarium in life sci-
ence research labs.

While Aquarium provides a way to formalize scientific work-
flows and their execution so as to allow researchers without
high-level knowledge of the protocol to perform experiments
reliably, it does not provide guidance on experimental design
choices. However, there have been many recent advances on
computer-aided design (CAD) tools for science (25–29). Using
Aquarium and its Python API provides a way to execute experi-
mental plans developed by CAD software and return results in a
machine-readable format. In the future, one can imagine com-
binations of such systems that mediate automatic design and
submission of experiments, execution through Aquarium, auto-
mated extraction and analysis of results, and rapid redesign.

4 Materials and methods
4.1 Glossary of Aquarium terminology

The following is provided for disambiguation and covers
Aquarium terminology used in this article for which an alterna-
tive common-usage definition exists. For a more complete de-
scription of relevant terminology, please refer to the
documentation found at www.aquarium.bio.

Sample: A biologically unique entity, with properties defined

by the needs of the user. A description of a specific plasmid is a
sample.

Sample type: A category of samples, such as ‘Plasmid’ or
‘Mammalian Cell Line’.

Item: A physical manifestation of a sample that exists in the
laboratory. A miniprep stock is an item of a given plasmid
sample.

Object type: A category of items that includes a name and a
default location, and belongs to a particular sample type.
Examples could be ‘Plasmid Stock’ or ‘400 mL Bottle of Media’.

Figure 5: Operation type integrated development environment (IDE). New operation types are developed through the operation type IDE. Input/output specifications

are defined for each operation, along with sample type and object type specifications for each input or output. Several tools are available (top) for editing Krill protocol,

precondition, cost and documentation code. A built-in protocol testing environment is available (top right) to speed workflow development.
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Operation: The basic unit of laboratory work planned in
Aquarium, in which inputs are converted to outputs according
to a protocol defined using the Krill protocol language.

Operation type: A protocol definition, which governs how
human-readable instructions are rendered for a batch of opera-
tions, and how operations change the inventory and other data.

Plan: A set of operations that are linked by connecting inputs
and outputs.

Job: A batch of operations of the same type that are run con-
currently by a technician following instructions generated from
the operation type protocol written in Krill.

Krill: The domain-specific language used to define protocols,
a core element of an operation type. Krill extends Ruby by in-
cluding methods specific for managing Aquarium objects and
generating on-screen instructions for technicians.

Data association: Key-value pair that is associated with
plans, operations or items. Data associations are added auto-
matically during the execution of a job or manually by a user.

4.2 Aquarium license and software availability

Aquarium is distributed under the open-source MIT license.
Aquarium, documentation and installation instructions are
freely available (https://www.aquarium.bio/) along with links to
Dockerized versions of the software. Code is maintained on
Github (https://github.com/aquariumbio/aquarium). Aquarium’s
Python API (Trident) is also under the open-source MIT license
and is hosted on the open-source python repository at PyPI
(https://pypi.org/project/pydent/) and its documentation and in-
stallation instructions are also freely available (https://aquari
umbio.github.io/trident/).

4.3 Aquarium software implementation

Aquarium is implemented as a browser-based Ruby-on-Rails
application (https://rubyonrails.org/), with an AngularJS (https://
angularjs.org/) and HTML5 front-end. The current implementa-
tion of Krill leverages Ruby (https://www.ruby-lang.org/en/),
which is a popular, dynamic, object-oriented language used in
web development. Data models are implemented using a
MySQL relational database (https://dev.mysql.com/).

Aquarium is distributed as a Docker (https://www.docker.
com) image (https://hub.docker.com/repository/docker/aquari
umbio/aquarium), along with Docker Compose (https://docs.
docker.com/compose/) scripts (https://github.com/aquarium
bio/aquarium-deployment) that can be used to orchestrate
backend, relational database and front-end services. The
Trident API is implemented in Python using open-source librar-
ies and is available as a Python package via pypi.org (https://
pypi.org/project/pydent/).

SUPPLEMENTARY DATA

Supplementary Data are available at SYNBIO Online.
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