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The vomeronasal organ (VNO) plays an important role in mediating semiochemical

communications and social behaviors in terrestrial species. Genetic knockout of

individual components in the signaling pathways has been used to probe vomeronasal

functions, and has provided much insights into how the VNO orchestrates innate

behaviors. However, all data do not agree. In particular, knocking out Trpc2, a member

of the TRP family of non-selective cationic channel thought to be the main transduction

channel in the VNO, results in a number of fascinating behavioral phenotypes that have

not been observed in other animals whose vomeronasal function is disrupted. Recent

studies have identified signaling pathways that operate in parallel of Trpc2, raising the

possibility that Trpc2 mutant animals may display neomorphic behaviors. In this article,

I provide a critical analysis of emerging evidence to reconcile the discrepancies and

discuss their implications.
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In terrestrial vertebrates, endocrine changes, and stereotypic innate behaviors are often triggered by
pheromones. The mammalian vomeronasal organ (VNO) plays an important role in orchestrating
pheromone-mediated behaviors (Eisthen and Wyatt, 2006; Tirindelli et al., 2009). In early studies,
the functional role of VNO has been derived from ablation experiments in which the VNO is
surgically disrupted (VNX) (Bean, 1982; Clancy et al., 1984; Beauchamp et al., 1985; Lepri et al.,
1985;Maruniak et al., 1986; Lepri andWysocki, 1987; Bean andWysocki, 1989; Labov andWysocki,
1989; Wysocki and Lepri, 1991; Wysocki et al., 2004). The advent of molecular biology made it
possible to genetically manipulate individual components in VNO signaling pathways and provide
insights into the mechanisms of VNO mediated behaviors (Del Punta et al., 2002; Leypold et al.,
2002; Stowers et al., 2002; Norlin et al., 2003; Kelliher et al., 2006; Kimchi et al., 2007; Chamero et al.,
2011; Kim et al., 2012; Leinders-Zufall et al., 2014; Oboti et al., 2014). A consensus that emerges
from these studies is that the VNO is essential in triggering territorial aggression. In line with
surgical ablation experiments, removing any component of the VNO signaling pathway, including
vomeronasal receptors, G proteins, or ion channels, results in diminished aggression in mice (Bean,
1982; Clancy et al., 1984; Maruniak et al., 1986; Bean andWysocki, 1989; Labov andWysocki, 1989;
Del Punta et al., 2002; Leypold et al., 2002; Stowers et al., 2002; Norlin et al., 2003; Kimchi et al.,
2007; Chamero et al., 2011; Kim et al., 2012; Oboti et al., 2014). Genetic mutations that affect VNO
function also lead to loss of avoidance to predator or sick animals (Papes et al., 2010; Boillat et al.,
2015).
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The data on mating behaviors, especially the mounting
behaviors displayed by male animals, are less consistent. One
of the most interesting behavioral observations comes from
mice with knock out mutation of Trpc2, a member of the TRP
superfamily of ion channels (Liman et al., 1999). Although several
TRP members have been detected in the VNO (Zufall, 2014),
Trpc2 appears to be the only one expressed in the vomeronasal
sensory neurons (VSNs) as verified by in situ hybridization,
immunofluorescent staining and electron microscopy (Liman
et al., 1999; Menco et al., 2001; Leypold et al., 2002). While
Trpc2−/− males display normal mounting behaviors toward
female mice, they also indiscriminately mount intruder males
(Leypold et al., 2002; Stowers et al., 2002). Most strikingly, female
Trpc2−/− mice exhibit hallmarks of male mating behaviors,
including solicitation, mounting, and pelvic thrust, toward
female and male mice alike (Kimchi et al., 2007). The behavioral
phenotypes of Trpc2−/− mice do not recapitulate those observed
in VNX rodents (Powers andWinans, 1975; Winans and Powers,
1977; Clancy et al., 1984; Meredith, 1986; Saito and Moltz, 1986;
Lepri and Wysocki, 1987; Wysocki and Lepri, 1991; Pfeiffer and
Johnston, 1994; Kolunie and Stern, 1995).

In the conventional model of VNO function, male mounting
behavior is triggered by pheromone stimulation, through what is
considered as the releasing effect of pheromones (Vandenbergh,
1983). Based on the observations from the Trp2−/− mice, Dulac
and colleagues proposed an alternative model of VNO function
(Stowers et al., 2002). In this new model, mounting is the default
behavior triggered by non-VNO sensory input. The function of
the VNO is to “ensure gender specific behavior,” which inhibits a
male mouse from mounting a male (Stowers et al., 2002).

The new interpretation of VNO function is controversial and
the discrepancies in behavioral data raise important questions
about the functional role of VNO in innate behaviors. At the
center of this controversy are two important questions: what is
the role played by Trpc2 in pheromone sensing? And is mounting
a default behavior that does not require VNO activation? Here I
evaluate recent development in the field and attempt to reconcile
differences in the experimental results.

Have Trpc2−/− Mice Lost VNO Function
Specifically and Completely?

Two groups generated the Trpc2−/− mice independently and
reported the loss of territorial aggression and the display of male-
male mounting behaviors (Leypold et al., 2002; Stowers et al.,
2002). However, they disagreed on whether Trpc2−/− animals
completely lost pheromone induced responses. Whereas Stowers
and colleagues reported a complete loss of pheromone-triggered
activities, residual responses were observed in the studies of
Leypold et al. Indeed, Leypold and colleagues cautioned that
the residual response might affect how the behavioral data was
interpreted.

Since the publication of the initial Trpc2−/− papers,
new evidence has emerged from electrophysiological studies
challenging the notion that Trpc2 mutation resulted a “null”
VNO. Liman first discovered a calcium-activated non-selective

(CaNS) cationic channel in hamster VNO neurons (Liman,
2003). A similar conductance was later reported in mouse (Spehr
et al., 2009). Although the identity of the channel remains
unknown to date, these studies provide the first evidence of Trpc2
independent activation of VNO neurons.

Recently a comprehensive picture of VNO signaling has
emerged from the studies by several groups. Delay and colleagues
described calcium-activated BK and calcium-activated chloride
channel (CACC) in mouse VNO (Zhang et al., 2008; Yang and
Delay, 2010). My group later demonstrated that pheromone
triggered CACC current was present in VNO neurons of the
Trpc2−/− mice (Kim et al., 2011). The CACC now has been
identified as TMEM16A/anoctamin1 (Amjad et al., 2015). Delay
and colleagues also identified an arachidonic acid dependent
signaling pathway in VNO of the Trpc2−/− mouse, with a
different knockout line of Trpc2 (Zhang et al., 2010).

In addition, calcium-activated small conductance potassium
channel SK3 and G-protein activated inward rectifier potassium
channel GIRK were found to act as primary conductance
channel in the VSN dendrite and acted in parallel of Trpc2
(Kim et al., 2012). Importantly, the two K channels were
depolarizing in vivo due to the unusually high K+ concentrations
in the VNO lumen (Kim et al., 2012). Changes in this ionic
environment can regulate VNO responses by altering the
reversal potential of K+, and it remains to be determined
whether conditions such as strain, age, and hormonal status
can influence K+ homeostasis in the lumen. These discoveries
have led to a revised version of the signaling pathways in the
VNO that include at least four ion channels directly activated
by pheromone stimulation (Figure 1). Pheromones can trigger
CACC, SK3, and GIRK independent of Trpc2, although Ca2+

entry through Trpc2 can augment CACC and SK3 activation.
Trpc2 channel accounts for ∼30–40% of the total excitation and
Trpc2−/− neurons retain substantial response to pheromones
(Kim et al., 2012).

Electrophysiological evidence of Trpc2-independent
activation of VNO are supported by histology and behavior
analyses. Hasen and Gammie reported that the medial amygdala,
which primarily received input from the VNO, was strongly
activated in Trp2−/− mice by soiled bedding (Hasen and
Gammie, 2009, 2011). Zufall and colleagues found that Bruce
effect, pregnancy block induced by strange males, was intact in
Trpc2−/− but not VNX mice (Kelliher et al., 2006).

The impact of Trpc2 mutation on pheromone signaling is
likely not uniform. An important observation of Trpc2−/−

VNO was a significant loss of basal layer neurons (Stowers
et al., 2002; Kim et al., 2012), which expressed Gαo and the
V2r family of receptors (Herrada and Dulac, 1997; Matsunami
and Buck, 1997; Ryba and Tirindelli, 1997). Unfortunately, the
data were buried in supplemental materials and did not garner
the attention they deserved (Stowers et al., 2002; Kim et al.,
2012). The study by Hasen and Gammie, on the other hand,
clearly showed pronounced reduction of the posterior accessory
olfactory bulb in Trpc2−/− mice (Hasen and Gammie, 2009).
Thus, it is possible that the activation of basal VSNs is more
severely affected than those in the apical layer. This difference
may have important implications in behaviors (see below) and
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FIGURE 1 | Illustration of vomeronasal neuron signaling pathway.

Binding of ligands to their cognate receptors trigger the activation of

Gαi2/ Gαo, which in turn activate the phospholipase C (PLC) to produce

inositol- 1, 4, 5 - triphosphate (IP3) and diacylglycerol (DAG). DAG

activates Trpc2 channel, leading to influx of cationic ions, including Ca2+,

whereas IP3 triggers release of Ca2+ from intracellular stores. Elevated

intracellular Ca2+ in turn activates calcium-activated chloride conductance

(CACC) and the small conductance calcium-activated potassium channel

SK3. Activation of G protein also releases βγ subunits, which activate the

G-protein activated inward rectifier channel (GIRK). Both GIRK and SK3

mediate influx of potassium to depolarize the VSN because of a high

extracellular [K+] in the vomeronasal lumenal mucus. Elevated Ca2+ can

also activates the large conductance calcium-activated potassium channel

BK and an unidentified calcium-activated non-selective (CaNS) cationic

channel. These two conductance may reside in the dendrite or in the cell

body.

explain the apparent loss of VNO activation in the Stowers
et al. study. In this study, the major difference in VSN activity
between control and Trpc2−/− mice were recorded by laying
the sensory epithelium face up on top of an electrode array
with the electrodes preferentially made contact with the basal
VSNs (Stowers et al., 2002). If Trpc2−/− have a more severe
impact on the basal cells, this recording configuration may report
diminished activity. Activity in the apical layer, which is less
affected, may be occluded from recording by the remaining basal
cells.

Does Trpc2 mutation affect the VNO specifically? Trpc2
was initially thought to be exclusively expressed in VNO.
Recent evidence suggests that Trpc2 is expressed in a subset of
MOE neurons, embryonic brain tissues, and non-neuronal cells,
raising the question whether Trpc2−/− affects VNO function
specifically (Elg et al., 2007; Boisseau et al., 2009; Hirschler-
Laszkiewicz et al., 2012; Omura and Mombaerts, 2014, 2015).
In an elegant study, Mombaerts and colleagues knocked in
the lacZ gene into the Trpc2 locus and traced the projections
of Trpc2-expressing neurons. They discovered that Trpc2 was
expressed by two types of MOE neurons projecting to specific
glomeruli in ventral side of the main olfactory bulb (Omura and
Mombaerts, 2014, 2015). These findings suggest that Trpc2 may
carry additional functions in the main olfactory system, as well
as other brain areas, and the behavioral phenotypes observed
in Trpc2−/− mice are unlikely to be the sole results of VNO
disruption.

Is Mounting Behavior Dependent on a
Functional VNO?

VNO ablation experiments, performed by a number of labs
over several decades, have consistently shown that VNX rodents
exhibit diminished mating behaviors (Powers and Winans, 1975;
Winans and Powers, 1977; Clancy et al., 1984; Meredith, 1986;
Saito and Moltz, 1986; Lepri and Wysocki, 1987; Wysocki and
Lepri, 1991; Pfeiffer and Johnston, 1994; Kolunie and Stern,
1995). Trpc2−/− males, on the other hand, show indiscriminate
mounting toward intruders (Leypold et al., 2002; Stowers et al.,
2002). The most striking observation is that Trpc2−/− females
also display mounting behaviors (Kimchi et al., 2007). These
behavior phenotypes are rarely observed in wildtype animals.
In an attempt to explain the discrepancy in the results, Kimchi
and colleagues suggested that VNX surgery could inadvertently
cause blood clog in the nasal passage and block odor entry
(Kimchi et al., 2007). This scenario is unlikely because mice are
obligate nasal breathers. Indeed, several studies have shown that
VNX animals display normal approach and investigation of odor
sources, indicating that the animals can smell normally [reviewed
(Wysocki and Lepri, 1991)]. VNX mice also exhibit investigation
of urine source, even though they no longer show preference
for urine from the opposite sex (Pankevich et al., 2004, 2006).
A careful study also failed to replicate some of the male-typical
responses in VNX female mice in the Kimchi study (Martel and
Baum, 2009).
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In addition to VNX, chemical and genetic ablations of the
MOE also lead to diminished investigation of the conspecifics,
urine preference and mating behaviors (Thor and Flannelly,
1977; Bean, 1982; Kolunie and Stern, 1995; Keller et al., 2006).
CNGA2 knockout mice, which are anosmic because of the loss
of an essential component in the olfactory signal transduction
pathway, are compromised in mating behaviors (Mandiyan et al.,
2005). These observations suggest that attraction by urinary
odors can bring the animals to investigate the sources and enable
the direct physical contact with non-volatile pheromones by the
VNO. Loss of MOE function leads to the loss of odor-evoked
investigation and, in turn, could diminish pheromone detection
by the VNO. These data should not be construed as definitive
evidence that the MOE, but not the VNO, is required to trigger
mounting.

Along with studies of VNX animals of several species, a
number of transgenic mouse lines that have various deficiencies
in VNO function have been studied. These lines include mice
with deletion of a V1r receptor cluster, knockout mutations
of signaling molecules Gαi2 and Gαo, and mutations of ion
channels SK3 and GIRK1(Del Punta et al., 2002; Norlin et al.,
2003; Chamero et al., 2011; Kim et al., 2012). None of these lines
exhibit male-male mounting or male-like sexual behaviors in the
females.

Whereas, the loss of function studies suggesting that the
VNO is required to trigger mating behaviors, our recent data
demonstrate that pheromones components are sufficient to
trigger mating behavior (Haga-Yamanaka et al., 2014). We
have previously shown that the VNO recognizes cues that
signal the sex and reproductive status of the animal (He
et al., 2008, 2010). We have recently identified two sets of
pheromone cues (Haga-Yamanaka et al., 2014). A urinary
fraction purified from female urine, which we call T16,
contains sex-specific cues that signal the carrier as females.
This fraction is recognized by a subset of the V1re clade of
receptors. We also show that sulfated estrogens specifically
activate the V1rj clade of receptors and signal estrus status
of the female mice. These cues do not activate the MOE.
Although neither sulfated estrogens nor T16 alone alters baseline
mating toward ovariectomized females, combining the two cues
together elicits strong mounting behaviors (Haga-Yamanaka
et al., 2014).

The confluence of data, therefore, suggest that mounting
is not a default behavioral output and the VNO is required
to trigger this mating behaviors. The notions that non-VNO
sensory cues conveying conspecific information to elicit mating
as a default behavior is primarily derived from observations
of Trpc2−/− mice. This conclusion critically depends on the
assumption that Trpc2−/− causes a complete loss of VNO
function. As the VNO retains partial function in Trpc2−/−mice,
it is likely that aberration in VNO signaling in transmitting
pheromone information causes aberrant mating behaviors.
Indeed, male to male mounting exhibited by Trpc2−/− mice
is also observed in double mutant mice that also carry
Cnga2−/− or SK3−/− alleles (Kim et al., 2012; Fraser and Shah,
2014).

Neomorphic or Displacement Behaviors in
Trpc2−/− Mutants?

What is the nature of the aberrant behaviors observed in
Trpc2−/− mice? Classically, the display of behaviors out of
context is categorized as displacement activities (Tinbergen,
1989). Animals have a restricted repertoire of innate behaviors
preprogrammed in the brain circuitry. Within the same
animal, circuit mechanism exists to ensure that antagonistic
behavioral patterns are displayed in a mutually exclusive fashion.
Displacement reactions arise when there are motivational
conflicts, frustration of consummatory acts or physical thwarting
of performance (Tinbergen, 1989). Lorenz has described that
when fighting drives are obstructed in cranes, they exhibit
displacement preening (Lorenz, 1935). Trpc2−/− males have the
ability to fight when provoked in a neutral arena, yet they mount
instead of attack intruder males (Leypold et al., 2002). Female
Trpc2−/− mice show diminished female-specific behaviors such
as maternal aggression and lactation, but instead exhibit male-
typical sexual behaviors (Leypold et al., 2002; Stowers et al., 2002;
Kimchi et al., 2007). It is possible that pheromone signaling in
Trpc2−/− mice generate conflicting motivational drive, leading
to the replacement of normal responses with an out-of-context
substitute. However, no classical case of displacement activities
involves a genetic mutation. Therefore, although one could add
genetic changes as a cause of displacement activities, it will be
more appropriate to characterize behaviors in Trpc2−/− mice
as neomorphic. Mating and aggression may be on the same
continuum of a behavioral spectrum. The same set of neurons in
the ventral medial hypothalamic nucleus drive either mating or
aggression depending on the level of activation (Lee et al., 2014).
Aberrant input from the VNO is likely to feed into this circuit
and induce inappropriate display of mating or aggression.

What may cause neomorphic behaviors in the Trpc2−/−

mice? I present two hypotheses to stimulate discussion. The
first concerns the development of the vomeronasal circuit,
which is linked to gonadotropin releasing hormone (GnRH)
neurons in the hypothalamus and preoptic area (Meredith,
1998). GnRH cells migrate along the vomeronasal projection to
reach the brain (Schwanzel-Fukuda, 1999). It remains unknown
how the development of vomeronasal neurons may affect this
migration and the establishment of GnRH neuron connections.
A substantial loss of the basal neurons may cause a mis-
wiring of themating/aggression circuit. In addition, physiological
changes in Trpc2−/− mice may impact circuit development.
Both male and female Trpc2−/− mice have higher testosterone
levels than wildtypes (Leypold et al., 2002; Kimchi et al., 2007).
As masculinization of the brain could result from elevated
testosterone or estrogen levels in adults, as well as from estrogen
treatment in neonatal pups (Paup et al., 1972; Baum, 2009; Martel
and Baum, 2009; Wu et al., 2009), it is possible that deficiency
in pheromone detection during development could lead to brain
masculinization in females.

Second, Trp2−/− may directly influence how pheromones are
perceived. The basal layer, V2r-expressing VSNs that are lost in
Trpc2−/− mice detect polypeptide pheromones, some of which
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have been shown to elicit aggression (Chamero et al., 2007).
ESP22, a peptide pheromone secreted by juvenile mice, has a
powerful effect in inhibiting male mating behaviors (Ferrero
et al., 2013). Loss of either Trpc2 or ESP22 leads to mounting
of juveniles (Ferrero et al., 2013). It is possible that the loss of the
basal layer cells in Trpc2−/−, compounded by the partial loss of
sensitivity in the remaining neurons, weakens signals that inhibit
mating and trigger aggression. The net effect could be the mis-
interpretation of pheromone cues and a switch from aggression
to mating. Finally, it remains possible that the loss of Trpc2
outside of VNO could contribute to neomorphic behaviors.

Concluding Remarks

Behaviors displayed by the Trpc2−/− are fascinating. They
capture the imagination of the public and the experts alike.
It also has become a requirement to use these mice to

demonstrate whether an innate behavior is dependent on VNO
function. However, the impact of Trpc2−/− on VNO function is
more nuanced than previously thought. How Trpc2−/− causes
neomorphic behaviors remains largely unknown. As disruption
of VNO function may influence both brain development
and pheromone-triggered responses, more detailed studies are
required to understand the physiological changes of Trpc2−/−

mice. It is important to use caution in using these mice to assess
innate behaviors.
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