Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[(μ_{2}-2-aminopyrimidine- $\left.\kappa^{2} N^{1}: N^{3}\right)$ -di- μ_{2}-chlorido-mercury(II)]

Hossein Eshtiagh-Hosseini, ${ }^{\text {a* }}$ Zakieh Yousefi ${ }^{\text {a }}$ and Agnieszka Janiak ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Ferdowsi University of Mashhad, 917791436 Mashhad, Iran, and ${ }^{\text {b }}$ Faculty of Chemistry, Adam Mickiewicz University, Grunwaldzka 6, 60780 Poznań, Poland
Correspondence e-mail: heshtiagh@um.ac.ir
Received 8 February 2012; accepted 27 February 2012
Key indicators: single-crystal X-ray study; $T=294 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$; R factor $=0.020 ; w R$ factor $=0.049$; data-to-parameter ratio $=19.1$.

The title compound, $\left[\mathrm{HgCl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3}\right)\right]_{n}$, features a twodimensional network parallel to (001) that is based on an $\mathrm{Hg}^{\text {II }}$ atom octahedrally coordinated by four $\mu_{2}-\mathrm{Cl}$ atoms and two μ_{2}-2-aminopyrimidine (apym) ligands in trans positions, yielding a distorted $\mathrm{HgCl}_{4} \mathrm{~N}_{2}$ octahedron. The coordination network can be described as an uninodal 4-connected net with the sql topology. The $\mathrm{Hg}^{\text {II }}$ ion lies on a site of $\overline{1}$ symmetry and the apym ligand lies on sites of m symmetry with the mirror plane perpendicular to the pyrimidine plane and passing through the NH_{2} group N atom. This polymeric structure is stabilized by $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds and columnar $\pi-\pi$ stacking of pyrimidine rings, with a centroid-centroid distance of 3.832 (2) A.

Related literature

For pyridine complexes of mercury(II) halides see: Hu et al. (2007). For mercury(II) coordination polymers, see: Mahmoudi \& Morsali (2009). For the same topological type of two-dimensional coordination networks, see: Nockemann \& Meyer (2004); Xie \& Wu (2007). For topological analysis, see: Blatov (2006). For an isotypic $\mathrm{Cd}^{\mathrm{II}}$ complex, see: SalinasCastillo et al. (2011). For our previous work on structures with an apym ligand, see: Eshtiagh-Hosseini et al. (2009, 2010, 2011).

Experimental

Crystal data
$\left[\mathrm{HgCl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3}\right)\right]$
$M_{r}=366.60$
Monoclinic, $P 2_{f} / m$
$a=3.8317$ (1) A
$b=14.1366$ (3) \AA
$c=7.0773$ (2) \AA
$\beta=96.814$ (2) ${ }^{\circ}$

Data collection

Oxford Diffraction Xcalibur E diffractometer
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
$T_{\text {min }}=0.160, T_{\text {max }}=1.000$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
$w R\left(F^{2}\right)=0.049$
$S=1.12$
992 reflections
$V=380.65(2) \AA^{3}$
$Z=2$
Mo $K \alpha$ radiation
$\mu=20.84 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
$0.45 \times 0.04 \times 0.02 \mathrm{~mm}$

9437 measured reflections 992 independent reflections 867 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.033$

52 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=0.84 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.01 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters ($\AA \mathrm{A}^{\circ}$).

$\mathrm{Hg} 1-\mathrm{Cl} 1$	$2.3987(8)$	$\mathrm{Hg} 1-\mathrm{Cl}^{\mathrm{i}}$	$2.9881(9)$
$\mathrm{Hg} 1-\mathrm{N} 2$	$2.618(3)$		
$\mathrm{Cl} 1-\mathrm{Hg} 1-\mathrm{N} 2^{\mathrm{ii}}$	$91.45(7)$	$\mathrm{N} 2-\mathrm{Hg} 1-\mathrm{Cl}^{\mathrm{iii}}$	$92.95(7)$
$\mathrm{Cl} 1-\mathrm{Hg} 1-\mathrm{N} 2$	$88.55(7)$	$\mathrm{Cl} 1-\mathrm{Hg} 1-\mathrm{Cl}^{\mathrm{i}}$	$90.00(3)$
$\mathrm{N} 2^{\mathrm{ii}}-\mathrm{Hg} 1-\mathrm{N} 2$	180.0	$\mathrm{~N} 2-\mathrm{Hg} 1-\mathrm{Cl} 1^{\mathrm{i}}$	$87.05(7)$

Symmetry codes: (i) $x-1, y, z$; (ii) $-x,-y+1,-z$; (iii) $-x+1,-y+1,-z$.

Table 2
Hydrogen-bond geometry (${ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{Cl} 1^{\mathrm{iii}}$	0.96	2.41	$3.363(3)$	173

Symmetry code: (iii) $-x+1,-y+1,-z$.

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

The authors wish to thank the Ferdowsi University of Mashhad for financial support of this article.

[^0]
metal-organic compounds

Eshtiagh-Hosseini, H., Yousefi, Z., Mirzaei, M., Chen, Y. G., Beyramabadi, S. A., Shokrollahi, A. \& Aghaei, R. (2010). J. Mol. Struct. 973, 1-8

Hu, Ch., Kalf, I. \& Englert, U. (2007). CrystEngComm, 9, 603-610
Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P.,
Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. \& Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.

Mahmoudi, Gh. \& Morsali, A. (2009). CrystEngComm, 11, 1868-1879.

Nockemann, P. \& Meyer, G. (2004). Acta Cryst. E60, m744-m746.
Salinas-Castillo, A., Calahorro, A. J., Choquesillo-Lazarte, D., Seco, J. M. \& Rodriguez-Dieguez, A. (2011). Polyhedron, 30, 1295-1298.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Xie, Y.-M. \& Wu, J.-H. (2007). Acta Cryst. C63, m220-m221.

supplementary materials

Acta Cryst. (2012). E68, m385-m386 [doi:10.1107/S1600536812008793]

Poly[(μ_{2}-2-aminopyrimidine- $\left.\kappa^{2} N^{1}: N^{3}\right)$ di- μ_{2}-chlorido-mercury(II)]

Hossein Eshtiagh-Hosseini, Zakieh Yousefi and Agnieszka Janiak

Comment

Mercury with its d^{10} electronic configuration exhibits a wide range of geometry in coordination sphere giving rise to a variety of topological types of one-dimensional, two-dimensional and three-dimensional polymers (Mahmoudi \& Morsali, 2009).
In this contribution, we have synthesized and characterized a two-dimensional framework containing $\left[\mathrm{Hg}(\mathrm{apym}) \mathrm{Cl}_{2}\right]$ unit in which $\mathrm{Hg}^{\mathrm{II}}$ ion is six coordinated via four chloride anions and a two apym molecules (Fig. 1). $\mathrm{Hg}^{\mathrm{II}}$ ion exhibits slightly distorted octahedral coordination geometry for which the maximum deviation of twelve octahedral angles from an ideal 90° for cis angles is $0.82(7)^{\circ}$.
In the crystal structure, $\mathrm{Hg}^{\text {II }}$ ion lies on an inversion centre and the apym molecule lies on a special position of m site symmetry with mirror plane passing through an amino nitrogen. $\mathrm{Hg}^{\text {II }}$ ions are connected to each other by the bridging chloride ions in [100] direction; the seperation between the two bridged $\mathrm{Hg}^{\mathrm{II}}$ ions is 3.8317 (1) \AA, and is shorter than that in $\left[\mathrm{Hg}\left(\mu_{2}-\mathrm{Cl}\right)_{2}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}\right)_{2}\left(\mu_{2} \mathrm{HgCl}\right)_{3}\right]_{\infty}\left[3.9960(9) \AA\right.$, Hu et al., 2007]. The four-membered $\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ ring is planar and contains pairs of long and short $\mathrm{Hg}-\mathrm{Cl}$ bonds [$\mathrm{Hg} 1 — \mathrm{Cl1} 2.9881$ (9) $\AA \& \mathrm{Hg} 1 — \mathrm{Cl1} 2.3987$ (8) \AA]. The apym molecule acts as a bidentate ligand that links two neighbouring $\mathrm{Hg}^{\text {II }}$ ions in the crystallographic b direction with seperation $\mathrm{Hg} 1 \cdots \mathrm{Hg} 1$ distance of 7.0683 (3) \AA, in consequence leading to formation of two-dimensional infinite framework with grid size of $7.068 \times 3.832 \AA^{2}$ (Fig. 2). The topological type of this layer arrangement is sql $\left\{4^{4} \cdot 6^{2}\right\}$ (Blatov, 2006). Similar two-dimensional neutral polymer consisting of mercury(II) ions bridged by both pyrazine and bromide ligands has been reported by Mahmoudi \& Morsali (2009). The title compound is isostructural with its Cd analogoue, reported by Salinas-Castillo et al. (2011).

It is noteworthy that in our previous works, apym either played a role of a counter ion for an anionic network or acted as an uncharged monodentate ligand (Eshtiagh-Hosseini et al., 2009, 2010, 2011).

Another point of interest is the existance of $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds as well as columnar $\pi-\pi$ interactions between pyrimidine rings of apym ligands which are arranged into stacks propagating in the a direction (see Fig. 2) with the perpendicular separation of 3.509 (2) \AA and the centroid-to-centroid distance of 3.832 (2) \AA.

Experimental

To a solution of $\mathrm{HgCl}_{2}(0.050 \mathrm{~g}, 0.2 \mathrm{mmol})$ in 10 ml of MeOH was added dropwise a solution of pyridine-2,5-dicarboxylic acid $(0.018 \mathrm{~g}, 0.1 \mathrm{mmol})$ in 10 ml of MeOH in the reflux condition. After $15 \mathrm{~min}, 2$-aminopyrimidine ($0.020 \mathrm{~g}, 0.2$ mmol) was added as solid form, and the resultant solution stirred and refluxed for 12 h . After cooling the solution, a colourless needle-like crystals were obtained (yield: 70\%).

Refinement

H atoms bound to C atoms were placed in their idealized positions and were refined as riding on their parent atoms with $\mathrm{C}-\mathrm{H}$ distance of $0.93 \AA$. The symmetry independent amine H -atom was first found in a difference Fourier map and then refined using a riding model with $U_{\text {iso }}=1.2 U_{\text {iso }}(\mathrm{N})$. The highest peak in the final electron density difference map is located $1.07 \AA$ from Hg 1 atom.

Computing details

Data collection: CrysAlis PRO (Agilent, 2011); cell refinement: CrysAlis PRO (Agilent, 2011); data reduction: CrysAlis PRO (Agilent, 2011); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Figure 1
ORTEP view of coordination sphere of mercury (II). Symmetry code: (i) $x, 1.5-y, z$; (ii) $-x, 1-y,-z$; (iii) $-x,-0.5+y,-z$; (iv) $1+x, y, z$; (v) $1-x, 1-y,-z$; (vi) $-1+x, y, z$; (vii) $-x, 1-y,-z$. Displacement ellipsoids are given at the 50% probability level.

Figure 2
Representation of two-dimensional coordination polymer. Dashed lines denote intermolecular $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds. The columnar $\pi-\pi$ stacking interactions are highlighted in pink.

Poly[$\left(\mu_{2}\right.$-2-aminopyrimidine- $\left.\kappa^{2} N^{1}: N^{3}\right)$ di- μ_{2} - chlorido-mercury(II)]

Crystal data

$\left[\mathrm{HgCl}_{2}\left(\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{3}\right)\right]$
$M_{r}=366.60$
Monoclinic, $P 2_{1} / m$
Hall symbol: -P 2 yb
$a=3.8317$ (1) \AA
$b=14.1366(3) \AA$
$c=7.0773(2) \AA$
$\beta=96.814(2)^{\circ}$
$V=380.65(2) \AA^{3}$
$Z=2$

Data collection

Oxford Diffraction Xcalibur E
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 16.1544 pixels mm^{-1}
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Agilent, 2011)
$T_{\text {min }}=0.160, T_{\text {max }}=1.000$
$F(000)=328$
$D_{\mathrm{x}}=3.198 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3794 reflections
$\theta=2.9-29.0^{\circ}$
$\mu=20.84 \mathrm{~mm}^{-1}$
$T=294 \mathrm{~K}$
Needle, colourless
$0.45 \times 0.04 \times 0.02 \mathrm{~mm}$

9437 measured reflections
992 independent reflections
867 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.033$
$\theta_{\text {max }}=29.0^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-5 \rightarrow 4$
$k=-18 \rightarrow 19$
$l=-9 \rightarrow 9$

Refinement

Refinement on F^{2}
Least-squares matrix: full
Secondary atom site location: difference Fourier
map
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.020$
Hydrogen site location: inferred from
$w R\left(F^{2}\right)=0.049$
$S=1.12$
992 reflections
neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0245 P)^{2}+0.3601 P\right]$
52 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=0.84$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-1.01 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors $(\mathrm{gt}) \mathrm{etc}$. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Hg 1	0.0000	0.5000	0.0000	$0.03124(9)$
Cl1	$0.4453(2)$	$0.44666(6)$	$0.24361(12)$	$0.02963(19)$
C1	$0.0775(12)$	0.7500	$0.0879(7)$	$0.0249(10)$
N1	$0.1926(13)$	0.7500	$-0.0838(7)$	$0.0355(10)$
H1	0.2972	0.6915	-0.1176	0.043^{*}
N2	$0.0202(8)$	$0.6654(2)$	$0.1677(4)$	$0.0277(6)$
C4	$-0.1355(15)$	0.7500	$0.4342(8)$	$0.0353(12)$
H4	-0.2054	0.7500	0.5556	0.042^{*}
C3	$-0.0821(10)$	$0.6677(3)$	$0.3413(5)$	$0.0327(8)$
H3	-0.1185	0.6107	0.4016	0.039^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Hg 1	$0.02661(13)$	$0.03241(14)$	$0.03432(14)$	$0.00086(7)$	$0.00197(9)$	$0.00342(8)$
Cl 1	$0.0305(4)$	$0.0297(4)$	$0.0287(4)$	$0.0022(3)$	$0.0036(3)$	$0.0019(4)$
C 1	$0.023(2)$	$0.023(2)$	$0.028(3)$	0.000	$0.000(2)$	0.000
N 1	$0.051(3)$	$0.022(2)$	$0.037(3)$	0.000	$0.017(2)$	0.000
N 2	$0.0347(16)$	$0.0219(15)$	$0.0261(15)$	$-0.0005(12)$	$0.0014(12)$	$0.0007(12)$
C 4	$0.043(3)$	$0.040(3)$	$0.024(3)$	0.000	$0.007(2)$	0.000
C 3	$0.040(2)$	$0.029(2)$	$0.0280(19)$	$-0.0055(16)$	$0.0025(16)$	$0.0036(16)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Hg} 1-\mathrm{Cl1} 1^{\mathrm{i}}$	$2.3987(8)$	$\mathrm{C} 1-\mathrm{N} 2$	$1.352(4)$
$\mathrm{Hg} 1-\mathrm{Cl} 1$	$2.3987(8)$	$\mathrm{C} 1 — \mathrm{~N} 2^{\mathrm{v}}$	$1.352(4)$

supplementary materials

$\mathrm{Hg} 1-\mathrm{N} 2^{\text {i }}$	2.618 (3)	N1-H1	0.9618
Hg 1 - N 2	2.618 (3)	N2-C3	1.334 (5)
$\mathrm{Hg} 1-\mathrm{Cl}^{\text {ii }}$	2.9881 (9)	C4-C3	1.364 (5)
$\mathrm{Hg} 1-\mathrm{Cl}^{\text {iii }}$	2.9881 (9)	$\mathrm{C} 4-\mathrm{C} 3{ }^{\text {v }}$	1.364 (5)
$\mathrm{Cl} 1-\mathrm{Hg} 1^{\text {iv }}$	2.9881 (9)	$\mathrm{C} 4-\mathrm{H} 4$	0.9300
C1-N1	1.340 (6)	C3-H3	0.9300
$\mathrm{Cl1}-\mathrm{Hg} 1-\mathrm{Cl1}$	180.00 (3)	$\mathrm{Hg} 1-\mathrm{Cl} 1-\mathrm{Hg}_{1}{ }^{\text {iv }}$	90.00 (3)
$\mathrm{Cl1}{ }^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{N} 2^{\mathrm{i}}$	88.55 (7)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	117.7 (2)
$\mathrm{Cl} 1-\mathrm{Hg} 1-\mathrm{N} 2^{\text {i }}$	91.45 (7)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2^{\text {v }}$	117.7 (2)
$\mathrm{Cl1}{ }^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{N} 2$	91.45 (7)	$\mathrm{N} 2-\mathrm{C} 1-\mathrm{N} 2^{\text {v }}$	124.5 (5)
$\mathrm{Cl} 1-\mathrm{Hg} 1-\mathrm{N} 2$	88.55 (7)	C1-N1-H1	114.7
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Hg} 1-\mathrm{N} 2$	180.0	C3-N2-C1	116.3 (4)
$\mathrm{Cl1}-\mathrm{Hg1}-\mathrm{Cl}^{\text {iii }}$	90.00 (3)	$\mathrm{C} 3-\mathrm{N} 2-\mathrm{Hg} 1$	116.3 (2)
$\mathrm{Cl1}-\mathrm{Hg} 1-\mathrm{Cl}^{\text {iii }}$	90.00 (3)	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{Hg} 1$	126.8 (3)
$\mathrm{N} 2{ }^{\text {i }}-\mathrm{Hg} 1-\mathrm{Cl}^{\text {ii }}$	87.05 (7)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 3^{\text {v }}$	117.1 (5)
$\mathrm{N} 2-\mathrm{Hg} 1-\mathrm{Cl}^{\text {ii }}$	92.95 (7)	C3-C4-H4	121.4
$\mathrm{Cl1}^{\text {i }}-\mathrm{Hg} 1-\mathrm{Cl}^{\text {iii }}$	90.00 (3)	C3v-C4-H4	121.4
$\mathrm{Cl} 1-\mathrm{Hg} 1-\mathrm{Cl}^{\text {iiii }}$	90.00 (3)	N2-C3-C4	122.9 (4)
$\mathrm{N} 2-\mathrm{Hg1}-\mathrm{Cl}^{\text {i }}{ }^{\text {iii }}$	92.95 (7)	N2-C3-H3	118.6
$\mathrm{N} 2-\mathrm{Hg} 1-\mathrm{Cl} 1^{1 i i}$	87.05 (7)	C4-C3-H3	118.6
$\mathrm{Cl} 1{ }^{\text {iii }} \mathrm{Hg} 1-\mathrm{Cl1}{ }^{\text {iii }}$	180.00 (3)		

Symmetry codes: (i) $-x,-y+1,-z$; (ii) $-x+1,-y+1,-z$; (iii) $x-1, y, z$; (iv) $x+1, y, z$; (v) $x,-y+3 / 2, z$.
Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{Cl}^{\mathrm{ii}}$	0.96	2.41	$3.363(3)$	173

Symmetry code: (ii) $-x+1,-y+1,-z$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GK2458).

 ## References

 Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England. Blatov, V. A. (2006). IUCrCompComm Newsl. 7, 4-38.
 Eshtiagh-Hosseini, H., Mirzaei, M., Yousefi, Z., Puschmann, H., Shokrollahi, A. \& Aghaei, R. (2011). J. Coord. Chem., 64, 3969-3979.

 Eshtiagh-Hosseini, H., Yousefi, Z. \& Mirzaei, M. (2009). Acta Cryst. E65, o2816.

