
sensors

Article

A Methodology for Discriminant Time Series Analysis Applied
to Microclimate Monitoring of Fresco Paintings

Sandra Ramírez 1,2 , Manuel Zarzo 1,* , Angel Perles 3 and Fernando-Juan García-Diego 4,*

����������
�������

Citation: Ramírez, S.; Zarzo, M.;

Perles, A.; García-Diego, F.-J. A

Methodology for Discriminant Time

Series Analysis Applied to

Microclimate Monitoring of Fresco

Paintings. Sensors 2021, 21, 436.

https://doi.org/10.3390/

s21020436

Received: 18 November 2020

Accepted: 31 December 2020

Published: 9 January 2021

Publisher’s Note: MDPI stays neu-

tral with regard to jurisdictional clai-

ms in published maps and institutio-

nal affiliations.

Copyright: © 2021 by the authors. Li-

censee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and con-

ditions of the Creative Commons At-

tribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Applied Statistics, Operations Research and Quality, Universitat Politècnica de València,
Camino de Vera, s/n 46022 Valencia, Spain; smramirez@javerianacali.edu.co

2 Department of Natural Sciences and Mathematics, Pontificia Universidad Javeriana Cali,
760031 Cali, Colombia

3 ITACA Institute, Universitat Politècnica de València, Camino de Vera, s/n 46022 Valencia, Spain;
aperles@disca.upv.es

4 Department of Applied Physics (U.D. Agriculture Engineering), Universitat Politècnica de València,
Camino de Vera, s/n 46022 Valencia, Spain

* Correspondence: mazarcas@eio.upv.es (M.Z.); fjgarcid@upv.es (F.-J.G.-D.); Tel.: +34-96-387-4900 (M.Z.)

Abstract: The famous Renaissance frescoes in Valencia’s Cathedral (Spain) have been kept under
confined temperature and relative humidity (RH) conditions for about 300 years, until the removal
of the baroque vault covering them in 2006. In the interest of longer-term preservation and in
order to maintain these frescoes in good condition, a unique monitoring system was implemented
to record both air temperature and RH. Sensors were installed at different points at the vault of
the apse during the restoration process. The present study proposes a statistical methodology for
analyzing a subset of RH data recorded by the sensors in 2008 and 2010. This methodology is
based on fitting different functions and models to the time series, in order to classify the different
sensors.The methodology proposed, computes classification variables and applies a discriminant
technique to them. The classification variables correspond to estimates of model parameters of
and features such as mean and maximum, among others. These features are computed using
values of functions such as spectral density, sample autocorrelation (sample ACF), sample partial
autocorrelation (sample PACF), and moving range (MR). The classification variables computed
were structured as a matrix. Next, sparse partial least squares discriminant analysis (sPLS-DA) was
applied in order to discriminate sensors according to their position in the vault. It was found that the
classification of sensors derived from Seasonal ARIMA-TGARCH showed the best performance (i.e.,
lowest classification error rate). Based on these results, the methodology applied here could be useful
for characterizing the differences in RH, measured at different positions in a historical building.

Keywords: ARIMA; art conservation; Holt–Winters; sensor diagnosis; sparse PLS-DA; TGARCH

1. Introduction

Over the past 300 years, the famed Renaissance frescoes in Valencia’s cathedral were
kept under confined conditions because they were covered by a baroque vault. However,
this vault was removed in 2006 [1]. In the interest of longer-term preservation and in order
to maintain these frescoes in good condition, a monitoring system was implemented to
record both air temperature and relative humidity (RH). Sensors were located at different
points in the apse vault. The approximate location of each sensor can be seen in Figure 1.
The positions are: cornice C, ribsR, wallsW , and frescoes F . Some sensors were inserted
on the painting’s surface itself. It is a unique system because sensors are rarely placed
inside the frame or on the canvas of paintings. Details about the installation of probes in
the frescoes can be seen in figures from [1,2]. A perspective of the upper part of the apse
and terrace above the frescoes can be found in [1].

The system was intended to detect water entering from the roof at specific points,
or excessive general humidity in the vault itself. Any indication of high levels of thermo-
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hygrometric conditions would instigate corrective measures [2]. The data analysis carried
out by Zarzo et al. [1] showed the advantages of using humidity sensors for the monitoring
of frescoes, so as to maximize their protection and prevent deterioration. The microclimatic
requirements for churches and cathedrals are similar to those of museums, which also con-
tain valuable works of art [2]. As in the case of museums, the indoor thermo-hygrometric
conditions should be maintained at optimal levels in order to conserve the artefacts.
The risks constituted by ventilation systems, air-conditioning, central heating, and the
presence of visitors should be assessed in order to prevent or slow down the process of
deterioration. Ideally, the temperature of walls and their surfaces should be the same as the
air in the immediate proximity because, otherwise, an airflow is generated along the wall
surface that increments the aerodynamic deposition of airborne particles and wall soiling.
Cultural heritage sites are subjected to climatic changes that put them at risk, which has
been widely discussed in [3,4].

Figure 1. Approximate location of the probes and sensors at the apse vault of the cathedral of
Valencia. Details of the installation of the probes and a scheme depicting the installation of probes in
the frescoes can be seen in [1] and [2]. The image shows the position of the 29 probes for monitoring
the relative humidity (RH) of the indoor atmosphere, displayed in different colors according to their
position. Seven probes were located on the ribs (orange), two at the cornice (light orange), ten on the
walls below the severies (purple), and ten probes on the frescoes (green).

The internal environment should be appropriate [5] because changes in air tem-
perature and RH can affect the conservation of fresco paintings [6–8]. Different stud-
ies [9–12] have monitored thermo-hygrometric parameters inside museums in order to
assess the potential risks related to temperature and humidity. Other authors, such as
Camuffo et al. [8], have studied the interactions between the indoor atmosphere and
walls supporting frescoes or mural paintings. Similar works have been carried out in
churches [13–17]. Frasca et al. [13] performed a microclimatic monitoring of the historic
church of Mogiła Abbey to analyze the impact of the environmental parameters on the
works of art. Among their results, they found that vulnerable objects were at a high risk of
mechanical damage approximately 15% of the time. The main cause of the vulnerability
was the RH variability.

The problems of deterioration due to high humidity identified in the Renaissance
frescoes at the cathedral of Valencia were studied by Zarzo et al. [1]. The researchers
suggested that these problems could be caused by the infiltration of rainwater through
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the roof above the apse and, that maintenance or regular monitoring should therefore be
conducted for the long-term preservation of the valuable frescoes. Bernardi et al. [18]
studied the importance of waterproofing in the roof above frescoes in St. Stephan’s church
in Nessebar, Bulgaria.

In the same way, the European Standards [19–24] summarized in the standard [25]
as well as Corgnati and Filippi [26] adopted the approach of the Italian Standard UNI
10829 (1999) for the monitoring, elaboration, and analysis of microclimatic data for the
preservation of artefacts.

A big economic effort is being carried out by governments within the European Union
to preserve artworks in museums. Several works have monitored the microclimate within
museums to analyze its relationship with the degradation of materials from which works
of art are made, for example, with the goal of preserving artwork and artefacts [27].

Concerning data analysis, García-Diego and Zarzo [2] used monthly principal compo-
nents analysis (PCA) in their research for February, September, October, and November of
2007. Furthermore, Zarzo et al. [1] also fitted a PCA per year for the years 2007, 2008, and
2010. The resulting loading plots highlight the most relevant similarities and dissimilari-
ties among sensors. Regarding RH recorded in 2007, researchers observed that the daily
evolution versus time of the RH mean per hour (RH) was rather parallel for all sensors.
It was observed that sensors H, N, and R (inserted on the frescoes) recorded higher values
of RH than those installed on the walls. Interestingly, sensors H and R were located in
the zone where there was a moisture problem after their installation. In 2008 and 2010,
the correlation between RH and the first principal component PC1 was very high (greater
than 0.994) [1]. After computing the average of moving ranges with order 2 of RH (per hour
HMV, day DMV and month MMV), it was shown that PC2 for 2008 could be predicted
as: PC2 = 232.88− 2.69RH − 32.39DMV. Regarding 2010, the estimated regression model
was: PC2 = 297.03− 3.87RH − 32.12DMV. Based on the results, researchers concluded
that PC1 could be interpreted as the yearly RH average, while PC2 provided basic in-
formation about daily mean variations. Furthermore, researchers detected an abnormal
performance in one sensor that might correspond to a failure of the monitoring system [28]
or a change in the microclimatic conditions surrounding that particular sensor. They also
concluded that the use of humidity sensors and the interpretation of the first two principal
components can be very useful when discussing the microclimatic air conditions surround-
ing fresco paintings. Hence, PCA is a powerful statistical method for characterizing the
different performance among sensors of the same type, located at different positions [1].
The advantage of PCA for sensor diagnosis has also been reported by Dunia et al. [28] and
Zhu et al. [29].

The present study re-analyzes time series of RH from sensors located at the apse vault
of Valencia cathedral. The data sets used here correspond to subsets of the database used
in the study conducted by Zarzo et al. [1]. The present work focuses on RH measurements
recorded from 23 sensors in 2008 and from 20 sensors in 2010. These time series of RH do
not contain missing values.

This research aims to bring forward a methodology for discriminating sensors ac-
cording to their position. For this purpose, the approach applied in this study consists of
three stages: (1) The different time series were divided according to climatic condition and
changes of the slope and level of the time series; (2) Three methods (M1, M2, and M3) were
applied to obtain the classification variables per part of the time series identified in stage
1; (3) Sparse partial least squares discriminant analysis sPLS-DA was applied three times
(one per method) as a discriminant technique in order to classify sensors, by using the set
of classification variables as predictors.

The methodology proposed in this research is new in the context of time series cluster-
ing, as well as in sensor classification, when applied with the aim of conserving works of
art. This methodology is unique because it uses a Seasonal ARIMA-TGARCH model to
extract information from the time series, for discrimination purposes. It is also singular
because it employs sPLS-DA in order to classify the time series.



Sensors 2021, 21, 436 4 of 28

According to the results of this study, sPLS-DA together with ARIMA-TGARCH-
Student has a high capability of classifying time series with very similar characteristics,
which often occurs in museums or similar buildings. The proposed methodology is well-
suited to monitoring the sensors in this type of building.

This approach can be very useful in defining how microclimatic measurements should
be carried out for monitoring conditions in heritage buildings or similar sites. Furthermore,
the methodology could be useful for reducing the number of sensors required to monitor
the microclimate. In summary, this approach could help to better manage the preventive
conservation of cultural heritage sites.

2. Materials and Methods
2.1. Materials: Description of the Data Sets

Regarding the frescoes in Valencia’s cathedral, 29 probes were implemented to monitor
the indoor air conditions. Each probe contains an integrated circuit model DS2438 (Maxim
Integrated Products, Inc., San Jose, CA, USA) that incorporates an analogue-to-digital
voltage converter. This converter measures the output voltage of a humidity sensor (HIH-
4000, Honeywell International, Inc.) and a temperature sensor. The recorded values of RH
have an accuracy of ±3.5%. Details of the probes, RH sensors, functions of calibration, and
their installation in the apse vault are described elsewhere [1,2]. Seven probes were placed
on the ribs (R), two at the cornice (C), ten on the walls below the severies (W), and ten on
the frescoes (F ) (see Figure 1).

The data sets used here do not contain missing values and correspond to subsets
of the database used by Zarzo et al. [1]. The electronics platform Arduino was used
https://www.arduino.cc/en/Guide/Introduction. Such data sets correspond to the mean
RH per hour or day (RHh or RHd), where RHht is the average of measurements per hour,
while RHdt corresponds to the average of measurements per day.

The RH datasets correspond to those sensors located in the cornice C, ribs R, walls
W , and frescoes F . As the statistical analysis was performed separately for each season,
sensors M inW and Ñ at theR were discarded because it was necessary to deal with time
series comprising a time period of at least 300 observations without missing values. Thus,
time series are available in 2008 for 23 sensors: two on the cornice (A and B), five at the ribs
(C, D, I, J, and X), nine on the frescoes (E, H, K, O, R, T, W, Y, and AB), and seven on the walls (G,
L, P, U, V, Z, and AA). In 2010, information from sensors H, Y, AB, G, and Z was not available,
but there were two additional sensors (S and Q) located at the C andW , respectively. Hence,
20 sensors could be used for 2010: 8 at positionRC (R or C), 6 on the walls (W), and 6 on
the frescoes (F ) (see Figure 1).

For both years, the follow-up time spanned the seasons of winter Wr, spring Sp, and
summer Sm. The data set RHh for 2008 consists of 3851 observations: 1430 for Wr, 2099 for
Sp, and 322 for Sm. Regarding 2010, 3414 observations are available: 636 for Wr, 2178 for
Sp, and 600 for Sm.

Autumn was not considered because the number of observations was not high enough
according to the established conditions of the study (i.e., at least 300 observations). Data
sets correspond to the periods between 15 January and 4 July 2008, and from 22 February to
18 July 2010. Sensors from the selected times—both in 2008 and 2010—did not experience
electronic malfunction. In 2008, there was no evidence of conservation problems in the
frescoes where these sensors were located. By contrast, in 2010 there was evidence of salt
efflorescence found in the same zones, before the first restoration works in the apse vault [1].

The periods corresponding to each season were defined as follows: spring was consid-
ered as being between 19 March and 20 June, summer between 20 June and 22 September,
and winter between 22 September and 22 January.

2.2. Statistical Methods

Three different methods (M) were applied to the RH data in order to extract estimates
of parameters and features used subsequently as classification variables. These methods

https://www.arduino.cc/en/Guide/Introduction
https://www.arduino.cc/en/Guide/Introduction
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consist of fitting the time series to different statistical models or functions. M1 included
functions such as spectral density, sample autocorrelation function (ACF), sample partial
ACF (PACF), and moving range (MR) [30–33]; M2 was the Additive Seasonal Holt–Winters
method (Additive SH-W) [34,35]; and M3 was a Seasonal ARIMA with threshold general-
ized autoregressive conditional heteroskedastic (TGARCH) model considering the Student
distribution for residuals (Seasonal ARIMA-TGARCH-Student) [36–39].

The three methods were carried out separately for various seasons of the year ( Wr,
Sp, and Sm) for both 2008 and 2010. Once the classification variables were computed from
the three methods, sparse partial least square discriminant analysis (sPLS-DA) [40] was ap-
plied to classification variables three times—one time per method—using all classification
variables per season. sPLS-DA was used to discriminate between sensors according to their
three possible positions in the vault: RC (R or C),W , and F . The classes R and C were
joined as a new class calledRC in order to ensure a similar number of sensors per group.

The statistical methodology applied consisted of different steps: Firstly, the identifica-
tion of structural breaks in the time series (Section 2.2.1), which leads to the establishment
of periods where the analyses were carried out. Secondly, calculation of classification
variables using M1 (Section 2.2.2). Thirdly, the calculation of classification variables using
M2 (Additive SH-W; Section 2.2.3). Fourthly, the calculation of classification variables using
M3 (Seasonal ARIMA-TGARCH-Student; Section 2.2.4). Finally, sensor classification was
done by means of sPLS-DA (Section 2.2.5).

R software [41] version 4.03 was used to carry out the analyses. The main R packages
used were aTSA [42], forecast [43,44], mixOmics [45,46], rugarch [37,47], strucchange [48],
tseries [49], and QuantTools [33].

2.2.1. Identification of Structural Breaks in the Time Series

Many time series models (e.g., ARMA [36], ARCH, and GARCH [37]) assume the
lack of sudden changes due to external factors that might appear occasionally. However,
when analyzing time series of real situations, it can be found that external factors produce
dramatic shifts such as a change in the slope of a linear trend, which cannot be properly
modeled. Such occasional events are known as structural breaks [38]. In order to detect
such events, different tests can be applied from the generalized fluctuation test framework
(e.g., CUSUM and MOSUM), which are based on empirical fluctuation processes [50].
Others like the Chow [51] test are based on checking sequences of F statistics [52–54], while
the supF test [55] consists of applying the former at all possible structural breaks. The null
hypothesis is “no structural change”, versus the alternative: “the vector of coefficients
varies over time” [55].

By visually inspecting the evolution versus time of RHh for both 2008 and 2010 (see
Figure 2), potential structural breaks were identified in at least two points. Their signifi-
cance was assessed by means of the CUSUM and supF tests. Both tests were carried out
with the logarithmic transformation [56], that is, rt = ln(RHht), which has been used in
other works to stabilize the data variance [38,56,57]. It was observed that most of the daily
time series undergo seasonal trends, which makes it necessary to apply regular differentia-
tion (i.e., wt = rt− rt−1) in order to remove any trend [56], which is a common pretreatment
in time series analysis. In this paper, r refers to transformed values using the logarithmic
function, while W refers to data that was subjected to a logarithmic transformation and
one regular differentiation. Figure 3 displays the plot of the time series of RH from sensor
Y (2008). Additionally, this figure shows the plots of the time series of the logarithmic
transformation of RH as well as one regular differentiation of the previous time series.
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(a)RC 2008 (b)W 2008 (c) F 2008

(d)RC 2010 (e)W 2010 (f) F 2010

Figure 2. Evolution of RHh. Trajectories of sensors located at equivalent positions in the apse vault are depicted in the same
chart (data recorded between January 15 and July 4 2008): cornice and ribs (RC) (a), walls (W) (b), and frescoes (F ) (c).
Likewise for data collected between February 22 and July 18 2010: RC (d),W (e), and F (f). Separation by seasons (Wr, Sp
and Sm) is indicated by means of vertical solid lines. Wr is divided into two periods (dashed line) because a structural break
was identified according to the supF and CUSUM tests.

(a) RHh (b) r, where rt = ln(RHht ) (c) W, where wt = rt − rt−1.

Figure 3. (a) Observed time series of RH from sensor Y (2008), (b) logarithmic transformation of the time series of (a), (c)
one regular differentiation of the time series of (b).

The supF and CUSUM tests were applied to six groups: Wr 2008 (group 1, n = 1429),
Sp 2008 (group 2, n = 2098), Sm 2008 (group 3, n = 321), Wr 2010 (group 4, n = 635),
Sp 2010 (group 5, n = 2177), and Sm 2010 (group 6, n = 559).

According to the supF test, a structural break was identified in Wr 2008, after the
1058th observation (March 27 at 7:00 a.m., p-value = 0.01). Another break was found in
2010 at the 338th observation (March 8 at 1:00 p.m., p-value = 0.04). The CUSUM chart
identified a significant shift at the same instant of time (1058th value in 2008 and 338th
observation in 2010). The main reason for structural breaks could have been the strong
changes of RH that occur in Valencia.

Ignoring structural breaks can lead to negative implications such as inconsistency of
the parameter estimates and forecast failures [58]. Accordingly, for each structural break,
it was decided to fit one model before this event, and another one after the structural
break. On the other hand, in congruence with the physical characteristics of the data,
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it might be convenient to split the statistical analysis per season and year. According to
both considerations, the analysis was carried out separately in four periods, denoted as
WrA, WrB, Sp, and Sm. WrA corresponds to the winter period before the structural break,
while WrA refers to the following period (see Figure 2).

2.2.2. Calculation of Classification Variables—Method M1

This method is based on features using estimates of ACF (ρl at lag l), PACF (αl at
lag l), as well as features using mean (µ) and moving range (MR). Furthermore, features
from spectral density were used, which was estimated using the periodogram (I(w)) of
signals w. These features can help to characterize and reveal interesting properties of the
underlying stochastic process without using any specific parametric model. Figure 4 shows
a summary of the steps of M1.

RH values were used for estimating PACF, mean, and MR. By contrast, logarithm
transformation and regular differencing were applied before estimating ACF and spectral
density in order to stabilize the variances and remove the trend (i.e., W was employed). The
objective of using both the ACF and spectral density with W was to focus on the seasonal
component of the time series. These functions are briefly explained below:

Firstly, the mean of RHh was estimated for each period because this variable appeared
as important for discrimination purposes in the preliminary study [1,2].

Secondly, MR with order n correspond to range values over n past values [33].
This function was applied to RHh and RHd. For each period, the mean and variance
were computed for all MR values with order 2. These variables were calculated in order to
estimate HMV and DMV, which were used in the preliminary investigations of this project [1,2].
However, MMV (i.e., MR of order 2 for RHm, estimated with the average RH per month)
could not be calculated in this research because the number of observations per month was
too low. For RHh, the mean of MR (µ̂MR) corresponds to HMV and for RHd, the mean of MR
is represented by DMV.

Thirdly, spectral density was estimated by means of the periodogram, which was
calculated on the log scale using a spectrum function [30]. The periodogram displays
information about the strengths of the various frequencies for explaining the seasonal com-
ponents of a time series. The maximum peaks of spectral density and their corresponding
frequencies were identified [30]. These functions were applied to RHh.

Finally, an estimation of ACF at lag l is the correlation (quantified by means of
Pearson’s correlation coefficient) between the values of a given time series, with the lagged
values of the same time series at l time steps (l refers to lags) [30]. W values were used
for this calculation. The values of sample ACF for the lags from 1 to 72 were used as
classification variables because they showed greater variations, while for further lags they
displayed lower values close to zero, comprised between the limits of a 95% confidence
interval in the ACF correlogram.

Regarding sample PACF, according to Cowpertwait and Metcalfe [59], “the partial
autocorrelation at lag l is the correlation that results after removing the effect of any
correlations due to the terms at shorter lags”. Sample ACF and sample PACF plots are
commonly used in time series analysis and forecasting (e.g., autoregressive moving average
(ARMA) models and their particular cases such as autoregressive (AR) and moving average
(MA) models [59]). These plots, also called correlograms, illustrate the strength of a
relationship between the values observed at a certain instant of time with those recorded
in previous moments (with lag l) in the same time series. If sample ACF values decline
exponentially and there are spikes in the first or more lags of sample PACF values, the time
series can be modeled as an AR process. If sample PACF values decline exponentially
and there are spikes in the first or more lags of the sample ACF values, the time series
can be modeled as an MA process. If both sample PACF and sample ACF values decline
exponentially, the time series can be modeled as a mixed ARMA process [59]. Sample PACF
was computed for RHh values. The sample PACFs for the first four lags were calculated
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for each period and were regarded as classification variables because they are usually the
most important ones for capturing the relevant information in time series.

M1

and

Type 1 variables:
compute

MI(w), w, µ̂ρ̂l
,

M̂dρ̂l
, R̂ρ̂l

, σ̂2
ρ̂l

l = 1, . . . , 72

or

Type 2 variables:
compute

α̂1, α̂2, α̂3, α̂4,
µ̂MR, and µ̂RHt

or

Apply one regular
differentiation to r,
thus wt = rt − rt−1.

Apply logarithm
transformation to RHt,
thus, rt = ln (RHt)

Data 2: Use equal
partition of RHt

Wr
Sp
Sm

Data 3
Wr
Sp
Sm

Wr
Sp
Sm

Estimates of
type 1 variables

Estimates of
type 2 variables SB?

NO

YES

Data 2:
Change partition

of RHt.
If Wr has 1 SB
=⇒ Partition:

WrA, WrB
Sp and Sm.
A: before SB
B: after SBF

Data 1: partition of RHt:
Wr, Sp, and Sm

Data: RHt, where t = 1, . . . , T

WrA
WrB
Sp
Sm

WrA
WrB
Sp
Sm

WrA
WrB
Sp
Sm

or
Apply to

Data 3
Estimates of

type 1 variables

Estimates of
type 2 variables

Figure 4. Flow chart for the steps of method 1: Blue lines indicate type 2 variables. Red lines indicate type 1 variables.
Solid lines indicate processes. Dashed lines indicate results. The first step consists of dividing the different time series
according to the climatic conditions: Wr, Sp, and Sm (Data 1). The second step consists of dividing the time series (Data 1)
according to possible structural breaks (SBs) (Data 2). The third step applies a logarithm transformation and one regular
differentiation to Data 2. The result is Data 3. The fourth step consists of applying the formulas of type 2 variables to Data 2.
This is the first result. The fifth stage is carried out by applying the formula of type 1 variables to Data 3. The outcome
produced is result 2. Different boxes contain symbols such as Wr, Sp, and Sm (or WrA, WrB, Sp, and Sm). They indicate that
the results were computed for all different parts of the time series.

The features computed using the values of RH were called type 1 variables and
features calculated using values of W were referred to as type 2 variables. The list of type 1
variables resulting from M1 are the estimates of the following parameters:

• Mean of RHh (µ̂RH).

• Mean of MR (µ̂MR) of order 2 for RHd and RHh.
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• Variance of MR (σ̂2MR) of order 2 for RHd and RHh.

• PACF for the first four lags (α̂1, α̂2, α̂3, and α̂4).

The list of type 2 variables resulting from M1 are the estimates of the following pa-
rameters:

• Maximum of spectral density (MI(w)) and frequency corresponding to the maximum (w).

• Mean (µ̂ρ̂l
), Median (M̂dρ̂l

), range (R̂ρ̂l
), and variance of the sample ACF (σ̂2

ρ̂l
) for the

first 72 lags.

2.2.3. Calculation of Classification Variables—Method M2: Additive SH-W

Winters [35] extended Holt’s method [34] for capturing the seasonality of a time series.
Hence, it was called Holt–Winters (H-W), which is a particular method of exponential
smoothing aimed at forecasting [60].

The Seasonal H-W approach (SH-W) is based on three smoothing equations: for the
level, trend, and seasonality. The parameter S denotes the number of values per season,
while three additional parameters capture the information at time t: at denotes the time
series level, bt is the slope, and st is the seasonal component [60]. There are two different
SH-W methods, depending on whether seasonality is modeled additively or multiplica-
tively [60]. The Seasonal H-W approach (SH-W) is based on three smoothing equations:
for the level, trend, and for seasonality. The parameter S denotes the number of values per
season, and three additional parameters capture the information at time t: at denotes the
time series level, bt is the slope, and st is the seasonal component [60].

In this research, the Additive SH-W method was fitted to both time series of RH
and to their logarithmic transformations, but it turned out that the best outcomes were
obtained with the transformed data. The period, the number of observations per season,
was considered as S = 24 (i.e., 24 hourly values per day). Although this method does not
require a residual analysis, one was carried out in an attempt to extract further informa-
tion. Autocorrelation within the time series appeared in at least 10 out of the 22 lags for
over 80% of the Ljung–Box Q (LBQ) tests [61] applied. Furthermore, the Kolmogorov–
Smirnov normality (KS normality) [62] and Shapiro–Wilk (SW) tests [57,63,64] rejected
the hypothesis of normality for at least 80% of the cases applied. The KS normality test
compares the empirical distribution function with the cumulative distribution function.
The test statistic is the maximum difference between the observed and theoretical values
(normality). The statistic of the KS normality test was used as a classification variable
in order to gather information about the distribution pattern of residuals and quantify
departure from a normal distribution. The SW test detects deviations from normality due
to either skewness or kurtosis, or both. The statistic of the SW test was also employed as
a classification variable in order to identify lack of normality in the residuals according
to skewness and kurtosis. Furthermore, given that data sets in this study are seasonal
with a period of 24 h, where 72 is the maximum of lags, this maximum value was also
considered for estimation of the mean, median, range, and variance of the sample ACF for
the residuals. Figure 5 shows a summary of the steps of M2.

The features computed from residuals of the SH-W method were called type 3 vari-
ables. The other classification variables corresponded to the estimates of the method’s
parameters. The list of classification variables resulting from M2 are the following:

• Estimates of the parameters of the SH-W method: trend (b̂), level (â), and seasonal
components (Ŝ1, . . . , Ŝ24).

• type 3 variables: sum of squared estimate of errors (SSE), maximum of spectral
density (M̂I(w)), frequency corresponding to maximum of spectral density (ŵ), and

the mean (µ̂ρ̂k
), median (M̂dρ̂k

), range (R̂ρ̂k
), and variance (σ̂2

ρ̂k
) of sample ACF for

72 lags. The statistic of the SW test (shap.t), and the statistic of the KS normality test
(kolg.t) are also included in this list.
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and
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Figure 5. Flow chart for the steps of method 2: Red lines indicate estimated parameters. Blue lines indicate type 3 variables.
Solid lines indicate processes. Dashed lines indicate results. The first step divides the different time series according to the
climatic conditions ( Wr, Sp, and Sm) (Data 1). The second step organises the time series according to possible structural
breaks (SBs) (Data 2). The third step applies the method to Data 2 in order to obtain the estimates of the method’s parameters
(first result) and then the residuals from the method. The fourth step consists of applying the formulas for type 3 variables
to the residuals (second result). Different boxes display symbols Wr, Sp, and Sm (or WrA, WrB, Sp, and Sm). This indicates
that the results correspond to all different parts of the time series.

2.2.4. Calculation of Classification Variables—Method M3:
Seasonal ARIMA-TGARCH-Student

ARMA models were popularized by Anderson [65], who developed a coherent three-
step iterative cycle for time series estimation, verification, and forecasting. This method
is also known as the Box–Jenkins approach. The ARMA model assumes that the time
series is stationary; if this is not the case, differencing the time series one or more times is
required, resulting in an ARIMA model. In the ARIMA(p, d, q) approach, p is the number
of AR terms, d is the number of regular differences taken, and q is the number of the
MA. Furthermore, φi (i = 1, . . . , p) are the parameters of the AR part of the model, θj
(j = 1, . . . , q) are the parameters of the MA part, and the εt are error terms—generally
assumed to be a white noise sequence [38].

Although ARIMA is flexible and powerful in forecasting, it is not able to properly
handle continuously changing conditional variance or the non-linear characteristics of the
variance that can be present in some time series [66]. This is often referred to as variance
clustering or volatility [67,68]. If it is assumed that a given time series follows an ARIMA
process, the conditional variance of residuals is supposed to be constant versus time. When
this condition is not fulfilled, it is known as a conditional variance process [56,67,68].
In such a case, data can also be affected by non-linear characteristics of the variance.
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These patterns can be studied using the GARCH family of models. Two of the most
important ones for capturing such changing conditional variance are the ARCH and
generalized ARCH (GARCH) models developed by Engle [69] and later extended by
Bollerslev [70]. Engle and Bollerslev [71] were pioneers in the area of volatility modeling by
introducing ARCH and, subsequently, GARCH models, which provide motion dynamics
for the dependency in the conditional time variation of the distributional parameters of the
mean and variance.

In recent years, different studies have applied hybrid forecasting models in various
fields, and have shown a good performance for rainfall data [72], for the price of gold [73],
for forecasting daily load patterns of energy [74], and for stock market prices [75].

According to Ghalanos [37], the family of GARCH models is broad, including the
standard, integrated, and exponential models, as well as the GJR-GARCH, the asymmetric
power ARCH, and the threshold GARCH (TGARCH) of Zakoian [76]. They capture
the asymmetry of occasional impacts as well as abnormal distributions to account for
the skewness and excess kurtosis. For GARCH models, error terms can sometimes be
assumed from the Student distribution [77]. Bollerslev [78] described the GARCH-Student
model as an alternative to the normal distribution for fitting the standardized time series.
In particular, in the TGARCH-Student(s,r) model, s is the number of GARCH parameters
βi (i = 1, . . . , s), r is the number of ARCH and rotation parameters αj and η1j, respectively
(j = 1, . . . , r), while ω is the variance intercept parameter. Error terms εt are assumed to be
a white noise sequence following a Student distribution with degrees of freedom v [37].

Thus, instead of considering the standard ARIMA approach, whose focus is the
conditional mean, it seems convenient to use here a hybrid approach based on ARIMA
and GARCH models which can simultaneously deal with both the conditional mean and
variance [38].

Given that data sets in this study are seasonal, it is necessary to use Seasonal ARIMA
models, which are capable of modeling a wide range of seasonal data. A Seasonal
ARIMA(p, d, q)(P, D, Q)S model is characterized by additional seasonal terms: P is the
number of seasonal AR (SAR) terms, D is the number of differences taken, Q is the num-
ber of seasonal MA (SMA) terms. , and S is the number of observations per period
(S = 24 in this study). Furthermore, Φi (i = 1, . . . , P) are the parameters of the SAR
part of the model, Θj (j = 1, . . . , Q) are the parameters of the SMA part, and the εt are
error terms, which are assumed to be a white noise sequence [38]. In particular, in the
Seasonal ARIMA(p, d, q)(P, D, Q)S -TGARCH(s, r) -Student model, the errors εt from Sea-
sonal ARIMA(p, d, q)(P, D, Q)S follow a TGARCH(s, r) -Student process of orders s and r,
so that their error terms εt are assumed to be a white noise sequence following a Student
distribution, with degrees of freedom v.

Two steps were considered for the application of a hybrid approach based on Seasonal
ARIMA and GARCH models, as briefly explained below.

Firstly, the most successful Seasonal ARIMA (or ARIMA) model was selected and
the residuals were computed. Next, the most successful GARCH model was applied to fit
these residuals. The following steps were carried out:

• The condition of stationarity was checked, that is, whether the statistical characteristics
of the time series were preserved across the time period. The null hypothesis was
that mean and variance do not depend on time t and the covariance between obser-
vations RHt and RHt+l does not depend on t [38]. To examine this null hypothesis,
the augmented Dickey–Fuller (ADF) [79] and LBQ tests were applied for 48 lags.
Furthermore, the sample ACF and sample PACF plots were also used.

• Transformation and differencing: the logarithmic transformation and regular dif-
ferentiation were applied to RHh data before fitting ARMA in order to transform
nonstationary data into stationary data [59]. The criterion for determining the values
of d ( differencing) is explained in the next step. The logarithmic transformation was
preferred over other transformations because the variability of a time series becomes
more homogeneous using logarithmic transformation, which leads to better forecasts [80].
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• Identification of the most appropriate values for (p, d, q) and (P, D, Q). Sample ACF
and sample PACF plots were used to identify the appropriate values of (p, q). Further-
more, the corrected Akaike information criterion (AICc) [60] was useful for evaluating
how well a model fits the data and determining the values of both (P, D, Q) and
(p, d, q), taking into account the restriction that d and D should be 0 or 1. The most
successful model for each time series was chosen according to the lowest AICc value.
The AICc values were compared for models with the same orders of differencing, that
is, equal values of d and D.

Secondly, the maximum likelihood estimation (MLE) method was used for estimat-
ing the parameters of the Seasonal ARIMA (or ARIMA) [38]. The models chosen were
statistically examined in order to ensure that the resulting residuals do not contain useful
information for forecasting. For this purpose, different tests were applied to determine
whether all conditions and model assumptions were fulfilled. The analysis of residuals
was carried out as follows:

• The condition of white noise was checked. Error terms can be regarded as white noise
if their mean is zero and the sequence is not autocorrelated [38]. In order to check this
issue, the ADF and LBQ tests were applied to the residuals and their squared values
for 48 lags. Furthermore, the sample ACF plots were also used.

• To study the absence of Arch effects: for this purpose, the Lagrange multiplier test [69] and
sample ACF plots [67] were applied to the residuals and their squared values [81].

• To check the distribution of residuals: by means of the Q–Q normal scores plots as
well as the SW and KS normality tests.

The analysis of residuals revealed that error terms follow a GARCH process in all
the different ARIMA models that were fitted. Therefore, it was necessary to fit a GARCH
model to these residuals. The estimated model parameters were checked to determine if
they were statistically significant, and their residuals were evaluated as described above.
Finally, a hybrid model was fitted for each sensor and each period using the combined
Seasonal ARIMA (or ARIMA) and TGARCH approach. After repeating the steps iteratively
in order to select the most successful model, the normality tests applied to their residuals
rejected the hypothesis of normality in all cases. Furthermore, all Q–Q normal scores plots
showed that residuals were not falling close to the line at both extremes. Thus, a Student
distribution was used to fit the residuals of the different TGARCH models.

For each period, a common model was applied to the hourly data of each sensor
(one day corresponds to a sequence of 24 values).

• WrA (2008): seasonal ARIMA(1, 1, 0)(2, 0, 0)24− TGARCH(1,1)-Student.

• WrA (2010): ARIMA(1, 1, 2)− TGARCH(1,1)-Student.

• WrB (2008 and 2010): seasonal ARIMA(1, 1, 1)(2, 0, 0)24− TGARCH(1,1)-Student.

• Sp (2008 and 2010): seasonal ARIMA(1, 1, 2)(0, 0, 2)24− TGARCH(1,1)-Student.

• Sm (2008 and 2010): seasonal ARIMA(1, 1, 1)(1, 0, 0)24− TGARCH(1,1)-Student.

A seasonal model was not selected for WrA (2010) because the analysis of residuals of the
selected model showed similar results to the best seasonal model, and the selected model
was simpler.

When analyzing the residuals from Seasonal ARIMA-TGARCH-Student models for
2008, it turned out that in the case of WrA, the time series from 12 sensors out of the
23 available did not satisfy all expected conditions. The same happened for Sp: 14 out
of the 20 models did not fulfill all requirements. Thus, in an attempt to extract further
information not properly captured by these models, some features were calculated from
the residuals. Figure 6 shows a summary of the steps of M3.



Sensors 2021, 21, 436 13 of 28

M3

and
Seasonal ARIMA-TGARCH:

Estimate
coefficients of:
φp(B), θq(B),

ΦP(BS), ΘQ(BS),
ω, α, η, β.

Apply to or

Type 3
variables:

Compute MI(w), w, SSE
shap.t, kolg.t

µ̂ρ̂k
, M̂dρ̂k

, R̂ρ̂k
, σ̂2

ρ̂k
,

k = 1, . . . , 72.

Wr
Sp
Sm

Data 3

Apply logarithm
transformation
to RHt, thus
rt = ln (RHt)

or
Apply to

Data 2: use the same
partition of RHt

SB?

NO

YES

Data 2:
change partition

of RHt
If Wr has 1 SB
=⇒ Partition:
WrA, WrB,
Sp and Sm
A: before SB
B: after SB.

Wr
Sp
Sm

and

Wr
Sp
Sm

WrA
WrB
Sp
Sm

Data 3
and

WrA
WrB
Sp
Sm

WrA
WrB
Sp
Sm

Wr
Sp
Sm

WrA
WrB
Sp
Sm

Data 1: partition of RHt
Wr, Sp,
and Sm.

Data: RHt, where t = 1, . . . , T.

Apply toor

Estimates of parameters

Estimates of type 3 variables

Residuals

Estimates of parameters

Residuals

Estimates of type 3 variables

Figure 6. Flow chart for the steps of method 3: Blue lines indicate estimated parameters. Red lines indicate type 3 variables.
Solid lines indicate processes. Dashed lines indicate results. The first step divides the different time series according to the
climatic conditions (Wr, Sp, and Sm) (Data 1). The second step organises the time series according to possible structural
breaks (SBs) (Data 2). The third step applies logarithmic transformation to Data 2, the result is Data . The fourth step applies
the model to Data 3 in order to obtain the estimates of model parameters (first result) and then the residuals from the
method. The fifth step consists of applying the formulas of type 3 variables to the residuals (second result). Different boxes
display symbols Wr, Sp, and Sm (or WrA, WrB, Sp, and Sm). This indicates that the results correspond to all different parts
of the time series.
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In all cases, residuals from the ARIMA-GARCH-Student models displayed evidence
of stationarity for 48 lags. However, in some cases, there was evidence of autocorrelation
as well as the presence of ARCH effect. For the tests applied to residuals, 0.03 was the
maximum p-value found to reject the null hypothesis. Regarding 2008, the number of time
series (from the 23 sensors) that satisfied all tests in the residual analysis, is the following:
12 in WrA, 22 in WrB, 22 in Sp, and 20 in Sm. In 2010, out of the 20 sensors available,
the values are: 18 in WrA, 19 in WrB, 14 in Sp, and 15 in Sm.

The features computed from residuals of the models were called type 3 variables.
The other classification variables corresponded to the estimates of the parameters of the
selected models. The estimates of the parameters are as follows:

• Estimated parameters from ARIMA of: (1) the regular autoregressive operator (φp(B))
of order p and the regular moving average operator (θq(B)) of order q: φ̂1, φ̂2, θ̂1, θ̂2,
etc.; (2) the seasonal autoregressive operator (ΦP(B24)) of order P and the seasonal
moving average operator ΘQ(B24) of order Q: Φ̂1, Φ̂2, Θ̂1, Θ̂2, etc.

• Estimated parameters from TGARCH (1,1) : α1, η11, β1, ω, and v (for Student distribution).

The estimate of type 3 variables:

• Variance of the residuals (σ̂2), maximum of spectral density of the residuals (M̂I(w)),
frequency corresponding to maximum of spectral density (ŵ), mean (µ̂ρ̂k

), median

(M̂dρ̂k
), range (R̂ρ̂k

) , and variance (σ̂2
ρ̂k

) of sample ACF for 72 lags. The statistic of
the SW test (shap.t) and the statistic of the KS normality test (kolg.t) are also included.

2.2.5. Sensor Classification by Means of sPLS-DA

Once all classification variables were computed as described above for the data from
2008, they were structured in three matrices, one per method (denoted as X1, X2 and X3,
respectively), with 23 rows (sensors) where the classification variables are in columns.
The total number of variables obtained from each method was 53 for X1, 141 for X2, and 59
for X3. Likewise, regarding 2010, classification variables were structured in three analogous
matrices with 20 rows and with the same number of variables.

As the number of classification variables is much greater than the number of sensors,
this scenario suggests a high degree of multicollinearity, and it might lead to severely
ill-conditioned problems. Different approaches can be considered to deal with this problem.
One solution is to perform variable selection, or to apply methods based on projection to
latent structures like partial least squares discriminant analysis (PLS-DA).

One advantage of this multivariate tool is that it can handle many noisy and collinear
classification variables, being computationally very efficient when the number of variables
is much greater than the number of sensors. Even though PLS-DA is extremely efficient in
a high-dimensional context, the interpretation of results can be complex in the case of a
high number of variables. In such a case, sparse PLS-DA (sPLS-DA) has very satisfying
predictive performance, and is able to select informative variables easily. Therefore, it was
decided to apply sPLS-DA [40] here using the classification data sets mentioned above in
order to identify a small subset of components and classification variables aimed at sensor
clustering.

The algorithm of sPLS-DA used here was the one proposed by Rohart et al. [45],
which corresponds to a modified version developed by Lê Cao et al. [40]. This new version
uses the penalty `1 (lasso) on the loading vector of the regressor matrix by shrinking to
zero the coefficient of some variables according to Rohart et al. [45].

With the aim of sensor clustering, sPLS-DA was applied to the previously mentioned
classification data sets. Three categories of positions were considered for the sensors: RC,
W , and F . This method was applied to the three matrices (X1, X2, and X3) containing
the classification variables, with dimension n× p, where p is the number of classification
variables and n is the number of sensors. Furthermore, Y is a vector of length n that
indicates the class of each sensor, with values coded as 1 (forRC), 2 (F ) and 3 (W). This
vector has to be converted into a dummy matrix (Z, i.e., with values either 0 or 1) with
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dimension n× K, where n is the number of sensors and K = 3 the number of classes or
positions of sensors.

Before applying sPLS-DA, all anomalous values of each classification variable were
removed and considered as missing data after being previously identified using normal
probability plots and box plots for each variable. As a result, in 2008: 1.20% (M1), 1.04%
(M2), and 1.06% (M3) were the percentages of missing values of the classification data sets.
In 2010, the corresponding percentages were 0.40%, 1.39%, and 0.49%, respectively, for each
method. These values are relatively low. Furthermore, all classification variables were
normalized (i.e., centered and scaled to unitary variance). The package mixOmics [45] was
used to perform sPLS-DA, which is able to handle missing values by using the NIPALS
algorithm [45,82].

Three-fold cross-validation (three-fold CV, S1 supplementary information of [45])
was used to evaluate the performance (i.e., low classification error rate) of the PLS-DA. It
was used to determine both the optimal number of components and the optimal number
of variables. The three-fold CV was performed with stratified subsampling, where all
positions (RC, F , andW) are represented in each fold.

In order to select the optimal number of components, three-fold CV was applied for
a maximum number of ten components, which was repeated 1000 times for each fold.
With the objective of assessing the PLS-DA performance, the classification error rate (CER),
the overall classification error rate (denoted as Overall), and the balanced classification error
rate (BER) were computed [45]. Each BER value corresponds to the average proportion
of wrongly classified sensors in each class, weighted by the number of sensors in each
class. BER is less biased towards majority classes during the performance assessment when
compared with the Overall criterion [45]. Thus, BER was considered instead of the latter.

The classification of sensors was determined according to different prediction distances
(PD): maximum, centroid, and Mahalanobis [45]), which were computed for each sensor.
Among the three distances calculated, it was found that the centroid one performed better
in most cases for the classification, and hence it was selected. Regarding the centroid
distance, the software computed the centroid (G) of the learning set of sensors (training
data) belonging to the classes (RC, F , and W). Each centroid G was based on the H
latent components associated with X. The distances were calculated from the components
of the trained model. The position of the new sensor was assigned according to the
minimum distance between the predicted score and the centroids G calculated for the three
classes considered.

The optimal number of components H was achieved by determining the best per-
formance, based on the BER criterion and prediction distances according to the centroid
distance. Once the optimal number of components was determined, repeated three-fold
CV was carried out to establish the optimal number of variables according to the criteria
of centroid and BER. Finally, once the optimal number of components and variables was
decided, the final PLS-DA model was computed.

Figure 7 displays the results from the first three-fold CV for the three methods and
for both years. For 2010, the values of BER and centroid distance suggested that one
component is enough to classify the time series, while for 2008 the results indicate that
one or two components are necessary. From this step, the centroid distance and BER were
selected in order to determine the number of components.
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Figure 8 shows the results from the second three-fold CV for the three methods and for
both years. For 2008, the results suggested that the number of variables per one component
were 15 (M1), 10 (M2), and 5 (M3). For 2010, the results suggest the number of variables per
one component was 15 for all methods. The information in Figures 7 and 8 (centroid.dist,
BER, and number of variables per component) was used to apply the final PLS-DA.
Figure 9 describes the steps used to apply sPLS-DA, using the results from the three
methods in the study.

Figure 9 shows the summary of steps of the sPLS-DA.
The main outputs from the analysis are: (1) a set of components (C) associated with

X1, X2, and X3 for the matrix Z; (2) a set of loading (L) vectors containing the coefficients
assigned to each variable that define each component; (3) a list of selected variables (V) from
Xi (i = 1, 2, 3) associated with each component; (4) the values of BER for each component;
and (5) the predicted class (PC) for each sensor. Coefficients in a given loading vector
indicate the importance of each variable.

(a) M1 2008 (b) M2 2008 (c) M3 2008

(d) M1 2010 (e) M2 2010 (f) M3 2010

Figure 7. Classification error rate (CER) from PLS-DA for 10 components. The CER was computed for each prediction
distance (maximum, centroid, and Mahalanobis) per method (M1, M2, and M3) for 2008 and 2010. Two types of error
rate are indicated: balanced BER (dashed lines) or Overall (solid lines). Blue lines refer to maximum distance, red lines
to centroid distance, and green lines to Mahalanobis distance. PLS-DA was carried out using repeated three-fold CV
1000 times. For 2010, BER and centroid distance showed the best performance achieved by one component. In 2008, M1
and M2 performed the best for maximum distance and Overall, while Mahalanobis distance performed the best in M3.
The second-best distance for the three methods was the centroid distance.
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(a) M1 2008 (b) M2 2008 (c) M3 2008

(d) M1 2010 (e) M2 2010 (f) M3 2010

Figure 8. BER according to the number of variables (5, 10 or 15) and different number of components (1: orange dots, 2:
blue dots, or 3: green dots) for each method, for 2008 and 2010. Three-fold CV was run 1000 times using centroid distance
prediction. Diamonds indicate the optimal number of variables per component according to the lowest value of BER.



Sensors 2021, 21, 436 18 of 28

Data: Organize the classification variables in matrix X (n× p) (either X1 or X2 or X3): p variables from one of the
methods (M1 or M2, or M3) for n sensors. p is either p1 or p2 or p3. Anomalous values were considered as missing values.

Missing values were handled using the NIPALS algorithm. Data was normalized.

Data input for sPLS-DA: Matrix X (n× p) and Y (n× 1). Y is a response vector
(with classes k = 1, . . . , K) K is the number of the group.

Redefine response: matrix Z ∈ {0, 1}n×K

where zik = I(Yi = k) with k = 1, 2, . . . , K.
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Figure 9. Flow chart for the stages used to apply sparse partial least squares discriminant analysis (sPLS-DA) to the results
from the three methods. In the box titled “Data”, the information corresponds to the variables from one of the three methods.
If the information is from Mi then X=Xi. The values were computed for all sensors. Thus, a matrix X was obtained. The
values were treated before running the sPLS-DA algorithm. In the box titled “Data input for sPLS-DA”, the information
corresponds to the response vector converted into a dummy matrix Z . In the following boxes the PLS-DA algorithm runs
from left to right. The first three-fold CV was used to evaluate PLS-DA and the prediction distance PD, classification error
rate (CER) with the optimal number of components selected. This information was used in the second three-fold CV to
check PLS-DA in order to select the optimal number of variables V. The information obtained using both three-fold CVs
was used to run the final PLS-DA.
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3. Results

Components from sPLS-DA are linear combinations of variables that might correspond
to WrA, WrB, Sp, or Sm. By applying sPLS-DA to X1, X2, and X3, only one component
appeared to be relevant in all cases. The variables selected (per component) by the sPLS-
DA algorithm are indicated in the following paragraph. The final model which used the
classification variables from M1 (2008) is based on 15 selected variables. The selected model
from M2 (2008) consists of 10 variables, while just 5 variables were considered for M3
(2008). The final model for M1, M2, and M3 (2010) comprises 1 component and 15 selected
variables from each model (see Table 1).

The BER values are indicated in Table 1a,b for the three methods, using data from
2008 and 2010, respectively. For both years, the classification variables which turned out
to be the most important for the first component were ordered according to the absolute
value of their loading weights, from highest to lowest. The notation of the results is M̂I(w)

(spec.mx); for RHh: µ̂MR (rMh), σ̂2MR (rVh); for RHd: µ̂MR (rMd), σ̂2MR (rVd). Also, SSE
(sse), kolg.t (kolg.t), σ̂2 (res.v), ω (omega), α̂2 (pacf2), S1 (s1), S18 (s18), S20 (s20), S24

(s24), α (alpha), v (shape), µ̂ρ̂l
(acf.m), M̂dρ̂l

(acf.md).
An explanation about the most important variables, regardless of period and year, is

presented below.

• M1: spec.mx, rMh, rMd, rVh, rVd, and pacf2 (see Table 1). The features rMh and rMd
account for changes in the mean of the time series, while rVh and rVd are intended
to explain changes in the variance. The rest of the features mentioned provide infor-
mation about the dynamic structure of each time series. It was found that rMh, rMd,
and rVh were important in the four periods considered, both in 2008 and 2010. rMd
was relevant for WrA and WrB in 2008. The variable spec.mx was relevant in WrA
and WrB for 2008 and 2010, as well as WrB. The variable pacf2 was found in WrB
2010. Hence, consistent results were derived from the two years under study.

• M2: sse, kolg.d, and spec.mx (computed from the residuals), as well as b, s1, s18,
s19, s20, and s24 (from the models). From the residuals, sse accounts for the variance
that is not explained by the models. This parameter appeared as important in all
periods considered, except WrA 2010. kolg.d quantifies the deviation from normality
for the residuals, and was relevant in all periods except Sp 2008 and WrB 2010.
The third feature, spec.mx, which provides information about the dynamic structure
of each time series, was relevant for all periods except WrB 2008, WrA 2010, and
Sp 2010. Regarding the parameters computed from the models, b is related to the
trend component of the time series, which was important in WrA 2010. The other
variables mentioned are related to the seasonal components of the time series, which
were shown to be important in Sm 2010.

• M3: res.v, shape, spec.mx, acf.m, and acf.md (computed from the residuals), as well
as omega and alpha (from the model). From the residuals, res.v is aimed to explain
the variance not explained by the models. It was relevant in all periods except Sp
and Sm 2008. The variable shape provides information about the distribution of
residuals, but it was only relevant in WrA 2010. The other features (i.e., spec.mx,
acf.m, and acf.md) are intended to describe the dynamic structure of each time series.
Spec.mx was important in all periods except Sp and Sm 2008, while the last two only
appeared in Sp 2010. Regarding the parameters from the models, omega explains the
changes in the mean of the conditional variance, while alpha quantifies the impact of
the rotation on the conditional variance. The variable alpha only appeared in WrA
2010. Again, the fact that most variables were common in the three periods and in
both years suggests strong consistency in the underlying phenomena explaining the
discrimination between sensors.

In all cases, the classification variables corresponded to the different parts of the time
series (WrA, WrB, Sp, and Sm), except for M3 in 2008 which only showed variables from
winter (see Table 1).
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Table 1. Results from sPLS-DA (2008 and 2010): variables selected for the first component per method (M) for each period (WrA stands
for winter-A, WrB for winter-B, Sp for spring, and Sm for summer). With respect to the names of the selected classification variables, a
prefix is used to indicate the period of the time series that was used to apply the three methods. For example, WrA was used as a prefix
in the name of the classification variables to indicate the part of the time series where the variables came from. Thus, WrArMh indicates
that the variable rMh corresponds to period WrA. For each component, variables are ordered according to the absolute value of their
loading weights, from highest to lowest. Variables with negative weights are highlighted in bold. The balanced classification error
rate (BER) is indicated for the first component per method.

(a) Results from sPLS-DA (2008).

Method Variables BER

M1 WrAspec.mx, WrArMh, WrBrMh, SprMh, SmrMh, WrArVh, WrBrVh 30.02%
SprVh, SmrVh, WrArMd, WrBrMd, SprMd, SmrMd, WrArVd, WrBrVd

M2 WrAsse, WrAspec.mx, WrBsse, Spsse, WrAkolg.t, Spspec.mx, WrBkolg.t 24.05%
Smkolg.t, Smsse, Smspec.mx

M3 WrAspec.mx, WrAres.v, WrBspec.mx, WrBres.v, WrAomega 22.60%

(b) Results from sPLS-DA (2010).

Method Variables BER

M1 WrAspec.mx, WrArMd, WrBrMd, SprMd, SmrMd, WrArMh, WrBrMh 24.08%
SprMh, SmrMh, WrArVh, WrBrVh, SprVh, SmrVh, WrBspec.mx, WrBpacf2

M2 WrBspec.mx, Smsse, Spkolg.t, Spsse, WrAkolg.t, WrBs1, Smkolg.t, WrBsse 21.17%
WrBs24, Smspec.mx, Sms19, Sms18, WrAb, Sms20, Sps24

M3 Spres.v, Smres.v, Smspec.mx, WrAres.v, WrBres.v, Spspec.mx, Spomega 12.81%
Smomega, WrAspec.mx, WrBomega, WrBspec.mx, WrAalpha, WrAshape Spacf.md Spacf.m

The results shown in Figure 10 correspond to the score plots for the first two compo-
nents from sPLS-DA applied to the classification of sensors. They depict their projection
over the two principal latent structures that best discriminate sensors according to their
position. In 2008, the first component for each method allowed a rather good discrimination
of sensors at the RC position with respect to the rest, though a poor discrimination was
achieved between F andW (see Figure 10a–c).

In 2010, the first and second components for M3 displayed a clear discrimination
between sensors located on the three positions. However, for M1 and M2, only RC
sensors appear far apart from those on the walls, while the F group is located in between
(see Figure 10d–f).

Regarding the performance of the three methods for achieving the classification of
sensors, the best results were derived from M3 and the worst from M1. M3 yielded
higher correct classification percentages: 77.40% in 2008 and 87.19% in 2010 (see Table 1b).
For 2008, the final classification resulting from M3 variables displayed the following
wrongly classified sensors: Y, AA, Z, and V (see Figure 11a). Three of them (Y, Z, and
AA) were installed near the location where the salt efflorescence was found. For 2010,
the final results from sPLS-DA for M3 showed that all sensors were classified correctly
(see Figure 11b).
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(a) M1 2008 (b) M2 2008 (c) M3 2008

(d) M1 2010 (e) M2 2010 (f) M3 2010

Figure 10. Discrimination of the time series of RH according to the position of sensors: Frescoes (F ), Cornice and Ribs (RC),
and Wall (W). Color codes: F sensors are shown in green, RC in orange, andW in purple. Graphics correspond to the
projection of sensors over the first two components from sPLS-DA. Each graph shows confidence ellipses for each class to
highlight the strength of the discrimination at a confidence level of 95%.

(a) 2008 (b) 2010

Figure 11. Prediction classes derived from M3: these plots display the predicted classes of each sensor located in different
points in a simulated grid. The final classification prediction for the position of the sensors is displayed. The points in
orange (RC), purple (W) and green (F ) represent the class prediction for the sensors in the study. (a) For 2008: according to
the classification prediction, the wrongly classified sensors were as follows: V, Y, Z, and AA. (b) For 2010: all sensors were
classified correctly.

4. Discussion

The methodology proposed here consists of using sPLS-DA to classify time series
of RH according to classification variables that were computed from different functions
(e.g., sample ACF, sample PACF, spectral density, and MR). Additionally, the Seasonal
ARIMA-TGARCH-Student model and the Additive SH-W method were used. Furthermore,
estimated parameters of the models, as well as the mean, variance, and maximum values
of the functions (e.g., sample ACF, sample PACF, spectral density, and statistics of the
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KS normality test, among others) were applied to the residuals derived from the models.
The centroid distance was applied to classify the sensors, and the lasso penalty was used to
select the optimal variables that determine the relevant components. Additionally, the BER
parameter was employed to evaluate the performance of the classification methodology.

We used sPLS-DA because the classification data in this study are characterized by
more variables than the number of time series (sensors), and in the interest of easily
interpreting the results. This technique leads to underlying latent variables (components)
that summarize the relevant information from the data for the purpose of discrimination.
It performs variable selection for each component, which is an advantage. The key issue in
time series clustering is how to characterize the similarities and dissimilarities between
time series. Various metrics for measuring such similarity have been proposed, based
on: parameters from models [83–87], serial features extracted from the original time series [88–91],
the complexity of the time series [92–97], the properties of the predictions [98,99], and the
comparison of raw data [100]. Regarding methods based on model parameters, the criterion
most commonly considered is to assume that time series are properly explained by ARIMA
processes. Piccolo [83] introduced the Euclidean distance between their corresponding AR
expansion [38] as a metric and used a complete linkage clustering algorithm to construct
a dendrogram. One problem of this metric is related to the numerical computations
of AR coefficients. The same metric was also considered by Otranto [101] for dealing
with GARCH processes. For ARMA models, Maharaj [102] developed an agglomerative
hierarchical clustering procedure based on the p-value of a hypothesis test applied to
every pair of stationary time series. Kalpakis et al. [103] studied the clustering of ARIMA
time series by using the Euclidean distance between the linear predictive coding (LPC)
cepstrum of two time series as their dissimilarity measure. Xiong and Yeung [104] classified
univariate ARIMA time series by considering ARMA models. They derived an expectation
maximization (EM) algorithm for estimating the coefficients and parameters of the models.
However, if the underlying clusters are very close to each other, the clustering performance
might diminish significantly. According to the review of the previously mentioned studies
about the clustering of time series, it seems that the methodology applied here is rather
unique because it uses a hybrid model comprising ARIMA and GARCH to calculate a
distance for classifying time series. This is also probably the first using sPLS-DA in order
to classify time series.

We found that the time series of RH, one per sensor, were very similar despite their
different positions in the apse vault of the cathedral. When classifying the sensors, it turned
out that few parameters appeared as relevant, most of which were features extracted from
the residuals of models. This is most likely due to the similarity among the time series
studied. As a consequence, the information that was not properly explained by the models
was decisive for characterizing the differences between time series. The classification vari-
ables derived from the ARIMA-TGARCH-Student model yielded better performance than
those from SH-W, which might suggest that the former model captures more information
from the data than the latter. In fact, SH-W is an algorithm intended for producing point
forecasts [60].

A comparison of the results from method M1 with those from the preliminary study
of Zarzo et al. [1] indicates that a better classification was obtained here. The variables
HMV and DMV (rMh and rMd) were relevant in both studies. Although the mean for the total
observations was important in the preliminary project [1], this variable was not selected
by the sPLS-DA. The classification variables selected per sPLS-DA explained the changes
in the mean and variance of the time series with rMh, rMd, rVh, and rVd. Furthermore,
the method obtains variables from sample PACF and spectral density which explain the
autocorrelation of the time series. The research by Zarzo et al. [1] did not use variables
related to the autocorrelation of the time series.

One disadvantage of sPLS-DA is the need to use the same number of classification
variables for each sensor. As a consequence, a unique ARIMA-TGARCH-Student model
was used for all sensors in the same part of the time series (WrA, WrB, Sp, and Sm). This
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means that a better fit might result, as it considers a different model for each time series.
Another disadvantage is that it is necessary to know a priori the number of classes of the
time series (sensors) for their classification. According to the previous idea, the limitations
of the statistical methodology proposed in this study are: (1) sPLS-DA needs to know
the number of classes before implementing the algorithm. (2) When applying a unique
ARIMA-TGARCH parametric model to all sensors, it is unlikely that the best values for
the classification variables will be found. This can affect the classification error rate of the
sensors.

One advantage of using both sPLS-DA and ARIMA-TGARCH-Student is the capability
of classifying time series with very similar characteristics. Additionally, the functions and
models utilized here can be easily implemented because different packages are available in
R software. One such example is the mixOmics package of R, which has different functions
that allow sPLS-DA to be implemented simply and makes it easy to display the different
results for interpretation. Furthermore, this package can handle missing values using
the NIPALS approach. It takes advantage of the PLS algorithm which performs local
regressions on the latent components. There are two main advantages of using PLS—it
both handles missing values and calculates the components sequentially. In this study,
the anomalous values of classification variables were considered as missing values in order
to avoid possible problems with the classification of the sensors. The percentage of values
that were used as missing were lower than 2%.

In relation to future studies, alternative classification variables could be considered
depending on the different scenarios and according to the characteristics of the time series.
In order to obtain classification variables that capture more information from the data,
flexible models can be proposed. Some options for calculating the classification variables
might be the following:

• Cepstral coefficients: Ioannou et al. [105] studied several clustering techniques in
the context of the semiparametric model: spectral density ratio. They found that the
cepstral- based techniques performed better than all the other spectral-domain-based
methods, even for relatively small subsequences.

• Structural time series model: the flexibility required from this model can be achieved
by letting the regression coefficients change over time [106].

• A nonparametric approach of the GARCH [107,108].

Regarding classification techniques when there are fewer variables than time se-
ries, sPLS-DA can be extended by using the elastic net [109] as the penalization. Finally,
a further study might be carried out in controlled scenarios, where time series can be
computationally simulated by controlling different characteristics in order to identify the
strengths and weaknesses of the proposed methodology. In alignment with the previ-
ous ideas for improving the methodology, future research will use sPLS-DA with two
methods: a nonparametric Seasonal ARIMA-GARCH model and a structural time series
model. Furthermore, several time series will be computationally simulated in controlled
scenarios in order to evaluate the results when using sPLS-DA, together with one of the
previously mentioned methods.

García-Diego and Zarzo [2] concluded that the environment surrounding the Re-
naissance frescoes was not the same at all points of the apse vault of the cathedral.
Sensors located on the walls or on the paintings registered higher RH values than those
in the vault ribs. Thus, the mean value of RH is related with the three previously men-
tioned classes. The ideal goal is obviously to achieve a correct classification of all sensors.
However, a poor classification error rate might be caused by either the malfunctioning of
some sensors or a poor performance of the classification technique, or if there is a problem
related with the microclimate where the sensors are located. Those sensors incorrectly
classified by the technique should be checked to identify possible moisture problems in the
artworks. In this work, the main cause of sensor malfunction was the development of salt
deposits around the probes as a consequence of fitting some of the probes inside the layer
of plaster supporting the frescoes.
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The results indicate that sPLS-DA could be implemented for the online monitoring
of fresco paintings aimed at preventive conservation using the parameters and features
previously extracted from the hybrid models based on GARCH and ARIMA as classification
variables. This analysis might be carried out for each season of every year.

5. Conclusion

The methodology proposed here is useful for understanding the differences in thermo-
hygrometric conditions monitored inside large buildings or museums, which might provide
a basis for better assessing the potential risks related to temperature and humidity on the
artworks. Among the methods proposed, a hybrid approach based on ARIMA and GARCH
models with sPLS-DA yielded the best performance. Parsimonious models with a small
subset of components and classification variables were obtained using sPLS-DA, which
offers satisfactory results with easy interpretation. Another advantage of sPLS-DA is that it
can be implemented easily with mixOmics, which allows a focus on graphical representation
in order to better understand the relationships between the different observations and
variables. Furthermore, this package can deal with missing values. Finally, the use of a
hybrid approach based on ARIMA and GARCH models as well as sPLS-DA is a novel
proposal for classifying different time series. In order to improve the methodology
proposed in this research, future research will use sPLS-DA with two methods that are
more flexible than those applied in this study. This will capture more information from the
data. Furthermore, a computational simulation will be carried out in order to evaluate the
new methodology in different possible scenarios.
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