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Abstract

We explored the use of support vector machines (SVM) in order to analyze the ensemble activities of 24 postural and focal
muscles recorded during a whole body pointing task. Because of the large number of variables involved in motor control
studies, such multivariate methods have much to offer over the standard univariate techniques that are currently employed
in the field to detect modifications. The SVM was used to uncover the principle differences underlying several variations of
the task. Five variants of the task were used. An unconstrained reaching, two constrained at the focal level and two at the
postural level. Using the electromyographic (EMG) data, the SVM proved capable of distinguishing all the unconstrained
from the constrained conditions with a success of approximately 80% or above. In all cases, including those with focal
constraints, the collective postural muscle EMGs were as good as or better than those from focal muscles for discriminating
between conditions. This was unexpected especially in the case with focal constraints. In trying to rank the importance of
particular features of the postural EMGs we found the maximum amplitude rather than the moment at which it occurred to
be more discriminative. A classification using the muscles one at a time permitted us to identify some of the postural
muscles that are significantly altered between conditions. In this case, the use of a multivariate method also permitted the
use of the entire muscle EMG waveform rather than the difficult process of defining and extracting any particular variable.
The best accuracy was obtained from muscles of the leg rather than from the trunk. By identifying the features that are
important in discrimination, the use of the SVM permitted us to identify some of the features that are adapted when
constraints are placed on a complex motor task.
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Introduction

Studies on motor control generate a huge amount of data

involving a large number of variables. For example the whole body

pointing task being explored here involves electromyographic

(EMG) recordings from 24 different muscles each of which can be

characterized by at least 3 different variables (e.g. maximum

amplitude, onset time, time to peak). Electromyographic data that

yields much insight on motor control is also known to contain a

high amount of inter and intra subject variability [1,2]. In this

study we investigate how support vector machines can be utilized

in the analysis of electromyographic data underlying a whole body

pointing task. This is a complex, multijoint task involving several

segments of the body.

Despite the importance of such types of movement in our daily

lives, most previous studies of human motor control either focus on

the equilibrium mechanisms primarily involving the postural

component (for review, see [3]) or conversely on reaching

movements of the focal module while restricting motion of the

lower body part (for review, see [4]. The study of movements

involving both components however would help us to understand

the role and interactions of the postural elements with the focal

modules. The former is thought traditionally to be controlled by

lower brain structures with commands primarily conveyed via the

ventromedial pathway while the latter is thought to require

intervention by the motor cortex via the lateral pathway [5,6].

One way to extend our understanding of the whole body

pointing movement is to analyze the difference between several

variants of it. Movement is thought to take place through the use

of a core program which is then adjusted to meet the necessities as

they arise [7]. We therefore examined several variants of a whole

body pointing task. It can be accomplished in several different

ways based on the limits imposed by the environment. Some of

them might require alterations in balance control such as when we

have to reach to an object from a reduced base of support. A

higher obstacle or limited upper reaching space on the other hand

could call into play more adjustments at the focal level. We

therefore studied one unconstrained whole body pointing (B), two

types of pointing with focal constraints and two with postural

constraints. The postural constraints were a reduced base of
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support (R) and an extended knee condition (K). For the focal

constraints we imposed a straight finger trajectory (S) or a

semicircular finger trajectory (C) (figure 1). These tasks therefore

represent several possibilities for the hand and centre of mass

trajectories in sagittal space.

Although they have much to offer in terms of understanding

human movement, such studies remain difficult in part because of

the challenges involved in the analysis of the voluminous dataset

that is produced. One way to approach the task is to create

physiologically meaningful ensembles of the muscles and to probe

if they have undergone significant alterations between movement

conditions. Such methods also bring with them the potential

benefits of a multivariate technique. We approached the problem

by using a classification paradigm in order to probe the differences

between constrained and unconstrained pointing movements. The

SVM was used to carry out the classification. It belongs to the class

of kernel methods which in turn belongs to the larger class of

machine learning techniques. The latter term obtains its name

from the use of part of the data as a training set in order to find the

surface that best separates two classes of data. A test set is then

used to verify if the constructed surface is also able to correctly

classify data that had not been used for training. The inability to

correctly distinguish the test data sets indicates the lack of sufficient

differences to distinguish the data sets being classified. A larger

separation between the data sets would lead to a greater ease and

success of classification.

Two common classes of machine learning techniques are neural

networks and the kernel methods. The SVM was used in this

investigation because several studies have now demonstrated that

the kernel methods are more efficient than neural networks for

classifying or in other words differentiating two classes of

physiological data. The kernel methods have also been found to

have higher classification accuracies than linear classification

methods like linear discriminant analysis [8,9,10]. Any unsuper-

vised clustering methods such as classical cluster analysis methods

or unsupervised neural networks [11,12] would be unsuitable as

we sought in this study to identify the muscle groups before the

start of the analysis.

This study is an extension of three previous investigations on

whole body pointing [13–15]. In this manner Berret et al [13]

were able to represent with two principal components, all the

variability from the recordings of 8 kinematic angles during the

pointing movement. Three principal components were found

sufficient to capture the information from 24 muscles recorded

during the same movements [14,15]. While focusing on dimen-

sionality reduction in such a hyper redundant musculoskeletal

system, these studies did not reveal the muscles that could be

significantly modified by the task demands. This is because such

techniques were not developed for detecting first order differences

between datasets but rather for extracting common features. They

are based on the covariation between the datasets while most of

the machine learning techniques are based on Euclidean distances.

The covariation between muscular activities however can stay

unchanged even as important alterations take place in individual

or collective EMG timings and amplitudes. Alterations observed in

this compressed data space can also be very difficult to interpret

due to factors such as the participation of one muscle in more than

one group. The techniques mentioned above therefore present

several limitations when it comes to the question of identifying

differences. Classification techniques such as neural nets and

kernel methods (SVMs belong to this group of methods) permit a

larger degree of control on the ensembles created and hence an

easier interpretation of their alterations. The presented classifica-

tion techniques therefore create a complement to the understand-

ing of motor control that can be obtained by methods such as

PCAs, non negative matrix factorization or independent compo-

nents analysis [13–18].

The first task undertaken in this study was to probe if the SVM

was able to discriminate using EMG data from the 24 muscles, the

type of movement that had been undertaken. Following some

success with this attempt, we then undertook the same types of

classifications using either postural or focal muscles. We expected

that the former would be more predictive when the constraints

were postural. Since no marked changes had been observed during

the kinematic studies, we hypothesised that the postural muscles

would be quite poor at classifying the conditions with focal

constraints. In all cases however, classification attempts using data

from the postural muscles were as or more successful than those

obtained using focal muscles. This indicated that between

conditions, greater discriminating differences could be found at

the postural rather than at the focal level. We then proceeded to

analyse the importance of particular EMG characteristics for the

classification. The importance of postural muscle EMG amplitude

as opposed to its temporal characteristics was probed by

attempting a classification with input vectors only containing

these extracted features. As in the case of gait [17] would the

timing of the EMG bursts be a relatively invariant parameter

between the different types of pointing? In this case, we would be

Figure 1. Stick diagrams of the task performed under basic
condition (B), equilibrium constraints (K, R) and spatial
constraints (S, C). B: Basic condition. K: Knee-extended condition. R:
Reduced base of support condition. S: Imposed straight finger
trajectory condition. C: Imposed semicircular trajectory condition. The
dark gray and light gray dotted traces depict the CoM and the finger
trajectories in the sagittal plane, respectively. The inset box defines the
body parts in the stick diagram (Sk, shank; Th, thigh; Pe, pelvis; Tr, trunk;
He, head; Hu, humerus; Fo, forearm; Ha, hand).
doi:10.1371/journal.pone.0020732.g001
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unable to classify a movement with this parameter. The last step in

the investigation involved a classification attempt using one

postural muscle at a time. Once again, this would indicate to us

which type of muscle – axial, proximal or distal, is tuned and

adapted to the movement at hand.

Methods

The study was carried out by analyzing electromyographic data

obtained from 24 muscles while the subject carried out several

different types of reaching movements. Comparisons between

groups were carried out by attempting a classification task with the

SVM. Detailed descriptions of the experimental conditions for the

study have been provided in three previous reports. Information

concerning the gathering of the kinematic data and its analysis can

be found in Berret et al [13]. Reports by Chiovetto et al [14] and

Fautrelle et al [15] provide more information on the procedures

concerning the collection of EMG data. As this is a follow up

study, we will first provide a general description of the

experimental conditions. As kinematic data in this study was only

used to interpret the EMGs, only a brief mention will be made of

this aspect. This will then be followed by a more detailed

description of the EMG data gathering and SVM analysis.

General
Data from ten healthy male subjects (ages 2964 years) were

used in this study. They had participated voluntarily in the

experiment. All subjects were in good health and had no previous

history of neuromuscular disease. The experiment conformed to

the declaration of Helsinki and informed consent was obtained

from all the participants according to the protocol of the local

ethical committee.

Participants were required to point with both their index fingers

at the extremities of a wooden dowel located in front of them. All

movements were self paced. The dowel was positioned horizon-

tally with respect to the ground, parallel to the subjects’ coronal

plane and with its centre intersecting the subjects’ sagittal plane.

For each participant, the extremities of the dowel had a vertical

distance from the ground equal to 15% of their body height. The

target distances (measured starting from the distal end of the

participants’ great toe) corresponded to 5% of participants’ height.

The subjects performed a pointing task towards this target under

unconstrained (B), knee extended (K), reduced base of support (R),

imposed straight finger trajectory (S) and finally imposed

semicircular finger trajectory (C) conditions (figure 1). For the B

condition, participants started from an upright standing position

with their hands initially located at the external side of the thighs

and then executed hand-pointing movements in a semipronated

position. The whole movement was assumed to be symmetrical

[13] and was performed in the sagittal plane with each side of the

body moving together. Target accuracy was not the primary

constraint during the experiments and no instruction was given to

the participants regarding the strategy to follow in accomplishing

the task.

The B movements were the only ones performed without any

constraints. Postural constraints were imposed for the K and R

conditions. In the K conditions, subjects were instructed to point

to the target without flexing the knees. In the R conditions,

reaching movements were made from a reduced base of support –

a square wooden board 40640 cm2. Subjects were able to perform

both types of tasks without losing their balance.

Focal constraints were applied for the S and C conditions. In the

S conditions, participants were asked to point to the targets by

using a straight finger trajectory. Participants initially performed

three nonrecorded trials by following a straight wire connecting

the initial finger position to the target. After this short period, they

were asked to perform the task without wire. In the C conditions,

participants were requested to reach the targets with large finger

path curvatures (semicircular finger trajectory). The imposed path

was concave in the sagittal plane. Once again, the participants

performed three nonrecorded trials by tracking a curved wire

connecting the initial finger position and the targets. They were

then asked to perform the task without wire.

During trial executions, kinematic and EMG data were

simultaneously monitored. Body kinematics was recorded by

means of a Vicon (Oxford, UK) motion capture system. Finger

kinematics was used in order to define basic parameters in the

finger pointing. These parameters have been well defined in a

previous study of arm-pointing [19]. Finger movement onset time

to, was defined as the instant at which the linear tangential velocity

of the index fingertip exceeded 5% of its peak. The end of the

movement tf was the point at which the same velocity dropped

below the 5% threshold.

Collection of electromyographic data
The following 24 muscles were recorded on the right side of

each of the 10 subjects: tibialis anterior (Tib) ; soleus (Sol) ;

peroneus longus (Per) ; gastrocnemius (Gast) ; vastus lateralis (VL) ;

vastus medialis (VM) ; rectus femoris (RF) ; semitendinosus (ST) ;

semimembranosus (SM) ; biceps femoris (long head) (BF) ;

adductor longus (AL) ; gluteus maximus (GM) ; rectus abdominis,

superior portion (RA) ; internal oblique (OI) ; erector spinae,

recorded at L2 (ES) ; (these fifteen first muscles will be referred to

as ‘‘postural’’ muscles in our task); serratus anterior (Ser);

pectoralis, superior portion (Pect); latissimus dorsi (LD); rhomboid

(Rho); deltoideus anterior and posterior portions (DA and DP,

respectively) ; biceps brachii (Bic); brachioradialis (Bra); and triceps

brachii (Tri) (these nine last muscles will be referred to as ‘‘focal’’

muscles). For all these muscles, electrodes were placed to minimize

cross talk from adjacent muscles contractions following Ivanenko

et al. [17] guidelines. The interval between a pair of electrodes for

one recorded muscle was set to two centimeters. In order to check

the goodness of electrodes location, the subjects were instructed

how to selectively activate each muscle [20] and the experimenter

could verify the signal response on a computer screen. During

preparation, subjects’ skin was shaved and cleaned with alcohol to

ensure low resistance. Then the surface EMG activities were

recorded at a sampling frequency of 1000 Hz (figure 2) (ZERO

WIRE EMG system, AURION S.r.l., Milano, Italia). Each

electrode was equipped with a little unit for signal processing

and 6 tele-transmissions. The EMG signals were rectified and then

smoothed using a Butterworth filter with a cut-off frequency at

5 Hz [1]. Details concerning the amplitude normalization of the

EMGs can be found in the sub-section ‘Construction of the input

vectors’ of the Methods section. The movement duration was

normalized to 200 points (figure 2).

Classification with the SVM
A multivariate comparison of the EMG data collected from 24

muscles during the various reaching tasks was carried out using the

SVM. Success by the SVM in a categorization task indicated the

presence of sufficient differences between two groups. In this

section we will provide first of all, a succinct description of SVMs.

This will be followed by a description of the manner in which the

input vectors were created for the SVM. We will then describe the

method used for creating the training and testing samples.

Support Vector Machines. Support vector machines (SVMs)

are powerful methods for solving classification problems on large

SVM Analysis of EMG Activity from Complex Movement
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datasets. SVMs originated from statistical learning theory and are

based on the principle of structure risk minimization (SRM). SVM

was first developed by Vapnik and his co-workers in the early 1990s.

In a binary classification task, SVM aims to find an optimal

separating hyperplane (OSH). Another aspect of SVMs is the

transformation of data into higher dimensional space for the

construction of the OSH. SVMs perform this nonlinear mapping

into a higher dimension feature space by means of a kernel function

and then construct a linear OSH between the two classes in the

feature space (figure 3). Thus, although it uses linear learning methods

due to its nonlinear kernel function, it is in effect a nonlinear classifier.

A complete formulation of Support Vector Machines can be found in

a number of publications [21–25]. Here, the brief theory of SVMs for

nonlinear classification will be presented.

Let us consider a supervised binary classification problem. Let

us assume that the training set consists of N vectors from a d-

dimensional feature space xi[<d(i~1,2,:::,N). A target

yi[f{1,z1g is associated with each vector xi. Searching an

OSH in the original input space is too restrictive in most practical

cases. In SVM, nonlinear classification problems are solved by

mapping the original data x into a higher dimension feature space

F by z~w(x) via a nonlinear mapping w : <n?F , in which the

mapped data are linearly separable. Considering the case when

the data are linearly nonseparable in F , there exists a vector w[F

and a scalar b that define the separating hyperplane as: w:zzb~0
such that

yi(w
:zizb)§1{ji, ji§0, Vi ð1Þ

where the ji’s are the slack variables introduced to account for the

nonseparability of data.

Figure 2. EMG recordings. Traces of the 24 muscles recorded from an individual during a whole body pointing task. Muscle abbreviations are
explained in the Methods section. Recordings from the Bic are missing due to difficulties with the electrode for this individual. The EMG signals
presented were recorded at a sampling frequency of 1000 Hz followed by rectification. The first trace in each column represents finger velocity.
Finger movement onset is indicated by to, the instant of its maximum velocity by tpv and the instant of finger movement termination by tf.
doi:10.1371/journal.pone.0020732.g002
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minimize : y(w,j)~ 1
2

wk k2
zC

PN
i~1

ji

subject to : yi(w
:zizb)§1{ji, ji§0, Vi

8<
: ð2Þ

The constant C represents a regularization parameter that

controls the penalty assigned to errors. The larger the C value, the

higher the penalty associated with misclassified samples. This

optimization problem can be translated into a dual problem using

a Lagrangian formulation as follows:

maximize :
PN
i~1

ai{
1
2

PN
i~1

PN
j~1

aiajyiyjK(xi
:xj)

subject to :
PN
i~1

aiyi~0 and 0ƒaiƒC, Vi

8>>><
>>>:

ð3Þ

where ai are the nonnegative Lagrangian multipliers. The data

points xi corresponding to aiw0 are the support vectors. It is

worth noting that, in the nonseparable case, two kinds of support

vectors coexist: (a) margin support vectors that lie on the

hyperplane margin and (b) nonmargin support vectors that fall

on the ‘‘wrong’’ side of this margin (figure 3). The kernel function

K(xi,xj)~W(xi):W(xj) satisfies the Mercer’s condition [25] and can

be computed without having explicit knowledge of W(:). For any

test vector x[<d, the output is then given by:

y~f(x ; a)~sgn
XNS

i~1

aiyiK(si,x)zb

 !
ð4Þ

Where, the si are the NS support vectors. To build an SVM

classifier, the user needs to tune C and choose a kernel function

and its parameters. The performance of the SVM is very closely

tied to the choice of the optimal kernel functions. There has been a

lot of research over the last few years on algorithms to help choose

the exact type of kernel for a given problem with a certain set of

features. Most of these methods depend on simple heuristics that

are based on the knowledge of the input data. There has not been

any standardized method to obtain the best kernel. Hence, the

choice of the optimal kernel has been reduced to a trial and error

procedure in most scenarios. There exist many popular kernel

functions that have been widely used for classification e.g., linear,

Gaussian radial basis function, polynomial and Wigner kernel. In

this study, we experimented with different kernels. We found the

Wigner kernel to be best suited for our problem. The Wigner

kernel is defined as:

K(xi,xj)~ Sxi,xjT
�� ��2 ð5Þ

The notation S:,:T indicates an inner product.

Figure 3. Optimal separating hyper-plane in SVMs for a linearly non-separable case. Black and white squares refer to the classes ‘+1’ and
‘21’, respectively. Support vectors are indicated by an extra square.
doi:10.1371/journal.pone.0020732.g003
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The SVM analysis was carried out with a MATLAB program

that had been written and utilized in two previous studies [26,27].

Construction of the input vectors. The construction of the

input vectors for the SVM depended on the comparison at hand.

The EMG data from each muscle constituted a vector of 200

elements (movement duration was normalized to 200 points. A

comparison using all 24 muscles, was therefore done using an

input vector of size (246200) where the input vectors of the

muscles were linked together from end to end. This manner of

constructing the input vectors for a classification of EMG data has

already been described in Nair et al [8]. In other words the entire

rectified, filtered and normalized EMG waveform (as described in

the section ‘Collection of electromyographic data’) of each muscle

was utilized without any particular feature extraction. In this

manner we hoped to put in place a method whereby we would be

more directly able to identify the features that were essential to the

classification. There are several techniques that have been

developed for this process of feature extraction [28]. An

exploration of these methods was considered beyond the scope

of the current study but our future investigations will involve

testing them.

Subsets of these input vectors were used when the questions

addressed involved only specific types of muscles or specific

instances during the movement. This therefore led to the creation

of a focal muscle vector or a postural muscle vector based on the question

at hand. For the results displayed in Table 1, specific features were

extracted from each muscle. In this case, the contribution from

each muscle consisted only of 1 element, either the maximum

amplitude or the time at which this occurred. This information

from all the postural muscles was then put together to create either

the maximum amplitude vector consisting of the maximum EMG

amplitudes from 15 postural muscles or the maximum time point

vector, with the timing of these maxima.

Input vectors for the SVM were normalized. The normalization

was carried out over each muscle and each individual so that the

information from each muscle carried equal importance. For each

muscle however, information concerning the amplitude differences

for each movement condition was available as the normalization

was carried out by linking together the EMGs for the two types of

movements being compared.

Data sampling. For each type of movement, each subject

was represented by 6 trials. The classification tasks were carried

out using 5-fold cross validation. For each study we divided each

group into 5 folds (The input vectors from two subjects in each

fold). Four folds were used for training and the last fold kept for

testing. At no point in these studies was the data from individuals that were

used for training, used in testing. This process was repeated 5 times,

leaving one different fold for evaluation each time. The percentage

of correct classification was verified for each subject when they

were in the test case. Accuracy rates were reported as the mean

over all 10 subjects.

Statistical significance. Two types of tests for statistical

significance were done. In cases where a parametric test was

appropriate they were either a one way repeated measures

ANOVA followed by a Tukey HSD post-hoc test. In cases where

parametric tests were inappropriate we applied a Friedmann test

followed by the Wilcoxon tests with a Bonferroni correction for

multiple comparisons.

The k coefficient. The k coefficient is a measure of of the

agreement between two judges concerning the label to be assigned

to the data. It quantifies how well the classification had been

performed by comparing the results obtained from the SVM with

the correct answers [29]. The calculation is based on the difference

between how much agreement is actually present (‘‘observed’’

agreement) compared to how much agreement would be expected

to be present by chance alone (‘‘expected’’ agreement). This

difference is standardized to lie on a 21 to 1 scale, where 1

indicates perfect agreement, 0 is exactly what would be expected

by chance, and negative values indicate agreement less than

chance, i.e. potential systematic disagreement with correct

answers. The following values of k have been taken to indicate

various levels of agreement between the automatic classifier and

the correct answer. Values of k,0 no agreement, 0,k,0.2 slight

agreement, 0.21,k,0.4 fair agreement, 0.41,k,0.6 moderate

agreement and 0.61,k,0.8 substantial agreement, 0.81,k,1.0

Almost perfect agreement. The value of k is defined as

k~(Po-Pe)=(1-Pe) ð6Þ

Where Po is the observed level of agreement between the two

classifiers and Pe is the agreement that could be expected from two

individuals flipping a coin to assign a class label.

Results

Several binary classifications with the SVM were undertaken in

order to gain insight into alterations in the 24 muscles that

produced the different pointing movements. We first show that the

SVM is capable of discriminating the B movements from the

movements with constraints. We then compare the capacities of

the focal muscle vector and postural muscle vector for classifying the

movements. A higher capacity for classification using a particular

vector is due to greater discriminating differences between the

conditions. Another way of phrasing this would be to say that a

poor classification indicates a greater overlap between the datasets

Table 1. Classification accuracies using the maximum amplitude vector and the maximum time point vector.

Mean values for the percent of correct answers above chance (%)

maximum amplitude vector maximum time point vector p

B vs K 23 17.54 p.0.05

B vs R 16.17 6.78 p,0.05

B vs S 27.65 28.38 *p,0.01

B vs C 18.93 3.64 *p,0.01

Mean values of correct responses obtained for classification between constrained and unconstrained conditions. Values are reported as percentage above chance levels.
The asterisk marks cases for which the categorization success using the maximum amplitude vector was significantly higher than with the maximum time point vector.
Statitical tests were carried out using a Friedmann test followed by the Wilcoxon tests with a Bonferroni correction for multiple comparisons.
doi:10.1371/journal.pone.0020732.t001
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being classified. In the following section the same classification

tasks were carried out using extracted features from the muscle

EMGs. These were either the maximum amplitude vectors or the

maximum time point vector. After having found that classification with

the postural muscle vectors was in all cases equal to or better than that

obtained with the focal muscle vector, we finally undertook a muscle

by muscle investigation of the capacities of the postural muscles for

discriminating certain experimental conditions.

The SVM is capable of discriminating the EMGs from
different movements

Our first task was to ensure that the SVM was capable of

discriminating the EMGs that had produced the different types of

whole body pointing. Four different binary classifications each

time to distinguish the B movement EMGs from those of the

constrained movements were undertaken (figure 4). The data from

all 24 muscles was used for these tasks. Our results show that in all

cases, the SVM was able to distinguish the constrained from

unconstrained movements with a mean success rate close to or

higher than 80%. The lowest classification success was obtained

for discriminating the R condition at a mean accuracy of 79.4%.

The remaining K, S and C conditions could be separated from the

B condition with mean accuracy rates of 96.7%, 90.6% and 87.6%

respectively.

The values of the k coefficient from these classifications also

show that the SVM is capable of exploiting the differences in the

EMGs produced from the different types of whole body pointing.

They were 0.56, 0.75, 0.81 and 0.94 for distinguishing the basic

from the R, C, S and K conditions respectively. These values

indicate the degree of agreement between the class label assigned

by the algorithm and the true label, after taking into account the

role of chance. These values indicate moderate agreement for the

R classification, substantial agreement for the S and C

classification and finally almost perfect agreement for the K

classification.

The above results demonstrate that the SVM algorithm is

capable of exploiting the differences in the EMG activities for the

different conditions. The lowest accuracy for discriminating the B

and R conditions indicate that the overlap in EMG activities in

greatest between these two conditions.

Postural muscle EMGs are equal to or better that focal
muscle EMGs for discriminating all constrained
conditions

In order to compare the inter-condition modifications of the

postural muscles with those of the focal muscles, we undertook the

classifications tasks described above using each isolated data subset

i.e. by the creation of a focal or postural muscle vector. There were a

greater number of postural than focal muscles in the tests that

produced figure 4 viz. 9 focal muscles and 15 postural muscles.

This discrepancy had to be removed as we compared the capacity

for discrimination in each muscle subgroup. In order to do this,

the postural muscle vector in each classification was created by

randomly picking the data from 9 postural muscles (denoted by

R9P). If we just used information from the postural muscles, our

ability to distinguish the totally non constrained movements from

the constrained movements was 8460.13% (mean 6 std) for all

conditions. In the case of the focal muscles, it was 6660.14%.

Taking the individual cases (Figure 5), the capacity of the postural

muscle vectors for discriminating the unconstrained and con-

strained movements were found to be significantly higher in the K

and S conditions (p,0.001, ANOVA, Tukey HSD). The higher

mean accuracies using the postural muscle vectors in the C and R

conditions were not found to be significant.

The higher overall capacity for classification using the postural

muscles cannot be attributed to differences in the EMG

amplitudes of the two types of muscles as these values were

normalized for each individual and muscle (The EMG amplitudes

were not normalized for each condition individually).

These results show that between conditions, there are

discriminable differences between the postural muscle EMGs.

The results also show that in some conditions, these discriminable

differences are greater than those that are present for the focal

muscles. When classifying the B and S conditions for example, the

focal EMGs for the two conditions are sufficiently alike to wrongly

classify the focal muscle EMGs in more than 30% of the test cases.

In fact, more accurate classifications as to whether a B or S

movement was made can be obtained by analyzing the postural

muscle EMGs. It is not altogether unexpected that a greater

discrimination would be obtained using postural muscle EMGs

when the constraints were applied at the postural level. It is

however surprising that this would be the case especially in the S

conditions where the constraints were at the focal level.

A final test was carried out in order to probe if a higher

variability had contributed to the poor classification capacities of

the focal muscles. This was done with the use of Euclidean

distances. For this test we used the focal and postural muscle vectors

that had been used for the results displayed in figure 5. For each

condition, we computed the mean of the focal and postural muscle

Figure 4. All muscle binary classifications. Binary classification of
the unconstrained B condition against the constrained K, R, S and C
movements using the EMG data from all 24 muscles.
doi:10.1371/journal.pone.0020732.g004

Figure 5. Postural vs focal muscle classification. A comparison of
the capacities of the R9P subset of postural muscle vs focal muscle EMG
data for the binary classification of the unconstrained B condition
against the constrained K, R, S and C movements. The figure shows that
the discrimination obtained using postural muscle data was as much or
higher than what was obtained using the focal muscles. Discrimination
capacities of the postural muscle EMGs were significantly higher for
discriminating the K and S conditions (* p,0.01, ANOVA, Tukey HSD
posthoc).
doi:10.1371/journal.pone.0020732.g005
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vectors. The Euclidean distances of each focal or postural muscle vector

from their respective means were then calculated. This permitted

us to obtain an idea concerning the variability of the vectors

representing each group. The mean Euclidean distance for the

postural muscles was found to be significantly higher than that for

the focal muscles for the B, K, R, C and S conditions i.e. in every

experimental condition (Figure 6). This result showed that for

every condition there was a higher intra group variability for the

postural muscle vectors than for the focal muscle vectors.

A comparison of the discriminative capacities of some of
the postural muscle EMG variables

In the section above, we had demonstrated that higher

accuracies for identifying the movement that had been performed

could be obtained by using postural muscle vectors than the focal muscle

vectors. In this section, we will describe the results of tests conducted

to compare the importance of certain postural muscle EMGs

variables for this discrimination. In order to determine the relative

importance of certain temporal and amplitude factors of an EMG

burst in the encoding of these movements, we attempted to classify

the different movements by using these extracted features from the

postural muscles. For these tests, the input vectors to the SVM

consisted of either vectors made up of the maximum amplitude of

the EMG for each muscle (maximum amplitude vector) or vectors that

contained information concerning the time at which the EMG

burst maximum occurred (maximum time point vector).

Table 1 illustrates that the categorization success with these

reduced vectors was much less than with the full EMG vectors of

the previous two sections. It is very important to note that the

results in Table 1 were reported as accuracies above chance levels.

This is in contrast to the manner in which they are presented in

the other graphs where accuracy is presented as the total

percentage of correct answers. This was done in order to highlight

the different classification capacities of these two vector types. In

most cases, the categorization success using the maximum time

point vector was close to chance. The exception to this was the K

condition discrimination in which the maximum time point vector was

able to discriminate between constrained and unconstrained

conditions with an accuracy that was approximately 17% above

chance.

For all classifications, the mean accuracy with the maximum

amplitude vector was higher than what was obtained using the

maximum time point vector. The accuracy rates obtained using the

maximum amplitude vectors were significantly higher than those using

the maximum time point vector when discriminating the unconstrained

movements from the S and C conditions (p,0.01, Friedman test,

Wilcoxon posthoc, Bonferroni correction).

These results show that when executing such whole body

pointing movements, the time at which the postural muscle EMGs

attain their maxima, is quite similar between movements. The

exception to this is the K condition. Since for all conditions, a

higher mean classification was obtained using the maximum

amplitude vector, our results also show that the maximum EMG

amplitude rather than the time at which it occurs should be the

first variable considered when describing how the body adapts to

various constraints during whole body pointing.

Classification with individual postural muscle EMGs in the
B vs S discrimination

Since the role of the postural muscles was the most surprising in

the classification of the B vs S condition, we undertook further

analyses in order to understand which muscles had contributed the

most to this classification. This would help us to understand the

manner in which postural muscles adapted themselves for such a

constraint. An advantage to using a machine learning technique in

this step was the ability to use the entire EMG waveform of each

muscle for the classification. Table 2 displays the mean

classification accuracy that was obtained using individual muscles.

The accuracies were arranged in decreasing order from top to

bottom.

Once again the results demonstrate that the classification

accuracy from using information from any one muscle was less

than what had been obtained using all 15 postural muscles. This

affirms once again that the B vs S classification displayed in figure 5

had been obtained in a multivariate manner. The results from

Table 2 also demonstrate that all discrimination accuracies above

60% had been obtained from muscles of the legs rather than those

of the trunk. These muscles were the peroneus (Per), vastus

lateralis (VL), vastus medialis (VM), semimembranosus (SM),

Figure 6. Intra class variability of focal and postural muscle
EMGs. A comparison of the Euclidean distances of postural and focal
muscle vectors from their mean. The Euclidean distances for the
postural muscles were found to be significantly higher than that of the
focal muscles in every condition (p,0.01, ANOVA, Tukey HSD posthoc).
The higher Euclidean distance of the postural muscles demonstrates
that their intra class variability was higher than that of the focal
muscles.
doi:10.1371/journal.pone.0020732.g006

Table 2. Individual postural muscle classification accuracies.

Postural muscle Mean classification accuracies (%)

Per 73

VL 69.32

VM 67.03

SM 66.69

RF 66.07

Tib 65.88

BF 57.00

GM 55.00

ES 55.90

OI 53.38

Sol 52.72

Gast 52.78

AL 52.11

RA 45.35

ST 44.70

Mean classification accuracies obtained when using individual postural muscle
EMGs for a B vs S classification. Muscles are named using abbreviated forms.
Full names may be obtained in the Methods section.
doi:10.1371/journal.pone.0020732.t002
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rectus femoris (RF) and Tibialis (Tib). Accuracies obtained from all

the trunk muscles were close to chance levels. These muscles were

the erector spinae (ES), internal oblique (IO) and rectus

abdominus (RA). These results indicate lower discriminable

differences between the EMGs of the proximal trunk muscles

between the B and S conditions.

An accuracy of over 60% was not obtained from the EMGs of

all leg muscles. The following muscles also gave mean classification

accuracies below 60%: biceps femoris (BF), gastrocnemius (gast),

adductor longus (AL), soleus (Sol), gluteus maximus (GM) and the

semitendinosus (ST).

Discussion

In the following sections we will discuss the results that had been

obtained above. We were able first of all to show that the SVM is

capable of classifying constrained from unconstrained whole body

pointing pointing movements with their high number of degrees of

freedom. This was a prerequisite for its exploitation in identifying

ensemble differences between constrained and natural movements.

In the case of every type of constraint, the postural muscle EMGs

were as or more discriminative of the movement condition than

the focal muscles. This suggests that the modest alterations in the

visible movements of the postural module which had been

evaluated by earlier studies using kinematic methods [13] were

in fact the resultant of very active muscular changes at the postural

level. Such discriminative alterations support the hypothesis that

the role of the postural muscles is not just one of maintaining

equilibrium but also one of actively fulfilling the task demands by

transporting the focal module towards the target. When further

probing the high discriminative capacities of the postural muscles

between the B and S conditions on a muscle by muscle basis, we

observed a poorer performance from the trunk muscles than from

several leg muscles. This suggests that a higher overlap in EMG

activity is to be found in the trunk muscles during adaptations of

the postural muscles to the S condition. While vectors containing

information on the timing of EMG maxima were unable to

discriminate the movement conditions, vectors containing extract-

ed EMG amplitude information consistently gave accuracies

above chance, hence suggesting that amplitude rather than timing

was adjusted to tune the whole body pointing movement for

constraints.

Further discussions of these results will be presented in the

sections that follow. In particular we make some general

comments on the use of machine learning techniques. This

includes mention of some pitfalls that must be avoided when this

approach is employed. Finally we propose some steps that might

be taken to make the use of such techniques more common

practice.

SVMs are able to discriminate EMG data from different
kinds of whole body pointing

In this study we carried out a multivariate ensemble analysis of

the muscular activity underlying the complex multijoint activity of

whole body pointing. As movement requires the involvement of

several muscles, each of which can be described by several

variables, studies on motor control could benefit from these

techniques. A univariate comparison of the variables in this study

using techniques like the ANOVA [30,31] would have involved the

comparison of at least 72 different variables (24 muscles63 EMG

variables). One way of reducing the size of this task is to create

meaningful ensembles of muscular activity and then to carry out a

comparison of the ensembles. Sometimes, the analysis of group

activity may also reveal features that may not be apparent at the

individual level. An example of this in the current study was what

we had observed in the tests using collective data from postural

muscles as opposed to that from focal muscles.

The first goal of our investigation was to determine if the SVM

was able to discriminate between the unconstrained and

constrained movements. One of our previous studies had shown

that kernel methods are able to distinguish the gait of arthritic and

control subjects [8]. As opposed to gait however, the whole body

pointing task involves an active participation of the focal module

and its interactions with the postural module. Gait is thought to

involve primarily the rhythmic activity of the neurons in the spinal

column while the whole body pointing task is a goal oriented task

including the focal module and the involvement of the cerebral

cortex [5,6]. It was uncertain if the SVM would be able to

distinguish these whole body pointing movements involving the

active participation of many more joints and a higher number of

degrees of freedom. Figure 4 illustrates that the SVM was capable

of distinguishing the unconstrained movements from the con-

strained movements with a mean success rate close to 80% or

above irrespective of whether these constraints were focal or

postural. The capability of the SVM to retrieve information

concerning the altered EMGs can also be seen in the values of the

k coefficients associated with these classifications. They indicated

moderate to almost perfect agreement between the labels assigned

by the SVM and the actual class to which the movement belonged.

These results therefore illustrated the potential of these machine

learning techniques in uncovering discriminable differences

between the variants of the whole body pointing movement. This

capacity is poorest for the R condition, indicating that the EMGs

from these movements showed the highest overlap with the

unconstrained movements.

The non negative matrix factorization method that had been

used earlier had uncovered what was in common for the activities

of these 24 muscles during the different movement conditions viz.

a tri-dimensional organization [14]. Any modification were

relatively difficult to quantify using this type of dimensionality

reduction techniques because (1) data are projected on the

subspace resulting in difficulties for retrieving information and

(2) intra/inter group variability can induce significant noise about

the extracted muscle synergies. Our results demonstrate that

despite a relatively unchanged covariation [14,15] in the muscular

activities that the imposed constraint on the basic whole body

reaching (B condition) induced significant modifications, some of

which are detailed in the following sections.

Discrimination between conditions by postural muscles
Using postural muscle EMGs we were able to with the

exception of the R condition, to discriminate all constrained from

unconstrained movements with a mean accuracy higher than

80%. This indicates that postural muscles undergo significant

adjustments in order to achieve the constrained conditions. The

higher discrimination capacities of the postural muscles were

especially surprising in cases where the most visible changes from

the kinematic studies had been observed at the focal level. When

comparing for example the B and S movements, the differences

between the centre of mass trajectories were quite modest

compared to changes in the hand trajectory (figure 1). This then

provides one more example of a case where kinematic modifica-

tions can be quite modest while it is not so with the underlying

muscle activation patterns. This has been observed with some

types of gait. The kinematics were found to be basically invariant

in the case of backward walking or walking with various loads

while the accompanying muscle activation patterns were found to

be quite altered in each case [32].

SVM Analysis of EMG Activity from Complex Movement
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It has to be emphasized that the higher discriminative capacities

of the EMGs from the postural muscles may not be attributed to a

higher amplitude of these EMGs. This variable was normalized so

that the maximum EMG amplitude of each muscle was one.

Information concerning the differences in amplitudes between

conditions however was available as the normalization was done

over all conditions.

As a high variability is one factor that could contribute to

difficulties in classification, we used the Euclidean distance from

the mean as a measure of intra class variability in the case of the

postural and focal muscle vectors. As these vectors were the normalized

vectors that had been used for classification, the higher Euclidean

distances for the postural muscle vectors indicated a higher intra class

variability for these vectors than for the focal ones.

The higher inter class discriminative capacities of the postural

muscles along with their higher intra class variability suggest that

these muscles undergo greater modifications than the focal muscles

for achieving the different movements. It may be expected that the

postural muscles are better able to differentiate the experimental

conditions like K with a postural constraint. It is however

surprising for the S conditions, in which constraints existed at

the focal level. We might ask why a similar result was not obtained

for the C condition. This is primarily due to the higher

discriminative capacities of the focal muscle vectors in the C

condition. The mean classification accuracy of these vectors in

the C condition was 80.1% as opposed to 58% in the case of

discriminating the S condition. In fact, the mean classification

accuracy using the postural muscle vector was higher in for the C

condition than for the S. It was 88.6% for the C condition as

opposed to 83.6% for the S (figure 5).

The fact that postural adjustments accompany movements in

the focal module is known [33]. Indeed these adjustments

commence even before movement is detected in the focal module.

These postural EMG changes seen at the very earliest stages of the

movement have primarily been thought to play a role in

maintaining equilibrium [34]. Our study sheds new light on these

modifications by illustrating the discriminative nature of the

physiological activities underlying these postural adjustments even

when they appear modest following kinematic analyses. Indeed a

higher level of postural EMG activity may be required to maintain

the lower variance observed at the kinematic level.

This level of changes at the postural level may indicate a double

role that has to be fulfilled by the postural muscles. Indeed many

researchers have suggested that postural adjustments during a

whole body reaching task are not just a compensation for

mechanical disturbances but play an active role in moving the

arm towards the target [35–37]. In other words the postural

module may also have a focal role. Our results indicating that the

postural EMGs undergo alterations that correspond to different

focal constraints provide some support for this hypothesis.

From a neurophysiological point of view, several lines of

evidence suggest that there is a hierarchical organization of motor

command in which kinematic goals (here, hand trajectories) are

specified mainly at higher levels in the hierarchy of the CNS and

are translated into kinetic motor commands mostly at lower

hierarchical levels. Thus goal directed movements would be

planned in terms of a kinematics framework (for review see [38]).

Our finding that postural muscle activity reflects arm trajectory

suggest that the motor command connecting the motoneurons in

the spinal circuitry may be encoded in a global/kinematic context.

Kinematic goals specified at higher levels in the chain of motor

command may not only be translated into a pattern of muscular

activations at the focal level but also at the postural level [32,39].

Postural muscle activity would therefore represent the output of

the motor command controlling the body geometry to generate a

precise hand displacement toward the target.

The idea that this double role played by the postural muscles is

partly responsible for the important modifications in the postural

muscles receives some support from the results in Table 2. The

figure shows that the highest discrimination between conditions

was obtained from muscles of the lower limb rather than those of

the trunk. The former rather than the latter muscles are closer to

the ground and in a position to play the double role of exerting the

mechanical forces that would be required for maintaining

equilibrium as well as moving the centre of mass and finger closer

to the target.

Classification between B and S conditions using
individual postural muscle EMGs

Table 2 displays the classification accuracies from attempts to

classify the individual postural muscle EMGs as belonging to a B

or S movement. They reveal that all the postural muscles giving

mean classification accuracies over 60% are muscles of the leg. As

opposed to this all the trunk muscles were able to discriminate with

lower accuracies. As in the previous cases, this indicates a good

deal of overlap in the EMGs of the trunk muscles between

constrained and unconstrained conditions.

Among the leg muscles, accuracies over 60% were obtained

from the peroneus, tibialis, vastus lateralis, vastus medialis,

semimembranosus and rectus femoris. The first two are flexors

of the ankle. The ankle extensors, the soleus and gastrocnemius on

the other hand, gave poorer performances suggesting that around

the ankle, antigravity activities might be more general and less

tuned to each type of movement. It has previously been suggested

in association with the Hufschmift phenomenon that antigravity

activities might be more general [40,41]. Around the knees

however, the muscles that performed better were made of

extensors (VL, VM) as well as biarticular muscles (RF, SM).

Further studies are required to find if the same pattern of tuning

holds for the other pointing movements.

Maximum amplitude or timing
Once we had affirmed that postural muscles constitute the more

discriminative module in these movements, we went on to identify

which characteristics in these EMGs were better able to

discriminate between conditions. For comparison, we picked the

maximum amplitude of each EMG (maximum amplitude vector) and

the instances at which these had occurred (maximum time point vector).

The latter parameter was picked using theoretical considerations

as well as what was known considering the order of these muscle

bursts from a previous study [14]. Since the classification is based

on the Euclidean distance of any input vector from the surface

separating the two classes, any displacement of the moment at

which the input vector maximum occurred could play a critical

role in the classification. We found in each case that the mean

discrimination obtained using the maximum amplitude vector was

higher than with the maximum time point vector (Table 1). In order to

highlight the differences in the results obtained with the two

variables, we reported the discriminative capacities above chance

levels (50%).

A first observation from these results is that the accuracies using

these extracted features are lower than what was obtained with the

full EMGs. This demonstrates clearly that a multivariate approach

is useful in discriminating the EMGs coming from the different

movement conditions. More variables important in distinguishing

the two groups of EMGs, was present in the full EMG vectors.

Our results obtained using the maximum time point vector are in

accordance with what had been observed by Chiovetto et al [14].

SVM Analysis of EMG Activity from Complex Movement
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They had reported using the same EMG activities that are

currently under investigation, that all 24 muscles had a triphasic

organisation in time. The order of muscle bursts was the same for

all the variants of whole body pointing. The study of Ivanenko et al

[17] had also emphasised the role of timing as a central organizing

principle for the activating patterns of the leg muscles as subjects

combined locomotion with other voluntary movements.

Since discrimination capacities using amplitude are above

chance for all movement conditions, our results suggest that this

is one of the variables that is tuned in order to achieve the different

constrained movements. This is in agreement with the muscle

synergy hypothesis, according to which neural networks in the

spinal cord may be able to recruit muscle synergies and scale them

in amplitude to generate a large repertoire of motor tasks from a

small number of motor primitives [17,42].

Multivariate techniques and general conclusion
Multivariate techniques have been increasingly in use in the

field of Neuroscience [43–45] in order to understand population

encoding. They can be extremely useful in the field of motor

control where it is necessary to comprehend the activities of a large

number of variables. Indeed the use of the SVM in this study

permitted us to observe collective features that may have escaped

classic univariate analyses.

Another advantage of the use of the SVM can be seen in the

classifications that were done using individual muscles. The

discrimination between conditions was done using the entire

EMG of each muscle. Classic EMG comparisons are usually

carried out using single features such as maximum amplitudes,

onset timings, offset timings etc. If there are insufficient differences

between any of these variables, a multivariate analysis would be

able to incorporate the information from several variables. A

classification using the entire EMG waveform also avoids the

difficulties involved in defining and extracting any specific feature

such as onset time. The utility of a multivariate classification in

discriminating these conditions can be clearly seen by comparing

the classification accuracies in figure 4 as opposed to those in

Tables 1 and 2. Lower accuracies were obtained in the latter two

cases where less features were incorporated in the vectors used for

classification.

The insights obtained in developing such a methodology can

also be applied to any complex physiological data. This is not only

true for multiunit neuronal recordings but also for surface

recordings such as multi channel evoked potentials. As the

emphasis of such a technique is on the identification of differences

between datasets, it is not limited to such time series but can be

extended to any 2 dimensional datasets. In this category we would

not only include images from fMRI but also results from molecular

biology such as in situ hybridisation where it is necessary to

compare patterns. Advantages to be obtained from using machine

learning techniques such as the ability to combine features for

arriving at a conclusion or avoiding the definition of a particular

feature would apply to these fields as well. Indeed it is already

possible to find the application of such techniques in the field of in

situ hybridisation [46] and fMRI analysis [47].

Some important precautions however have to be taken into

account when using SVMs or any other machine learning

techniques. Since during the training phase optimization tech-

niques are being used to create a nonlinear separating surface

between defined datasets, it is possible to find separating surfaces

that only hold for the used examples. In this manner, it may even

be possible to classify noise. This surface however, would be

unable to correctly separate exemplars that had not been used for

the training. For this reason it is important to set aside for the

testing phase, data that had not been used for training. In this

manner the problem of false classifications will be avoided. The

technique of systematically separating the data set into training

and testing sets is called cross validation.

Further studies that could be carried out in this domain would

be testing the use of simpler methods such as linear discriminant

analysis (LDA) [48] with the data presented in this study. We had

begun with the SVM because of their proven efficiency in previous

studies [8–10]. The widespread use of machine learning methods

however might require the availability of methods that are easier

to implement. The LDA method is considerably simpler to

understand than the SVM. Even though lower classification

accuracies may be obtained by using LDA, the accuracies

achieved may be sufficient for achieving a comparative study

between various muscle groups.
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