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The impact of contact tracing and household
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The COVID-19 pandemic caused many governments to impose policies restricting social

interactions. A controlled and persistent release of lockdown measures covers many potential

strategies and is subject to extensive scenario analyses. Here, we use an individual-based

model (STRIDE) to simulate interactions between 11 million inhabitants of Belgium at dif-

ferent levels including extended household settings, i.e., “household bubbles”. The burden of

COVID-19 is impacted by both the intensity and frequency of physical contacts, and there-

fore, household bubbles have the potential to reduce hospital admissions by 90%. In addition,

we find that it is crucial to complete contact tracing 4 days after symptom onset.

Assumptions on the susceptibility of children affect the impact of school reopening, though

we find that business and leisure-related social mixing patterns have more impact on COVID-

19 associated disease burden. An optimal deployment of the mitigation policies under study

require timely compliance to physical distancing, testing and self-isolation.
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As the COVID-19 pandemic rose, there was an urgent need
to understand the transmission dynamics and potential
impact of COVID-19 on healthcare capacity and to

translate these insights into policy. Mathematical modelling has
been essential to inform decision-making by estimating the
consequences of unmitigated spread in the initial phase, as well as
the impact of non-pharmaceutical interventions. Gradually
releasing society’s lockdown while keeping the spread of the virus
under control, requires detailed models to simulate the (non-)
propagation of SARS-Cov-2. To this end, it is important to
capture the heterogeneity in social encounters by accounting for a
low number of intense contacts (e.g., between household mem-
bers) and a high(er) number of more fleeting contacts (e.g.,
during leisure activities, commuting, or in shops)1.

Transmission models at the level of the individual allow for
flexibility to cope with chance, age and context, which is espe-
cially of interest to study exit strategies involving school, work-
place, leisure activities and micro-scale policies2,3. Individual-
based models (IBMs) pose a high burden on data-requirements,
implementation and computation, however, the increasing
availability of individual-level data facilitates thorough evaluation
of specific intervention measures.

Understanding the interplay between human behaviour and
infectious disease dynamics is key to improve modelling and
control efforts4. Social contact data has become available for
numerous countries5,6 and has proven to be an invaluable source
of information on the transmission of close contact infectious
diseases7,8. Social contact patterns can be used as a proxy for
transmission dynamics when relying on the “social contact
hypothesis”7. Disease-related proportionality factors and timings
enable the matching of age-specific mixing patterns with observed
incidence, prevalence, generation interval and reproduction
number. Social contact patterns in a transmission model can be
adjusted to simulate behavioural change and assess possible
intervention strategies4.

Given the rising number of confirmed COVID-19 cases and
hospital admissions in Belgium during the beginning of March
2020, all schools, universities, cultural activities, bars and res-
taurants were closed from March 14th onward. Additional
measures were imposed on March 18th, with only work-related
transport of essential workers allowed, and teleworking made the
norm (termed “lockdown light” in comparison with stricter
lockdowns in other countries). Hospital admissions peaked at the

beginning of April, and declined afterwards9. Restrictive measures
were gradually lifted from May 4th onward in terms of business-
to-business (B2B), school, business-to-costumers (B2C) and lei-
sure activities. There remains substantial uncertainty on the
extent to which people complied with physical distancing
guidelines during the deconfinement and how public awareness
and interventions modified social contact characteristics. More
specifically, did people mix in specific clusters and what was the
effect of keeping distance, increased hygiene measures and
wearing face masks? The nature of social contacts before and after
the lockdown undoubtedly changed, and this affects the pro-
portionality factors linking “contacts” with “transmission”. Prior
to the SARS-CoV-2 pandemic, simulation models for infectious
diseases could rely on documented social contact behaviour as
key input to model transmission dynamics. For COVID-19 pre-
dictions, there is however structural uncertainty on future social
contact behaviour, implying that additional runs or improved
parameter estimation would not reduce it. For example, the
incremental effect when contact tracing is in place depends on the
tendency of people to meet others. If the population stays put, the
effect of contact tracing is minimal because it would be domi-
nated by the effect of having only within-household mixing, and
the epidemic would fade out. This structural uncertainty can be
captured through different social mixing assumptions within each
strategy assessment.

In what follows, we analyse the effect of repetitive leisure
contacts in extended household settings (so called “household
bubbles”) on the transmission of SARS-Cov-2 and explore con-
tact tracing strategies (CTS) with respect to coverage, sensitivity
and timing. Our analyses are based on the open-source IBM
“STRIDE”, fitted to COVID-19 data from Belgium, with parti-
cular focus on transmission dynamics from adaptive social con-
tact patterns.

Results
We calibrated the transmission model up to April 30th, 2020, and
continued all simulations up to August 31st to assess the impact
of different deconfinement strategies. We start from a baseline
scenario with step wise re-opening of B2B, schools and com-
munity activities including four assumptions capturing low and
moderate increases in social mixing. Figure 1 presents the
simulated hospital admissions over time from our baseline

Fig. 1 Hospital admissions and effective reproduction number (R) from the baseline scenario including four mixing assumptions. All simulations include
social restrictions from March 14th and the partial school reopening in May. For the B2B, the social mixing after the lockdown is assumed to double from
the indicated point in time (marked on the right hand side with A and C) or to remain constant (B,D). Social mixing in the community is assumed to double
(A,B) or to remain constant (C,D).
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scenario with the timing of context-specific re-openings. Each
grey line represents one stochastic trajectory of the simulator
based on one social mixing assumption. The trajectories marked
with A and B include an increase in community-related social
mixing, which has a clear impact on the projected hospital
admissions. The trajectories marked with A and C include an
increase in B2B related mixing. Without an increase in commu-
nity mixing, the effect of B2B seems minimal. We estimated the
reproduction number before the lockdown to be 3.42 [3.41–3.49],
which dropped below 1 during the lockdown. The reproduction
number in our baseline scenario increases above 1 after the
deconfinement for community contacts, which includes B2C and
leisure activities.

Scenario analysis shows that social mixing in household bub-
bles, contact tracing and a combined strategy has a clear impact
on the hospital admissions over time (Fig. 2). All scenarios are
based on the same assumptions in terms of the absolute number
of social contacts in line with the baseline scenario (Fig. 1). If
people have fewer unique contacts, as in the scenario that con-
siders household bubbles, the number of hospital admissions
decreases. This is also the case with a strict follow up of symp-
tomatic cases and their contacts when applying the contact tra-
cing strategy (CTS). For both the household bubble and CTS
scenario, the reduction is not sufficient if both B2B and com-
munity mixing doubles (trajectories marked with “A”), since the
number of hospital admissions still increases over time. The
combination of both strategies shows a stabilising effect for all
social mixing assumptions under study.

Household bubbles are defined by connectivity, intergenera-
tional mixing and size, which all have impact on our simulated
hospital admissions, as presented by the projections for June and
August in Fig. 3. Note that the reported distribution and sum-
mary statistics strongly depend on our mixing assumptions so
they can only be used to show relative differences across sce-
narios. Our default scenario with household bubbles shows an
average reduction in the average number of hospital admissions
by 53% in June and by 75% in August as compared to the baseline
scenario.

By not having leisure contacts outside the household bubble
(i.e., if the household bubbles are fully connected 7 days a week),
the average number of hospital admissions can be reduced by
93% by August. If household bubbles are less strict (i.e., fully
connected 2 days a week), the effect is less pronounced but the
average number of hospitalisations in August can still be 41% less
compared to our baseline. If household bubbles consist of
households of which the ages of the oldest household members

can differ up to 20 or 60 years and multiple generations are
allowed within one household bubble, the effectiveness of this
strategy decreases. The reduction in daily hospital admission by
June is only 43% if 60-year differences are allowed. By August,
after 2 months of school holiday, there are almost no differences
between the different age gap scenarios, which suggests that the
limited exposure of children in our simulations might not exploit
the full extent of the intergenerational mixing within household
bubbles. If household bubbles consist of three households, they
almost replace all community contacts in our simulations, which
results in fewer hospital admissions in the long run due to the
closed network topology. If people mix within household bubbles
of size 4, the average number of leisure contacts increases com-
pared to our baseline mixing assumptions, which explains the
reduced effectiveness of the household bubble approach for June.
However, due to the closed nature of these extended bubbles and
restricted number of unique contacts, the average number of
hospital admissions by August is comparable to situation with
household bubbles of size 2, despite the increased contact rates.

Contact tracing strategy (CTS). The follow up of symptomatic
cases by strict isolation and contact tracing, i.e., screen their
contacts with isolation if infected, shows a substantial effect on
the average number of hospital admissions (Figs. 2 and 3). We
project an average reduction in hospital admissions of 22% in
June and 57% in August with the CTS in place, assuming that
70% of the symptomatic cases are subjected to contact tracing and
comply with home isolation. The combination of contact tracing
and repetitive social mixing in household bubbles has the
potential to reduce the average number of hospital admissions up
to 87% by August. This approaches the effect of strict household
bubbles, but clearly allows more freedom in terms of social
mixing.

Our CTS results are based on different assumptions with
respect to timing and success rates of tracing, testing, and
compliance to home isolation if infected. We performed a
sensitivity analysis to challenge our CTS assumptions that 70% of
the symptomatic cases are considered as index case, 10% false-
negative tests, a 90% success rate for tracing household members
and 70% for other contacts. The false-negative predictive value of
testing, due to the sampling, lab-testing and assessment of the
treating physician, is important but we still observed an impact of
the CTS with 30% false-negative tests if the coverage is high
enough (see Fig. 4). By varying the success rate of contact tracing
per index case, the relative number of hospital admissions ranged
from 35% to 60% of the base case scenario without CTS. Tracing

Fig. 2 Impact of household bubbles and contact tracing on hospital admissions. Hospital admissions over time when community mixing occurs in
household bubbles (a), contact tracing strategy is in place (b), or both (c). All scenarios are based on the same natural disease history and quantitative
mixing assumptions, but differ from the baseline in terms of the network structure and application of contact tracing from the given point in time. The
mixing assumptions A,B,C,D are explained in the caption of Fig. 1. CST contact tracing strategy.
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non-household contacts seems to have the most impact, since
their absolute number can be higher compared to household
contacts. However, tracing and testing household contacts, which
are easier to define and accessible via the index case, also makes a
difference. With a maximum delay between symptom onset of the
index case and isolation of infected contacts up to 4 days, we
observed the best results in terms of averted hospital admissions.
If this delay increases, the efficiency of CTS drops. Note that if
index cases are identified and isolated only 6 days after symptom
onset, the tracing should be very fast or there will not be much
left to gain.

Location-specific re-opening. We analysed the effect of location-
specific deconfinement strategies on the total number of hospital
admissions between May and August with two assumptions on
the susceptibility for children up to 17 years of age: equally sus-
ceptible or only half as susceptible compared to adults (+18
years)10. The results are presented in Fig. 5. Starting from the
baseline and each time leaving one location-specific re-opening
out, we observed most impact of community mixing for both
susceptibility-related assumptions. Without an increase in

community mixing, the simulated hospital admissions decrease
by almost 70%. Without an increase in B2B-related social mixing,
the total number of hospital admissions between May and August
is still 50% less compared to our baseline scenario. The effect of
household bubbles and CTS on the cumulative hospital cases is
similar for both susceptibility assumptions. As expected, the
impact of school re-opening is strongly associated with the
assumption on age-specific susceptibility. Assuming that children
are equally susceptible compared to adults, we observe an increase
in hospital admissions up to 96% and 181% compared to our
baseline scenario if schools reopen up to primary or secondary
education, respectively. Re-opening primary schools without any
precautionary measure such as smaller class groups, class
separation, masks, and increased hand hygiene seems worse than
opening all schools with a 50% reduction of transmission. The re-
opening of pre-schools has limited effect on the simulated hos-
pital admissions according to the mixing assumptions under
study. Assuming an age-specific susceptibility, re-opening pri-
mary schools has less impact on the predicted number of hospital
admissions. If all children up to 17 years of age go back to school
with precautionary measures, we observed an increase of hospital

Fig. 3 Daily hospital admissions per scenario. Distribution of the daily hospital admissions by June (a) and August (b) per scenario. The results are
presented as the median (line), quartiles (box), 2.5 and 97.5 percentiles (whiskers) and average (cross) of 40 model realisations (i.e., ten stochastic runs
for each of the four social contact behaviour assumptions). The percentage on top of the whiskers indicates relative reduction of the scenario average with
respect to the baseline. CTS contact tracing strategy.

Fig. 4 Reduction of hospital admissions due to contact tracing according to the symptomatic cases included as an index case, the false-negative
predictive value of testing, delays and the success rate of tracing, testing and isolating household and (non-)household contacts. Timings are
expressed relative to symptom onset of the index case (D0), and days after testing the index case (e.g., Di+ 1). All simulations start from the baseline
scenario and assume a 50% and 30% reduction of B2B and community contacts, respectively, compared to pre-lockdown observations. The “x” marks the
default settings, which are used if a parameter is not shown. CST contact tracing strategy.
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cases up to 50% relative to our baseline scenario. Note that these
scenarios do not take contact tracing or other physical distancing
measures into account but express the transmission potential at
school. Combining different scenarios to define the required
contact tracing efficiency or other measures to enable schools to
reopen is subject of future research.

Sensitivity and robustness analyses. Given the correlated nature
of our model parameters, different combinations can give a
similar fit for the first wave but might lead to different outcomes
for the deconfinement strategies in the scenario analyses. To
assess the robustness of our results, we simulated the main sce-
narios with an ensemble of model parameter sets. The resulting
projections in terms of hospital admissions over time (Supple-
mentary Fig. 20) show more variation but the average reduction
in hospital admissions (Supplementary Fig. 21) does not change.

We performed a robustness analysis on the number of
stochastic realisations for the main scenarios and observe more
spikes in the hospital admissions over time with an increasing
number of stochastic realisations (Supplementary Figs. 16 and 17)
but no differences in the average hospital admissions for June and
August (Supplementary Fig. 18). Details are provided in
the Supplementary Information.

Discussion
Uncertainty on social mixing after a lockdown plays a crucial role
in predicting the outcome of deconfinement strategies. How will
people behave socially if restrictions are relieved? A deconfine-
ment strategy can allow for economic or leisure activities, but
people might still limit their contacts or they might fully exploit
the renewed freedom, beyond what is requested but hard to
regulate or enforce. In addition to contact frequency, contact
intensity (duration, intimacy, indoor/outside location, etc.) also
plays a role in the transmission dynamics. To handle this struc-
tural uncertainty in our simulations, we included different social
mixing assumptions as part of assessing deconfinement strategies.
Our baseline strategy, including four different mixing assump-
tions, is not chosen to capture the observed situation as much as

possible, but to analyse the relative impact of mutually exclusive
scenarios as in comparative effectiveness research.

Parallel modelling work for the UK11 showed that social
bubbles reduced cases and fatalities by 17% compared to an
unclustered increase of contacts. Social bubbles may be very
effective if targeted towards small isolated households with the
greatest need for additional social interactions and support. Their
analyses confirm that social bubble strategy is an effective way to
expand contacts while limiting the risk of a resurgence of cases.

We found a great potential for CTS to reduce transmission and
hospital admissions, but it might not be enough to control future
waves. The simulations in Fig. 2 with the least strict physical
distancing still show an increase in hospital admissions with CTS
in place. Only if the number of contacts is limited and/or contacts
take place in closed networks such as the household bubbles, the
CTS is sufficient to keep the hospital admissions low. The relative
proportion of symptomatic cases that is included in the CTS as
index case is driving the efficiency. Also, timing is of the essence
and contact tracing should start at the latest 4 days after symptom
onset of the index case. The short serial interval makes it difficult
to trace contacts due to the rapid turnover of case generations12.
Keeling et al.1 concluded that rapid and effective contact tracing
can be highly effective in the early control of COVID-19, but
places substantial demands on the local public-health authorities.
We did not include or analyse the enhancing/spiralling effect
when infected contacts are subsequently included as an index
case. This could be one way to improve case finding to include as
index case, which we implicitly incorporated in our strategy.
Another effect of this spiralling approach might be a reduction of
the workload given overlapping contacts with a previous index
case. However, the timing of physical contacts and testing might
interfere with this optimisation procedure. We did not look into
this but focus on the basic principles and stress the potential
of CTS.

Kucharski et al.13 also reported on the effectiveness of physical
distancing, testing, and a CTS for COVID-19 in the UK. They
concluded that the combination of a CTS with moderate physical
distancing measures is likely to achieve control. They also used an

Fig. 5 Impact of location-specific re-openings and age-specific susceptibility. Total hospital admissions per scenario from May to August assuming that
children between 0 and 17 years are equally susceptible as adults (a) or only half as susceptible compared to adults (b). The results are presented as the
median (line), quartiles (box), 2.5 and 97.5 percentiles (whiskers) and average (cross) of 40 model realisations (i.e., ten stochastic runs for each of the four
social contact behaviour assumptions). The percentages on top of the whiskers indicate the average reduction in hospital admissions with respect to the
baseline. CTS contact tracing strategy, w/o without, PM precautionary measures at school.
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IBM with location-specific mixing and transmission parameters
and similar natural history of the disease. Their model is different
in the number of contacts, which is fixed to 4, and social contact
pools for school, work and other, are defined at a lower degree of
granularity compared to our model. We are able to identify the
class members and direct colleagues of infected individuals, and
can confirm their conclusions on CTS and isolation strategies. We
both stress the potential of CTS but warn that additional physical
distancing measures are required to be successful.

Kretzschmar et al.14 computed effective reproduction numbers
with CTS and social distancing in place by considering various
scenarios for isolation of index cases and tracing and quarantine
of their contacts. Without a delay in testing and tracing and with
full compliance, the effective reproduction number was reduced
by 50%. With a testing delay of 4 days, even the most efficient
CTS could not reach effective reproduction numbers below 1. We
did not express the impact of CTS on the reproduction number,
though also found a tipping point in the CTS effectiveness if
contact tracing starts 4–5 days after symptom onset of the index
case. To improve the early detection of cases, the use of universal
testing in which the entire population is screened on a regular
basis is promising15.

School closure is considered a key intervention for epidemics of
respiratory infections due to children’s higher contact rates16,17,
but the impact of school closure depends on the role of children
in transmission. Davies et al.10 conclude that interventions aimed
at children might have a relatively small impact on reducing
SARS-CoV-2 transmission, particularly if the transmissibility of
subclinical infections is low. This is also the conclusion from our
scenario analyses where we assume children (<18 years) to be half
as susceptible as adults (+18 years).

Other IBM applications have been reported3,18–20 to simulate
combinations of non-pharmaceutical interventions by targeting
transmission in different settings, such as school closures and
work-from-home policies. Modelling the isolation of cases in safe
facilities away from susceptible family members or by quar-
antining all family members to prevent transmission has shown
substantial impact. Models that explicitly include location-specific
mixing are very relevant for studying the effectiveness of non-
pharmaceutical interventions, as these are more dependent on
community structure than, e.g., with vaccination18. However,
implementing the available evidence into a performant and tailor-
made model that addresses a wide range of questions about a
variety of strategies is challenging2,19.

Although our analysis is applied to Belgium, our findings have
wider applicability. We considered the effect of universal
adjustments in terms of social mixing (isolation, repetitive con-
tacts, contact tracing). We modelled 11 million unique inhabi-
tants with detailed social contact patterns by age and location.
Hence, we can compare model results with absolute incidence
numbers in the absence of premature herd immunity effects due
to a reduced population size. The latter can be an issue for models
that use a scaling factor to obtain final results. Our individual-
based model provides a high-resolution, mechanistic explanation
of the reproduction number and transmission dynamics that are
relevant on a global scale.

Any model is a simplification of reality and, therefore,
depends on the assumptions made. In addition, our spatially
explicit IBM is calibrated on national hospitalisation data so
uncertainty is inevitably underestimated. As such, we rely on
scenario analyses and further sensitivity analyses are necessary.
Model results should therefore be interpreted with great
caution. Our IBM is a mechanistic mathematical model that
uses conversational contacts as a proxy of events during
which transmission can occur. By definition, SARS-CoV-2
infection events that occurred through the environment (e.g.,

contaminated surfaces) are covered by these conversational
contacts.

The use of antiviral drugs in combination with CTS can reduce
the effect of local outbreaks21. This kind of pharmaceutical
intervention is not incorporated in the current analysis. We
focused on the transmission dynamics in the general population
and did not consider care homes separately in our analysis. They
form predominantly a sink for infections, with high morbidity
and mortality, but are not likely to drive the transmission. To
focus on the disease burden in the elderly, the social interactions
within elderly homes and with their environment become more
important22. We did not include aspects related to travel or
weather conditions (UV light, humidity, temperature), which
may impact both transmission and social contact behaviour in
ways that are still largely unknown.

Methods
Model structure. This work builds on a stochastic individual-based model (IBM)
we developed for influenza23,24 and measles25. Our model is representative for the
population of Belgium, covering 11 million unique individuals, runs in discrete
time steps of 1 day while accounting for adjusted social contact patterns during
weekdays, weekends, holiday periods, illness and the influence of public awareness
and imposed policy measures. More details on the model structure, population,
social contact patterns and stochastic realisations are provided in the Supplemen-
tary Information.

Disease natural history. The health states in the IBM follow the conventional
stages of susceptible, exposed, infectious and recovered, with the infectious health
state divided in pre-symptomatic, symptomatic and asymptomatic. For every
infected individual, we sample the onset and duration of each stage based on the
distributions in Supplementary Table 2.

Social contact patterns. Social contact patterns for healthy, pre- and asympto-
matic individuals are parameterised by a diary-based study performed in Belgium
in 2010–201126–28. Contact rates at school and at work are conditional on school
enrolment and employment, respectively. We account for behavioural changes of
symptomatic cases using observations made during the 2009 H1N1 influenza
pandemic in the UK29, by reducing presence at school and work with 90%. Based
on the same study, we reduce community engagement with 75% when experien-
cing symptoms. Transmission-relevant contact behaviour within the household is
assumed not to change when a household member develops symptoms.

Parameter estimation. We estimated transmission and lockdown characteristics
based on reported hospital admissions9, initial doubling time (i.e., before the
lockdown)30 and serial sero-prevalence data31 up to May 1st. Afterwards, multiple
restrictive measures in Belgium were relaxed, which is the focus of our scenario
analysis. Details on the model parameters and our multi-criteria iterative procedure
are provided in the Supplementary Information. Our iterative estimation procedure
resulted in an ensemble of parameter sets that match our three reference criteria.
From this ensemble, we selected a single best parameter set based on the average
log-likelihood function value to match the observed hospital admissions over time,
since this is the model outcome of main interest. The per-case average number of
secondary cases in a susceptible population, which corresponds to the basic
reproduction number R0, was estimated to be 3.42, which is in line with estimates
from a meta-analysis32 and other modelling studies for Belgium33,34. Within our
final model parameter ensemble, the reproduction number ranged between (3.41
and 3.49). The transmission model starts with 263 (236–307) infected cases on
February 17th. The hospital probability for symptomatic cases over 80 years is 40%
(35%–46%). From March 14th onward, the social contacts related to B2B decreased
linearly to 14% (7%–30%) over 7 (5–7) days. Contacts in the community during
lockdown decreased to 15% (13%–18%) of pre-lockdown contact levels after 7
(5–7) days.

Household bubbles. We defined a “household bubble” as a unique combination of
two households in which the oldest household members cannot differ >3 years in
age and are linked via their community contacts during weekends. The age-specific
component is included to reduce intergenerational mixing, which is subject of
sensitivity analyses with age-differences of 20 and 60 years. The assignment of
household bubbles in STRIDE proceeds in a random order and if no matching
household is available, the household is not assigned to any household bubble. This
procedure enables us to assign > 95% of the population to a household bubble.
These bubbles are exclusive and remain fixed throughout the simulation from May
11th onward.

We assume households in a social bubble to be fully connected 4 days out of 7
(i.e., the contact probability between any two bubble members per day is 4/7=
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0.57). We also test a higher and lower level of connectivity in terms of 7/7 and 2/
7 days per week, respectively. Social contacts in a household bubble are
implemented as a substitute of leisure contacts in the community and can be seen
as repetitive leisure contacts with the same individuals. Therefore, the community
contacts are reduced in proportion to the household bubble mixing to keep the
overall contact rate unchanged. We also test household bubbles consisting of 3 and
4 households, where the number of household bubble contacts exceeds the number
of simulated community contacts in our scenarios, so the total number of contacts
increased. Symptomatic individuals have no social contacts with members of other
households within their household bubble.

Contact tracing strategy (CTS). We implement CTS to assess their impact on
hospital admissions if 70% of the symptomatic cases are considered to be index
cases. Each index case is placed in home isolation 1 day after symptom onset. One
day later, unique contacts are traced and tested at a success rate of 90% for
household members, and 70% for non-household members. We assume a false-
negative predictive value of 10%, as a combined outcome of sampling, lab-testing,
and clinical assessment of the treating physician. We performed sensitivity analyses
regarding the proportion of symptomatic cases included as an index case, the false-
negative predictive value, the success rate to reach (non-)household contacts and
contact tracing delays. The effect of these CTS parameters is tested using one of the
social mixing assumptions (as described in the next paragraph).

Scenario analyses. We defined different strategies by location-specific decon-
finement strategies with structural uncertainty about social contact behaviour after
a lockdown. As such, we incorporated four mixing assumptions in our baseline
scenario to capture a low and moderate increase in social contacts related to
business-to-business (B2B) and community activities. By modelling reductions in
social mixing, we implicitly assume people either make fewer contacts compared to
the pre-pandemic situation or the contacts they make are less likely to lead to
transmission. For example, some transmission will be prevented by more frequent
hand washing, distancing or the use of masks35. If we assume that social mixing at
workplaces increased from 25% to 50%, we estimate the impact of “what if the risk
of acquiring infection at work doubles compared to during lockdown, but remains
still 50% less compared to pre-pandemic times”. Table 1 presents the social mixing
details for each scenario.

In our baseline scenario, we accounted for an increase of B2B mixing (i.e.,
contacts while at work) from May 4th up to 50% of the pre-pandemic observations.
Business-to-consumer (B2C) and leisure transmission is harder to single out using
social contact data within our model structure. To model the relaunch of economic
activities and other (leisure) activities in the community, we incorporated a limited
increase of community mixing up to 30% in our scenario analyses starting from
May 25th. Note that we do not claim that the increase of community mixing is
estimated to be 30% or restricted to this level, but we provide insights up to 30%.

For schools, we assumed a 50% reduction of transmission due to precautionary
measures (smaller class groups, class separation, increased hand hygiene, etc.) and
performed sensitivity analyses to explore the effect of these measures. We aligned

Table 1 Scenario definitions.

Scenario Description

Baseline During the lockdown, the social contacts related to B2B and in the community reduced to 15% of observed
behaviour prior the lockdown. Schools are closed and household mixing did not change. For the deconfinement
phase, we consider four social mixing assumptions based on B2B and community-related activities. The social
contacts related to B2B increase to 25% or 50% of the pre-pandemic mixing patterns from May 4th.
Community mixing is assumed to remain 15% or increase up to 30% from May 25th onward. All runs contain
an age-specific partial school reopening from May 18th according the Belgian regulations at that time (see
Supplementary Table 7) and assuming a 50% reduction of transmission at school due to precautionary
measures.

Baseline w/o B2B. Baseline scenario without increase in B2B mixing (=fixed to 25%).
Baseline w/o community Baseline scenario without increase in community mixing (=fixed to 15%).
Baseline w/o school* Baseline scenario without partial school reopening.
Baseline w/o PM at school* Baseline scenario without precautionary measures at schools.
School 0–5 years Baseline scenario with reopening of pre-schools with precautionary measures.
School 0–11 years Baseline scenario with reopening of pre- and primary schools with precautionary measures.
School 0–17 years Baseline scenario with reopening of pre-, primary and secondary schools with precautionary. measures
School 0–11 years w/o PM Baseline scenario with reopening of pre- and primary schools without precautionary measures.
Household bubbles Community mixing is partially replaced by social contacts within household bubbles consisting of two

households of which the oldest two household members are part of the same weekend community and their
ages can differ by up to 3 years. The mixing intensity equals the equivalent of being fully connected 4 days per
week. Interaction within the household bubbles is possible from May 11th onward.

Household bubbles: 7/7 days Household bubble scenario in which all members are in contact every day (connected 7 days per week), hence
almost no community contacts remain.

Household bubbles: 2/7 days Household bubble scenario in which the members are less connected, the equivalent of a visit 2 days per week,
hence more community contacts remain.

Household bubbles: size 3 Household bubble scenario with three households per bubble. The equivalent of being fully connected 4/7 days
a week equals the assumed number of community contacts in our baseline scenario. As such, most leisure
contacts are within the household bubble.

Household bubbles: size 4 Household bubble scenario with four households per bubble and all leisure contacts are within the household
bubble. The size of the household bubble surpasses the number of leisure contacts in the baseline scenario,
hence the absolute number of contacts increases in this scenario.

Household bubbles: age gap 20 years Household bubble scenario in which the ages of the two oldest household members can differ by up to
20 years.

Household bubbles: age gap 60 years Household bubble scenario in which the ages of the two oldest household members can differ by up to
60 years.

Baseline with CTS Baseline scenario with contact tracing strategy starting on May 11th in which 70% of the symptomatic cases
are included, 90% of the household contacts and 70% of the non-household contacts are successfully traced,
tested and isolated if infected. The false-negative predictive value is 10%.

Household bubbles and CTS Household bubble scenario with contact tracing as specified above.
(child) or (c) Scenarios including age-specific susceptibility in which children (0–17 years) are only half as susceptible

compared to adults (+18 years). During the lockdown, the social contacts related to B2B and in the community
reduced to 24% and 14%, respectively, of observed behaviour prior the lockdown.

All reductions in social mixing are relative to observed social contact patterns before the lockdown. B2B: business-to-business, CTS: contact tracing strategy, w/o: without, PM: precautionary measures.
B2B business-to-business, CTS contact tracing strategy, w/o without, PM precautionary measures.
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the baseline scenario with the school regulations and timings for Belgium (see
Supplementary Table 7). In addition, we also included more general scenarios for
re-opening pre-, primary and secondary schools from May 18th onward to make
our analysis more explorative. We model that all schools close on July 1st, in line
with the start of the national summer holiday period (until August 31st).

The Belgian government further relaxed restrictions in May 2020 by allowing
additional contacts within the household context. We adopted a strict approach
using household bubbles of two households of a similar generation based on the
age of the oldest household member. To align a combined approach of household
bubbles and contact tracing, both strategies start in our simulations on May 11th.
We did not include additional region-specific distancing measures.

Age-specific susceptibility. To fully explore age-specific effects, especially for
school-related scenarios, we additionally calibrated our transmission model
assuming that children (0–17 years) are only half as susceptible compared to adults
(+18 years)10. The methods are provided in Supplementary Information.

Sensitivity and robustness analyses. During the parameter estimation, we
identified an ensemble of parameter sets at the intersection of the best scoring
model runs according to the observed hospital admissions, doubling time before
the lockdown and serial sero-prevalence. The results presented in the main text are
based on the single best parameter set, but we repeated the main scenarios
(baseline, household bubbles, CTS and the combination of both) with the final
ensemble of model parameters. To validate our choice for presenting results based
on 10 stochastic realisations, we also ran our main scenarios with 20, 40 and
80 stochastic realisations.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The series of COVID-19 cases and hospital admissions are publicly available from the
Belgian Institute of Public Health (Sciensano) at https://epistat.wiv-isp.be/covid/covid-
19.html. The synthetic population data we used for Belgium are made available on
ZENODO36.

Code availability
We provide all code and model configuration scripts in a public archive of our open-
source GitHub repository37.
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