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Temperature distribution in 
driven granular mixtures does not 
depend on mechanism of energy 
dissipation
Anna S. Bodrova1,2,3,4*, Alexander Osinsky   4 & Nikolai V. Brilliantov4,5*

We study analytically and numerically the distribution of granular temperatures in granular mixtures for 
different dissipation mechanisms of inelastic inter-particle collisions. Both driven and force-free systems 
are analyzed. We demonstrate that the simplified model of a constant restitution coefficient fails to 
predict even qualitatively a granular temperature distribution in a homogeneous cooling state. At the 
same time we reveal for driven systems a stunning result – the distribution of temperatures in granular 
mixtures is universal. That is, it does not depend on a particular dissipation mechanism of inter-particles 
collisions, provided the size distributions of particles is steep enough. The results of the analytic theory 
are compared with simulation results obtained by the direct simulation Monte Carlo (DSMC). The 
agreement between the theory and simulations is perfect. The reported results may have important 
consequences for fundamental science as well as for numerous application, e.g. for the experimental 
modelling in a lab of natural processes.

Mixtures of granular particles of different size are ubiquitous in nature and technology1–4. The examples in nature 
range from pebbles and sands to dust on the Earth. Many extraterrestrial objects are comprised of granular 
mixtures: One can mention interstellar dust clouds, protoplanetary discs5 and planetary rings. Dense Saturn’s 
rings demonstrate a tremendous size polydispersity, with the particles size ranging from centimeters up to a few 
meters6,7. Granular dust also covers the surface of the Moon8, Mars9 and possibly other planets and satellites. 
Industrial granular materials, besides of pebbles and sands in building industry, are represented by powders in 
chemical and cosmetic production, as well as salt, sugar and cereals in food industry.

Granular materials demonstrate very rich behavior – depending on the applied load they can be in solid liquid 
or gaseous phase2. If the applied load is small, granular materials resist the external force and keep their shape and 
volume as solids. With increasing external load they start to flow like fluids. Such unusual properties of granular 
material stem from the dissipative nature of the inter-particle collisions, which are quantified by the so-called 
restitution coefficient ε, see e.g.2,10:
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Here ′ ′ ′= −v v vki k i and = −v v vki k i are the relative velocities of particles of masses mk and mi after and 
before a collision, and e is a unit vector directed along the inter-center vector at the collision instant. The 
post-collision velocities ′v k and ′v i are related to the pre-collision velocities vk and vi as follows, e.g.10:
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Here =m m meff 1 2/ +m m( )1 2  is the effective mass of colliding particles. The restitution coefficient ε≤ <0 1 
shows that the after-collisional relative velocity is smaller than the pre-collisional one, since the mechanical 
energy is transformed into the internal degrees of freedom of the particles. Due to a permanent loss of the kinetic 
energy of particles in the collisions, a steady supply of energy is required to keep the system in liquid or gaseous 
phase (unless the system is in a force-free state, where it undergoes a homogeneous cooling). The nature of the 
driving forces that fluidize granular matter may be very different. These may be gravitational forces, as in the case 
of astrophysical objects (dust clouds, protoplanetary disks and planetary rings) or avalanches in mountains11. It 
may be wind of atmospheric gases, initiating the motion of sand grains, which results in dune formation on the 
Earth12 or trigger dust storms on Mars9. The fluidization of granular materials in industry may be caused by the 
vibration of a container, or by moving parts of a system, like e.g. blades or a piston.

The transport properties of granular fluids crucially depend on the mean kinetic energy of the grains, which is 
also termed as “granular temperature”. Due to dissipative nature of the inter-particles collisions, the energy equi-
partition, valid for equilibrium molecular systems, does not hold for granular mixtures, where each species has its 
own temperature. For a mixture of = …i N1, 2,  species the granular temperature of k-th species is defined as 
follows

∫=n T d f t m vv v3
2
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2 (3)k k k k k
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Here mk is the mass of the according granular species, vk - its velocity, f tv( , )k  - the velocity distribution func-
tion, which quantifies the number of particles in the system of the kind k with the velocity vk at time t and nk is the 
number density of the k-th species of the granular fluid, ∫=n f t dv v( , )k k k k. In what follows we consider granular 
fluids with a low density, which are termed as “granular gases”. It is expected that the mixture behaves as a gas, 
when the total packing fraction of all components does not exceed about 20%.

The violation of the energy equipartition in granular mixtures has been recognized almost two decades ago. It 
was predicted theoretically, confirmed in computer simulations10,13–16 and observed experimentally17,18. An 
impressive natural example of a granular mixture with the broken energy equipartition is Saturn rings, where all 
granular species demonstrate different temperatures19–22. The polydispersity in the rings arises due to coagulation 
and fragmentation of granular particles7,23. Although the effect of broken equipartition is known for a long time, 
still the physical laws that determine the distribution of granular temperatures in granular mixtures are not 
known. Such laws should predict the granular temperature for each species as a function of (i) size and mass dis-
tribution of granular particles, (ii) of the dissipative mechanism of the particles collisions and (iii) of the driving 
mechanism, applied to the system to keep it fluidized. Force-free granular mixtures can exist in a gaseous state in 
the regime of homogeneous cooling; here the temperature distribution should be determined by the items (i) and 
(ii) above. The temperature distribution in granular mixtures with the simplified model of a constant restitution 
coefficient, ε = const, which is equal for all inter-particle collisions, has been addressed in our previous study24; 
some universality of the granular temperature distribution was reported24. Although the assumption of a constant 
restitution coefficient drastically simplifies the analysis and is widely used, see e.g.25–33, it contradicts, the experi-
mental observations6,34,35, as well as basic mechanical laws36,37. The latter indicate that ε does depend on the 
impact velocity35,36,38–40. This dependence may be obtained by solving the equations of motion for colliding parti-
cles with the explicit account for the dissipative forces acting between the grains. The simplest, but still rigorous, 
first-principle model of inelastic collisions takes into account the viscoelastic properties of particles’ material. This 
results in the corresponding inter-particle forces38,41 and eventually, in the restitution coefficient for viscoelastic 
particles36,40,42:
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where hk are numerical coefficients, κ and A characterize respectively the elastic and dissipative properties of the 
particles material (see Methods). Viscoelastic model agrees well with the experimental data when the impact 
velocity is not very large35,43–45. If the dissipative mechanism is caused by plastic deformation of particles, one 
obtains the following expression for the restitution coefficient46:
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where Vyield is the yield velocity. Dissipative mechanism associated with plastic deformation corresponds to rather 
high impact velocities44,45. A phenomenological exponential model for the velocity-dependent restitution coeffi-
cient has been also employed for the description of experimental data in ref. 47,
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where δ is a dimensionless parameter, ρ is the density of the particle material and Y is the Young modulus.
It is well known that the velocity dependence of the restitution coefficient may drastically change the qualita-

tive behavior of granular systems. For instance, it changes the cooling law in a homogeneous cooling state36,48, the 
velocity distribution function48,49, the diffusion of granular particles50 and even pattern formation, which becomes 
a transient process for the case of velocity-dependent ε51. Therefore, to formulate the laws for the temperature 
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distribution in a granular mixture one needs to consider in detail the dissipation mechanism of particles collision. 
This is done in the present study. We analyze the distribution of granular temperatures in mixtures of granular 
gases for different dissipative mechanisms and driving models. We show that the simplified model of a constant 
restitution coefficient fails to predict even qualitatively the granular temperature distribution in a homogeneous 
cooling state. At the same time for driven granular systems we arrive at an astonishing result – the distribution of 
temperatures in granular mixtures is universal, that is, it does not depend on a particular dissipation mechanism 
of particles collisions. This conclusion holds true for steep distributions of particles size. The results of the analytic 
theory of the present study are compared with simulation results obtained by the direct simulation Monte Carlo 
(DSMC). The agreement between the theory and simulations is perfect.

Results and Discussion
Model.  We consider a polydisperse granular system with discrete distribution of masses of particles. Let the 
smallest particle mass be = .m 0 011  and masses of other particles read, =m kmk 1, where = …k N1, 2,  are inte-
gers and N  is the total number of different species in the system. The system is spatially uniform and dilute 
enough so that only pairwise collisions take place in the system and multiple collisions of the particles may be 
safely neglected. The mass-velocity distribution function f tv( , )k k  gives concentrations of particles of mass mk with 
the velocity vk at time t. Since the deviation of the velocity distribution function from the Maxwellian distribution 
is relatively small10, we assume for simplicity that f tv( , )k k  is Maxwellian. This function evolves according to the 
Boltzmann equation, applicable for granular gases, where correlations of velocities of colliding particles may be 
neglected10,
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In Eq. (7) Ik
coll is the Boltzmann collision integral10:

∫ ∫σ

χ ″ ″

= Θ − ⋅ ⋅

× −

I d d

f t f t f t f t

v e v e v e

v v v v

( )

[ ( , ) ( , ) ( , ) ( , )], (8)

ki ki i ki ki

k k i i k k i i

coll 2

where σ σ σ= +( )/2ki k i , with σ πρ= m(6 /( ))k k
1/3 being the diameter of particles of mass mk, ρ is the mass density 

of the particle material. The summation is performed over all species in the system. ″v k and ″v i are pre-collision 
velocities in the so-called inverse collision, resulting in the post-collision velocities vk and vi. The Heaviside func-
tion Θ − ⋅v e( )ki  selects the approaching particles and the factor χ equals the product of the Jacobian of the trans-
formation ″ ″ →v v v v( , ) ( , )k i k i  and the ratio of the lengths of the collision cylinders of the inverse and the direct 
collisions10:
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In the case of a constant restitution coefficient χ ε= 1/ 2 for viscoelastic particles it has a more complicated 
form10.

The second term Ik
heat describes the driving of the system. It quantifies the energy injection into a granular gas 

to compensate its losses in dissipative collisions; it is zero for a gas in a homogeneous cooling state (HCS). Here 
we consider a uniform heating – the case when the grains suffer small random uncorrelated kicks throughout the 
volume52,53. To mimic the external driving forces a few types of thermostat have been proposed53. For a thermo-
stat with a Gaussian white noise, the heating term has the form53,54:
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Here the constant Γk characterizes the strength of the driving force. It may vary for different species, depending 
on the type of driving55. When all species are supplied with the same energy, we have a driving equipartition, 
Γ = Γ = .constk 1  In the case of the force controlled driving Γ ∝ m1/k k, while in the case of the velocity controlled 
driving Γ ∝ mk k

55. In our study we analyze a more general case of a power-law dependence of Γk on a particle 
mass, namely, Γ = Γ γkk 1 . The driving may also depend on the local velocity of granular particles56, however we 
neglect this effect in the present study.

Multiplying the Boltzmann Eq. (7) by m vk k
2/2 for = …k N1  and performing the integration over vk, we get the 

following system of equations for evolution of the granular temperatures of species of different masses:
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In a homogeneous cooling state Γ = 0k  and the granular system permanently cools down. Driven granular 
systems, that is, systems with a thermostat rapidly settle into a non-equilibrium steady state and all granular tem-
peratures attain after a short time, some constant values, so that =dT dt/ 0k  and the above system (11) turns into 
a set of algebraic equations,
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For the constant restitution coefficient the cooling rate ξki, quantifying the decrease of granular temperature of 
species of mass mk due to collisions with species of mass mi is given by the following expression24:
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In ref. 24 it was assumed that ε ε=ki . In the case of viscoelastic particles the cooling rates may be also computed 
and the result reads (see Methods for detail):
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with Γ x( ) being the Gamma-function.
While it is possible to obtain the explicit expressions for the cooling coefficients ξki for the viscoelastic dissipa-

tive model, it is not the case for the elasto-plastic model. Therefore it is practical to exploit a notion of a 
“quasi-constant” restitution coefficient, which corresponds to the effective restitution coefficient averaged over all 
collisions; it depends on the current temperature of granular fluid49, but not on the impact velocity.

Effective restitution coefficient of colliding particles in a granular mixture.  The Eqs. (4), (5) and (6) 
for the restitution coefficient ε give this quantity for a collision with a particular impact velocity. Since a wide 
range of the impact velocities is observed, one deals with a wide range of restitution coefficients. Naturally, this is 
much more complicated than to deal with a single number, of a simplified model of a constant restitution coeffi-
cient. Therefore for practical reasons it is worth to define a restitution coefficient ε〈 〉ki , averaged over all possible 
collisions. Such effective “quasi-constant” restitution coefficient may be defined as follows49,
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Here = ⋅v v e( )n ki  is the normal component of the relative velocity of particles and vn  is its collisional 
average:
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The Heaviside function Θ −v( )n  selects the approaching particles. This quantity has been introduced and tested 
in49 for a uniform one-component granular gas and demonstrated its adequacy. Here we generalize this concept 
for a mixture of granular particles of different masses mi and granular temperatures Ti. Using again the Maxwellian 
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approximation for the velocity distribution function, the collisional average yields for the effective coefficient of 
the viscoelastic particles (see Methods for detail):
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In contrast to the case of one-component granular gas49, the effective restitution coefficient depends on the 
granular temperatures of both components Tk and Ti, but not on the impact velocity, since it characterizes the 
collisions in average. The “quasi-constant” restitution coefficient (18) may be now used in Eq. (13) for the cooling 
rates in place of the constant restitution coefficients; that is, the following substitute may be used ε ε→ki ki . 
Although Eq. (18) refers to viscoelastic particles, one apply the collisional averaging (16) for other dissipation 
models.

Homogeneous cooling state: The failure of simplified model of constant ε.  In order to calculate 
the granular temperatures of particles of different masses in the homogeneous cooling state we have solved 
numerically the system of differential Eq. (11) with zero heating rate, Γ = 0k  and cooling coefficients ξki (Eq. 14), 
corresponding to viscoelastic particles. We exploit the size distributions of particles, which is steep enough, 

θ−
n kk  with θ = 3. The evolution of granular temperatures T t( )k  is shown in Fig. 1a. The behavior of a granular 

gas of viscoelastic particles is drastically different as compared to the granular gas of particles colliding with a 
constant restitution coefficient. While in the case of constant restitution coefficient the granular temperature 
decrease with the same rate, corresponding to the Haff ’s law10, the evolution of granular temperatures of viscoe-
lastic particles is rather complicated. The temperature of monomers T1 of mass m1 cools down according to −t 5/3 
(the generalized Haff ’s law10), while the temperature of more massive particles decrease slower at the initial state 
of cooling (retarded cooling) and faster at the later state of cooling (accelerated cooling) (Fig. 1a). The difference 
becomes more pronounced with increasing mass, as it is shown in Fig. 2a, where the evolution of the ratios of 
granular temperatures is shown. In the case of a constant restitution coefficient the ratios of all granular temper-
atures tend to the steady state49, while for viscoelastic particles the ratio of granular temperatures, Tk/T1, first 
grows, then reaches its maximal value and then decreases with time, tending to unity, that is, tending to the equi-
partition (Fig. 2a). The larger the mass mi of the particle, the larger the granular temperature and at the later time 
the maximum of Tk/T1 is achieved. The temperature distribution Tk/T1 evolves with time and changes its form, see 
Fig. 1b. It does not correspond to the distribution ∼ .T kk

1 85, observed for the system with a constant restitution 
coefficient24. Hence the behavior of granular temperatures with a realistic restitution coefficient qualitatively dif-
fers from that predicted for a model with a constant ε. In other words the simplified model of a constant restitu-
tion coefficient, widely used in the scientific literature, fails to describe a complicated behavior of a granular 
mixture. At the same time, as it is follows from Fig. 2a, the application of the corresponding quasi-constant, 
temperature-dependent restitution coefficient (18) allows to model a granular mixture with an acceptable accu-
racy. Figures 1 and 2 also demonstrate that the theoretical results obtained by the solution of the rate Eq. (11) are 
in a perfect agreement with the numerical simulations by the DSMC (see Methods for more detail).

Driven granular mixtures: Universality of temperature distribution for all dissipative mecha-
nisms.  To study the evolution of a driven granular mixture we solve the system of Eq. (11) with the 
mass-dependent heating rates Γ = Γ γkk 1 . We start from the case of viscoelastic particles and use the cooling coef-
ficients (14) and then the cooling coefficients (13) for the impact-velocity independent restitution coefficients εki, 

Figure 1.  (a) Evolution of granular temperatures T1 and T200 in the granular gas in a homogeneous cooling 
statefor the velocity-dependent restitution coefficient, Eq. (4). The dotted line shows the asymptotics ∼ −t 5/3. 
Symbols show the results of the DSMC simulations. (b) Dependence of the granular temperatures Tk in the HCS 
on the reduced mass of the particle =k m m/k 1 at different times. Solid lines correspond to viscoelastic particles 
(solution of system of Eq. (11) with ξik in the form Eq. (14) with κ = .A 0 4412/5 . Symbols show the results of the 
DSMC simulations. The dotted line shows the slope of the temperature distribution for the case of a constant ε.
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with the use of the effective quasi-constant coefficients, εki  from Eq. (18) in the place of εki. The evolution of 
granular temperatures in a heated gas is shown at Fig. 2b. As one can see from the figure, all temperatures relax to 
the steady-state values. The steady state temperatures Tk form a stationary distribution, that behaves for large k as 
a power law, see Fig. 3.

To understand this behavior theoretically, we assume the power-law distribution for the steady state 
temperatures,

= αT Tk , (19)k 1

provided k are not small. Approximating for N 1 the summation by integration in Eq. (12) with the cooling 
rates, Eq. (14), we get:

Figure 2.  Evolution of granular temperatures Tk. (a) In a homogeneous cooling state. Solid lines illustrate the 
direct solution of the system of Eq. (11) with ξki in the form of (14). Dashed lines show the evolution of T T/k 1 of 
particles, colliding with an effective restitution coefficient (18) with κ = .A 0 0632/5 . (b) In a uniformly heated 
granular gas with Γ = Γ = 1k 1  (all species are supplied with the same energy) for κ = .A 0 0632/5 . The notations 
are the same as in the panel (a).

Figure 3.  Dependence of the granular temperatures Tk on the reduced mass of the particle =k m m/k 1 for a 
heated granular gas with Γ = γkk . (a) For γ = 1 (velocity controlled driving), γ = 2 and γ = .0 5. The results of 
the solution of the system with the effective restitution coefficient are shown with thin lines (cooling rates ξki, 
Eq. (13) with the restitution coefficient εki , Eq. (18)), while the full solution of the system is given by the thick 
lines (cooling rates ξki, Eq. (14)). Two solutions are practically indistinguishable. Symbols show the results of the 
DSMC simulations. The viscoelastic parameter is κ = .A 0 0632/5 . (b) For γ = 0 (equal distribution for the 
energy input for all species) and negative values of the exponent γ: γ = − . − . −0 33, 0 47, 1. The notations are 
the same as for the panel (a). The viscoelastic parameter is κ = .A 0 4412/5 .
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If the particle size-distribution =n n i( )i i  is steep enough the main contribution to the integral in Eq. (20) 
comes from i k. Expanding the integrand in Eq. (20) with respect to i k( / ) 1 and keeping only the leading 
terms in the expansion we arrive at (see Methods for more detail):

∫
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Here we exclude α < 0, since it may yield for i k a negative sign for the factor in the square brackets of the 
integrand in Eq. (20). The result of the integration, however, should be positive, as it gives the cooling rate. For 
steep distributions ni one can approximate N  in the upper limits of the integrals in Eq. (22) by the infinity,

∫ ∫ =
∞

i n di i n di const, (23)
N p

i
p

i
1 1

where =p 1 for α > 1 and α= +p ( 1)/2 for α< <0 1 (see Eq. (22)), so that the sum in (12) does not (asymp-
totically, for N 1) depend on N. Taking into account that the exponents of k in the both sides of Eq. (12) must 
be equal, we finally arrive at:

α
γ γ

γ γ
=
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
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



+ ≥

+ − ≤ ≤ .
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9

2
3

if 2
3

1
3

if 1
3

2
3 (24)

Surprisingly, this result exactly coincides with the one for the velocity-independent restitution coefficient 
ε ε= = .constik  of ref. 24.

In Fig. 3 the theoretical predictions for the temperature distribution are compared with the results of the 
numerical solution of Eq. (11) with cooling rates of viscoelastic particles, with the cooling rates for the effective 
quasi-constant restitution coefficient, as well as with the DSMC results (see Methods for the application detail of 
the DSMC). The results of all three approaches perfectly agree with each other as well as with the theoretical 
result, Eq. (24). For instance ∼T kk

11/9 for γ = 1 and ∼T kk
17/9 for γ = 2, which corresponds to the case of 

γ ≥ 2/3 [see Eq. (24)]. Similarly, ∼T kk
5/6 for γ = .0 5, corresponding to − γ≤ <1/3 2/3, see Fig. 3a. All these 

temperature distributions are the same as for the case of a velocity-independent restitution coefficient, with the 
same driving coefficient γ.

Interestingly, for the equal distribution of the external energy supply for all species (γ = 0) the energy equi-
partition does not hold for particles of different sizes: ∼T kk

1/3 which is confirmed both by the scaling prediction 
and Monte Carlo simulations (Fig. 3b). The reason is that the losses of kinetic energy in collisions of smaller 
particles is larger than of bigger ones. In order to compensate this effect the input of the external energy should be 
larger for smaller particles, which can be observed for negative values of γ. For the system of viscoelastic particles 
the equipartition of energy takes place for γ − . 0 47 (Fig. 3b), which is slightly different from the value 
γ − . 0 33, predicted by the scaling approach for granular systems with constant restitution coefficient. This 
resembles the mimicry effect found in the binary mixtures of granular particles57,58. For negative values of γ with 
larger absolute values the equipartition breaks again, but the mass-dependence of the granular temperatures 
becomes inverse: The granular temperature of larger particles becomes smaller55. This is indeed observed for the 
force controlled driving with γ = −1 (Fig. 3b). All these findings are confirmed by the DSMC results.

As we have demonstrated above, the viscoelastic collision model yields the same temperature distribution as 
the simplified collision model of a constant ε. The same is true for all dissipative mechanisms and may be formu-
lated as a general theorem:

Theorem: Distribution of partial granular temperatures in a driven granular mixture does not depend on the dissi-
pation mechanism of inelastic collisions provided the size distribution of particles is steep enough.
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The proof of the theorem and exact formulation of the applicability conditions are given in the section 
Methods. To illustrate the application of the general theorem we consider the temperature distribution in granular 
mixtures with other mechanisms of the dissipative collisions – the elasto-plastic model, described by Eq. (5)46 and 
the exponential model, described by Eq. (6)47. The results of DSMC simulation for granular mixtures with three 
different models of the restitution coefficient are shown in Fig. 4.

One can see from the figure that the distribution of granular temperatures demonstrates the same slope for all 
mechanisms of the dissipative collisions. Moreover, for the case of the first-principle restitution coefficients – for 
viscoelastic and elasto-plastic dissipative mechanisms, not only the slopes of the distributions, but the distribu-
tions themselves coincide. The discrepancy for small k between the temperature distribution of the latter two 
models and the phenomenological model from ref. 47 stems possibly from the unphysically steep decay of ε with 
the impact velocity.

Conclusion
We have studied kinetic properties of size-polydisperse granular mixtures where granular particles suffer pairwise 
inelastic collisions. These are characterized by the restitution coefficients ε, quantifying the energy losses. We 
consider two main mechanisms of the collisional dissipation, associated with the viscoelastic and elasto-plastic 
behavior of the particles material. We used the first-principle expressions for restitution coefficients for these two 
mechanisms, which implies the dependence of ε on the impact velocity vimp, that is, ε ε= v( )imp . We also consid-
ered a phenomenological exponential model for the impact-velocity dependent restitution coefficient ε v( )imp  and 
a simplified model of a constant ε that does not depend on the impact velocity. We analyzed both cases of force 
free and driven systems. We derived a system of equations that describe the evolution of granular temperatures of 
different species in the mixture and the according cooling coefficients ξij for the case of viscoelastic particles. We 
have also introduced the notion of the effective impact-velocity independent restitution coefficient εij , which 
significantly simplifies the analysis and demonstrated its adequacy and efficiency. We solved numerically the 
equations for the granular temperatures Tk, where k specifies the granular species and found the temperature 
distribution Tk. The theoretical studies have been accompanied by the numerical modeling of the system with the 
direct simulation Monte Carlo (DSMC). We observed an excellent agreement between the theoretical predictions 
and the numerical results. Two main conclusions follow from our work: (i) The simplified model of a constant, 
velocity-independent restitution coefficient fails qualitatively to describe the evolution of a granular mixture and 
the granular temperature distribution in a homogeneous cooling state (HCS). (ii) Temperature distribution in 
driven granular mixtures settles to a universal power-law distribution ∼ αT kk  with the exponent α that does not 
depend on the dissipation mechanism of inelastic collisions. Moreover, the distribution of temperatures, obtained 
for the two main dissipation mechanisms – of viscoelastic and plastic energy losses, demonstrate not only coinci-
dence of the slopes but the overall coincidence. This kinetic law is applicable for granular mixtures with a steep 
size distribution and may be formulated as a general theorem with a precise formulation of the conditions.

The reported results imply serious consequences for the overall kinetic behavior of granular materials – the 
agitated granular mixtures of very different nature may behave similarly. This result is important for fundamental 
science, as it helps to understand the kinetic properties of granular mixtures and perform an adequate modelling, 
as well as for numerous practical applications. As an immediate practical consequence of our findings, is the pos-
sibility of experimental modelling (imitation) of natural processes in a lab: One needs to care only about the size 
distribution of particles and the driving law, but not about particles’ material. Moreover, even if in the course of 
system evolution, the mechanism of the dissipative collisions changes (e.g. from elasto-plastic to viscoelastic) it 
will not affect the temperature distribution.

Figure 4.  Dependence of the granular temperatures Tk on the reduced mass of particles =k m m/k 1 for a heated 
granular gas for different models of restitution coefficients: the viscoelastic model, elasto-plastic model with 

=V 1yield
46 and the exponential model with δ =ρ 1

Y
47 obtained in the DSMC simulations. The dashed lines 

indicate the slopes.
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Methods
Derivation detail for the cooling coefficients, their sum and effective restitution coeffi-
cient.  Here we present the derivation detail for obtaining ξki, ξ∑i ki and ε〈 〉ik .

Cooling coefficients.  Due to rather small deviation of the velocity distribution function from the Maxwellian, we 
assume for this function the Maxwellian form, that is,

π
=















−






f n m
T

m v
T

v( )
2

exp
2 (25)k k k

k

k

k k

k

3/2 2

In order to compute the cooling rate we multiply the Boltzmann equation (Eq. 7) by m v /2k k
2  and integrate it 

with respect to vk

∫ ∫∑
∂

∂
=

∂
∂

=
m v

t
d m v f

t
d m v Iv v

/2
2 2 (26)

k k
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i
k

k k
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2 2 2
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Using Eq. (8) for the collisional integral we write,

∫ ∫

∫
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k k

2
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2

Noticing that10

χ ″ ″ ″⋅ = ⋅d d d dv e v v v e v v , (28)ki k i ki k i

we recast the first integral in the r.h.s. of (27) into the form

∫σ ″ ″ ″ ″ ″ ″Θ − ⋅ ⋅d d d f t f t m vv v e v e v e v v( ) ( , ) ( , )
2 (29)ki k i ki ki k i
k k2

2

Since the pre-collision velocities ″v k and ″v i are related to vk and vi in the same way as vk and vi to post-collision 
velocities ′v k and ′v i, this integral may be rewritten as

∫σ Θ − ⋅ ⋅
′d d d f t f t m vv v e v e v e v v( ) ( , ) ( , )

2 (30)ki k i ki ki k i
k k2

2

which finally yields,
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m v
t

d d d f t f t Ev v e v e v e v v/2
( ) ( , ) ( , )

(31)
k k

i
ki k i ki ki k i k

2
2

where ′∆ = −E m mv v/2 /2k k k k k
2 2  is the difference of energy of a particle of mass mk after and before a collision. Let 

us introduce the center of mass velocity

=
+
+

.
m m
m m

V v v
(32)

k k i i

k i

Using the collision rules, Eq. (2), one can derive ΔEk:

ε ε∆ = − + ⋅ ⋅ + ⋅ −E m m
m

v e V e v e( 1)( )( ) 1
2

( ) ( 1)
(33)k ki ki

k
ki kieff

eff
2

2 2

where the restitution coefficient εki is given by Eq. (4) with the following elastic constant κ,

κ
ν πρ

=






 −
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



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Y
m
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2

3
2 1

6 ,
(34)

3/2

2
1
2

1
3

which is a function of the Young’s modulus Y , Poisson ratio ν, monomer mass m1 and the material density of 
particles ρ10,36,38. The dissipative constant A quantifies the viscous properties of the particles’ material38,41:
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where η1 and η2 are the viscosity coefficients. Let us introduce the variable
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−
+

m T T
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The change of energy attains the form:
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and the whole integral reads:
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Integration that refers to the first term of ΔEk [see Eq. (37)] yields zero. After the integration over b we get:
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And Eq. (39) can be now presented as a sum over the following type of integrals:
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with = +R m m Tm Tm/(2( ))k i k i i k . Collecting all terms together, one gets Eq. (14).

Effective restitution coefficient.  The derivation of the effective restitution coefficient, Eq. (18), may be performed 
analogously. Introducing Eq. (4) into Eq. (16), we get
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The sum of cooling rates.  To compute the sum ξ∑i ki in Eq. (11) we analyze the structure of the r.h.s. of Eq. (20) 
for i k, starting from the first term. For α ≥ 1 the leading term depends on i and k as α −k i/2 5/6  and for α < 1 as 

α− +k i1/3 ( 1)/2. The next terms with ≤ ≤n2 20 scale as α− −A i kn n n/2 /6 ( 1) /20 for α ≥ 1 and as α− − −A in n/2 (1 ) /20 1/6 for 
α < 1. For small A [which is the condition of the validity of (4)] these terms may be neglected for ≥n 2 as com-
pared to the first term, which yields Eq. (22).

The rigorous prove of the universality of the temperature distribution for all dissipative mech-
anisms.  With mild assumptions we can prove that temperature distribution tends to the scaling form αk , 
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where α does not depend on a particular model of the effective restitution coefficient. Note that effective restitu-
tion coefficient exists for every non-negative, continuous and bounded ε v( ) and can be found using Eq. (16), 
although one can possibly get different values for the effective restitution coefficient and the effective squared 
restitution coefficient, which we denote respectively as εki  and εki

2  (Here we do not consider the case of very soft 
particles or nano-particles, which may possess a negative restitution coefficient59,60). We present a proof for the 
Maxwell distribution, but the same techniques can be used in other cases. For simplicity we assume that =m 11  
and σ =g ( ) 1ki2  (the generalization is straightforward), and rewrite (13) as
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First we check the convergence of ξ∑ =
∞
i ki1 . Estimating ξki  from (44) we find that for ⩾i k
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Let us impose even more restrictions by the condition
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Consider now a partial sum from =i i0 to k, which satisfies,
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which is true if ∑ < ∞=
∞ n ii i1 , and = αT O k( )k  for α from (24). Combining conditions (47) and (49) we observe 

that
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k i i ik
0
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which essentially means that the full series may be replaced by its first i0 terms with any desired accuracy  (i0 
certainly depends on ). Hence for k i0 we have the same asymptotics for Tk, obtained for the incomplete sum, 
as the one obtained for the whole series. These differ only by the factor +1 , converging to 1 as i0 and k increase 
(hereinafter it is implied that  may be taken arbitrarily small).

Now we illustrate that for k i0 the terms of ξki (44) do converge. We have
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The last condition means that the terms with the negative sign in (44) disappear. Then we are left with
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If εki  is continuous and has a limit for → ∞k , then ε+1 ki  is also a a value (that depends only on i) between 
1 and 2 up to the factor +(1 ) . Solving then the stationary Eq. (12) for Tk,

∑ξ = Γ γT k
(52)k

i
ki 1

with ξki from (51) leads to

= ⋅ + αT kconst (1 )k

with α from (24), which proves the asymptotics.
Note that the special case of α = 1 is to be treated with an additional care. In this case the limit of εik  for 

→ ∞k  may depend on the limit of αT k/k ; Eq. (52) for Tk, with ξki from (51), turns into an equation for an implicit 
function f x( , )  with = αx T k/k . In this particular case one also needs to check that ξki, given by Eq. (51) is a 
monotonous function of = αx T k/k . Otherwise, multiple solutions of Eq. (52) for 

→∞
αlim

k

T
k
k  may exist. In all the 

addressed above cases, the quantity εik  decreases slower than − |→|c v1 ; hence the monotony is guaranteed, so 
that = >

→∞
αlim const 0

k

T
k
k  even for α = 1.

Substituting ∼ αT kk  into (46) and (48) we see that the following conditions are sufficient for the convergence 
for the obtained asymptotics:

	 1.	 δ= >γ δ+ +n O i(1/ ), with 0i
max(2, 1)

	 2.	 γ > −1/3

Surprisingly, there are no conditions imposed on the effective restitution coefficients εik , except for the nat-
ural ones – continuity and existence of some limit for high speeds, which are obviously satisfied due to physical 
reasons. It should be also noted however that the power-law asymptotics is valid only for large k and is not 
expected for ∼k 1. In our simulations we used ∼ −n kk

3, which means that the monomers dominate in the system 
and the convergence to the asymptotics is already visible for rather small k.

Direct simulation monte carlo.  To study the granular mixtures we implement the method of Direct 
Simulation Monte Carlo, which is widely used in investigations of granular systems, especially for granular gases, 
where it provides very accurate results53,61. It is based on the solution of the Boltzmann equation for space uni-
form systems by stochastic methods53,62. Generally, we follow the standard procedure62, which has been adopted 
accordingly for the granular mixture. Here we give the simulation detail and the main ideas of the approach. We 
used 2.7 ×  108 monomers, so that for the size distribution ∼n k1/k

3 addressed here, one has 
= = . ⋅⌊ ⌋ ⌊ ⌋N N k k/ 2 7 10 /k 1

3 8 3  k-mers. The maximum size in our simulations was =k 300max . We use the follow-
ing parameters: the mass of monomer = .m 0 011 , its diameter, σ = 11 , the number density of monomers = .n 0 11  
and the initial temperature =T 10 . These parameters correspond to a dilute granular mixture with the packing 
fraction of monomers φ π σ= = .n( /6) 0 05241 1

3 , which guarantees the accuracy of the Boltzmann equation10. 
Note that any sufficiently small packing fraction leads to the same distribution, since scaling number density leads 
to the same changes in the equations and simulations as changing the time scale by the same amount.

A stochastic thermostat has been implemented through the random change of velocities of all particles every 
N h collisions, where N  is the total number of particles and h is a parameter, which should be much less than one 
so that the thermostat affects any particular particle several times between its collisions. Here we choose = .h 0 1.

The velocity components of each particle changes each N h collisions:
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= + Γ∆

= + Γ∆
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v v r t m
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v v r t m

: / ,

: / ,

: / ,

x x i i

y y i i

z z i i

1

2

3

where Δt is the time passed after previous velocity change due to the thermostat, and r1,2,3 are random variables 
from a normal distribution with zero mean and unit standard deviation, that is, ∈r N(0, 1)1,2,3 .

We consider only binary collisions of the particles and neglect possible triple and higher order collisions. 
Colliding particles are chosen in two steps:

	 1.	 We choose the sizes of the colliding particles.
	 2.	 We choose the speeds of the colliding particles.

Let us discuss each step in more detail.

	 1.	 We can estimate the number of candidate pairs ij( ) to collide during the small time interval Δtij as

π

π σ

=
| | + | |

∆

=





+ 




| | + | | ∆

σ σ+( ) ( )

( )

N
NN v v

V
t

n
N

NN i j v v t
2

,
(53)

p
ij i j i j

ij

i j i j ij

2

2

max max

1

1
1
2

1/3 1/3 2

max max

i j

where π σ σ+ | | + | | ∆v v t(1/4) ( ) ( )i j i j ij
2

max max  gives the volume of the collision cylinder and we use the 
definition of the number density, =n N V/i i  (V is the system volume). Let us introduce the matrix Λij of 
collision rates. They are equal to the inverse of the average time of one collision between particles of sizes i 
and j, that is, Λ = ∆ −N tij p

ij
ij

1. Then we get from (53):

π σΛ =





+ 




| | + | | .( )n
N

NN i j v v
2ij i j i j

1

1
1
2

1/3 1/3 2

max max

The time between collisions and the sizes of colliding particles are chosen based on matrix Λ ij . Namely, 
the time between collisions is taken from the exponential distribution

∑∆ = − Λ
=

t ln(rand(0, 1])/
i j

m

ij
, 1

max

and the sizes i and j of the colliding particles are chosen with probability

=
Λ

∑ Λ
.

=

pij
ij

i j
m

ij, 1
max

Note that matrix Λ ij  has rank 6 and can be rapidly recalculated using the low-rank technique (see e.g.63).
	 2.	 When the sizes i and j of the colliding particles are known, we can estimate the maximum value of the 

relative velocity of colliding particles according to

| | | | + | | .⩽v v vij i jmax max max

Then we use the standard technique to pick random particles and accept the collision if

| − | > | | + | |v ve v v( ) rand[0, 1)( ),i j i jmax max

where e is a random unit vector. The values of | |vi max can be updated in O N(log )i  steps by keeping all velocities in 
a binary heap structure for each size.

To reduce the statistical noise of the simulation data for temperatures we apply the running averaging as fol-
lows. Let at time tconv the temperature of monomers ceases to change monotonously. This indicates that the system 
has achieved its steady state and the stochastic noise becomes the primary source of errors. We then calculate the 
temperatures every N  collisions in the time interval t t( , 2 )conv conv  and take an average64,65.
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