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Mid‑infrared spectroscopic 
screening of metabolic alterations 
in stress‑exposed gilthead 
seabream (Sparus aurata)
cláudia Raposo de Magalhães1,3, Raquel Carrilho1,3, Denise Schrama1, Marco Cerqueira1, 
Ana M. Rosa da costa2 & pedro M. Rodrigues1*

Stress triggers a battery of physiological responses in fish, including the activation of metabolic 
pathways involved in energy production, which helps the animal to cope with the adverse situation. 
Prolonged exposure to stressful farming conditions may induce adverse effects at the whole-animal 
level, impairing welfare. Fourier transform infrared (FTIR) spectroscopy is a rapid biochemical 
fingerprinting technique, that, combined with chemometrics, was applied to disclose the metabolic 
alterations in the fish liver as a result of exposure to standard stressful practices in aquaculture. 
Gilthead seabream (Sparus aurata) adults exposed to different stressors were used as model species. 
Spectra were preprocessed before multivariate statistical analysis. Principal components analysis 
(PCA) was used for pattern recognition and identification of the most discriminatory wavenumbers. 
Key spectral features were selected and used for classification using the k-nearest neighbour (KNN) 
algorithm to evaluate whether the spectral changes allowed for the reliable discrimination between 
experimental groups. PCA loadings suggested that major variations in the hepatic infrared spectra 
responsible for the discrimination between the experimental groups were due to differences in the 
intensity of absorption bands associated with proteins, lipids and carbohydrates. This broad-range 
technique can thus be useful in an exploratory approach before any targeted analysis.

Intensive and controlled fish production is necessary to meet the ever-increasing demand for quality  protein1. 
However, intensification of production, mainly by the aquaculture industry, inevitably leads to environmental and 
welfare issues. Management practices often induce some level of disturbance, which can elicit a stress response in 
fish, may result in more severe long-term complications at the growth, reproduction, health and behaviour  levels2. 
Therefore, proper monitoring of stress in fish is crucial to reduce the adverse effects of production routines. Also, 
a more in-depth knowledge of the physiology of fish stress becomes fundamental.

Stress in fish has been extensively  studied3, but only recently, more modern and sensitive techniques started 
to be applied in this endeavour. High-throughput technologies have been gaining popularity to unveil the main 
changes occurring in farmed fish metabolism caused by stressful rearing  conditions4. Among them is metabo-
lomics, which allows for the non-selective chemical analysis of metabolites in a given biological  system5. Metabo-
lomics in fish research has been focused mainly on the environmental impacts on fish  health6,7 and  welfare8,9. 
Metabolic fingerprinting is one common approach in metabolomics, often of comparative nature, that can 
provide qualitative information on the metabolic alterations caused by biotic or abiotic  factors10. Among dif-
ferent techniques, Fourier transform-infrared (FTIR) spectroscopy, a form of vibrational spectroscopy, is one 
common analytical platform used in metabolic fingerprinting. It has been successfully applied to differentiate 
functional biochemical groups in the liver of fish exposed to different rearing  conditions11,12, to determine the 
changes caused by spoilage in gilthead  seabream13 and  salmon14, and to identify alterations provoked by toxic 
chemicals, in rainbow  trout15,16,  rohu17,18, Mozambique  tilapia19 and  catfish20. Furthermore, FTIR spectroscopy 
was also applied to assess cod liver oil  quality21 and characterize hake lipids and lipid changes during frozen 
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 storage22. Although the use of FTIR spectroscopy in fish research is still in its infancy, these studies with such 
diverse contexts underline the applicability of this technique to study different fish tissues.

Vibrational spectroscopy is based on the ability of certain compounds, presenting covalent bonds, to selec-
tively absorb unique frequencies of electromagnetic radiation, exciting the molecule to a higher vibrational 
state. Each chemical bond can vibrate in numerous ways, and each vibration is called a vibrational mode (e.g., 
stretching or bending). This absorption of energy by the vibrating chemical bond results in an infrared spectrum. 
The most commonly used techniques based on vibrational energy are Raman and infrared (IR)  spectroscopies23.

FTIR spectroscopy is a fast and relatively simple technique, with a low-cost value regarding  consumables24 
and requiring a small amount of  sample25. First, an interferogram is collected from a sample signal using an 
interferometer. Then a Fourier transform (a mathematical algorithm) is applied to the raw data (interferogram) 
to obtain the actual infrared spectrum, in the mid-infrared  region10. Hence, this technique allows to analyse 
changes in band positions, widths and intensities to obtain information on the metabolic changes with alterations 
in main compounds, such as lipids, proteins and  carbohydrates26.

No reference has been found in the literature regarding the use of FTIR spectroscopy to investigate the 
metabolic alterations in farmed fish induced by everyday aquaculture production stressors. However, previous 
studies on the effects of stressful conditions in  algae27,  yeast28,  bacteria29 and fish  toxicology19 demonstrate the 
potential of its application in this field. One great advantage of this spectroscopic technique is its ability to pro-
vide a broad outlook on fish metabolism without any preconceptions. Additionally, its holistic nature can offer 
a global overview of the classes of biochemical compounds responding directly to external stimuli, which can 
be extremely useful before any targeted and more accurate analysis.

In the present work, gilthead seabream (Sparus aurata) adults, a widely cultured species in the European 
aquaculture, were submitted to three different stressful rearing conditions, namely overcrowding, net handling 
and hypoxia. These stressors were demonstrated before to induce significant changes in the levels of specific 
metabolites, known to be associated with the physiological stress response in fish, and stress-related proteins, 
in the blood plasma of farmed gilthead seabream (Sparus aurata)4. In this work, potential metabolic changes 
were investigated in the liver of the challenged fish, since this organ plays a key role in the metabolic responses 
triggered by the stress response, mainly in the supply of energy for the animal to cope with adverse  situations2. 
FTIR spectra were obtained from liver tissue samples and different chemometric techniques were employed for 
the efficient processing of the high-dimensional datasets generated. This untargeted approach aimed to explore 
the potential of this technique to screen for spectral changes in the fish liver’s metabolic profile and provide a 
broad overview of the alterations caused by specific farming conditions.

Results and discussion
In this study, gilthead seabream adults were submitted to three different rearing conditions in separate trials. 
The chosen stressors are commonly encountered in aquaculture production routines: overcrowding (OC), net 
handling (NET) and hypoxia (HYP). The livers of stressor-exposed fish were compared to those of control fish 
using FTIR  spectroscopy30, which allows to perform a rapid screening of the biological system under investiga-
tion and thus to detect unforeseen metabolic alterations. Hence, this analysis generates a ‘holistic’ overview of 
the potential changes in major functional groups retrieved from the challenged fish, making FTIR spectroscopy 
a suitable technique to be used prior to any targeted  analysis26. To the best of our knowledge, this is a pioneering 
work using FTIR spectroscopy to screen for the effects of stressors associated with standard aquaculture practices 
in the metabolic profile of farmed fish.

FTIR spectra of gilthead seabream liver submitted to stressful conditions. Overall, the FTIR 
spectra of the fish liver from the three trials showed the typical complex metabolic patterns with several over-
lapping bands observed mainly at two frequency regions: 3600–2800 cm−1 and 1800–950 cm−1. Only the spec-
tral region between 3600 and 950 cm−1 was used for further analysis as both the head and end of the spectra 
showed excessive noise (see Supplementary Fig. S1). For each experimental treatment, 18 spectra were recorded. 
The acquisition of spectra in transmission mode can be affected by several factors such as sample uniformity 
and homogeneity, and thickness of the KBr  pellet31. Therefore, spectra were pre-processed before multivariate 
statistical analyses. Variations were thus minimized by detrending, which also removed the effects of baseline 
shifts, and the noise reduced with Savitzky–Golay filtering. Raw and treated spectra are shown in Supplementary 
Fig. S1. The total spectrum was characterized by 15 bands (Fig. 1a–c) which were assigned to specific vibrational 
modes, functional groups and biochemical compounds based on the correlation analysis performed and simi-
lar biological systems described in the  literature11,12,18,22,32,33 (Table 1). Different chemometric techniques were 
employed to discriminate the different spectral regions and experimental treatments.

correlation analysis. Correlation analysis of the 15 bands assigned to specific biomolecules (Table  1) 
revealed 4 major clusters in the OC trial, with significant Pearson’s correlation coefficients greater than 0.71 for 
all band pairs (Fig. 1d). Cluster 1, counting from the top of the matrix, (r > 0.95, P < 0.001) is comprised exclu-
sively of carbohydrate-like bands, whereas cluster 2 (r > 0.71, P < 0.001) of bands assigned to proteins. The third 
cluster (r > 0.76, P < 0.001) consisted of 4 bands assigned to lipids, with band nº 13 assigned to carbohydrates 
and phospholipids. The fourth (r > 0.77, P < 0.001) is a cluster of 3 bands, of which two are assigned to unsatu-
rated fatty acids and the third to nucleic acids and phospholipids. For the NET trial, the correlation analysis 
originated 3 very well-defined clusters, with significant Pearson’s correlation coefficients greater than 0.58 for 
all band pairs (Fig. 1e). The first cluster (r > 0.58, P < 0.001) grouped 3 bands assigned to carbohydrates, cluster 
2 (r > 0.66, P < 0.001) consisted of 4 bands assigned exclusively to proteins, and cluster 3 (r > 0.58, P < 0.001) was 
formed mainly by bands assigned to lipids and band nº 12, which was assigned to nucleic acids and phospho-
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lipids. In the HYP trial case, the correlation analysis grouped the bands in 4 clusters, with significant Pearson’s 
correlation coefficients greater than 0.47 for all band pairs (Fig. 1f). Clusters 1 (r > 0.65, P < 0.001) and 2 (r > 0.47, 
P < 0.02) were mainly formed by bands assigned to lipids and band nº 12, which was assigned to nucleic acids 
and phospholipids. Similarly to the NET trial, clusters 3 (r > 0.66, P < 0.001) and 4 (r > 0.63 P < 0.001) consisted 
of bands assigned to carbohydrates and proteins, respectively. Band nº 2 presented low correlations in the OC 
trial. Absorption band nº 13 can be attributable to either carbohydrate and/or phospholipids. However, the cor-
relation analysis suggests that in the OC trial, it is more likely to represent changes in the phospholipids’ content. 
Contrarily, in the NET and HYP trials, it seems to correspond to carbohydrates.

principal component analysis. Principal component analysis (PCA) is an unsupervised method, with 
no a priori knowledge of experimental structure, primarily used to reduce the dimension of the feature space, 
detect structural relationships between variables and find potential clusters of observations. The original cor-
related variables are transformed into a set of orthogonal uncorrelated variables, linear combinations of the first 
 ones34. In this study, PCA was employed for exploratory analysis. A score scatter plot was generated, for each 
trial, with the projection of the samples onto the first two principal components (PCs), which accounted for 
78%, 79.4% and 78.2% of the total variability of the data from OC, NET and HYP trials, respectively (Fig. 2a–c). 
The analysis of the samples’ grouping in the score plots suggests that the separation between the corresponding 
control samples and those belonging to the OC30 (OC trial) and NET4 groups (NET trial) occurred along the 
PC1 axis. At the same time, PC2 appears to be responsible for the dissimilarities between the control group and 
the HYP15 group (HYP trial). Observations from groups OC45, NET2 and HYP30 are largely overlapped with 
the other experimental groups. Loading plots in Fig. 2d–f, illustrate the weight of each of the original variables 
(wavenumbers) on the PCs, and thus, the contribution of each spectral feature to discriminate the mentioned 
pairs of treatments. Positive loading values in the OC30 and NET4 plots (Fig. 2d,e) indicate a higher concen-
tration, in challenged fish, of the biomolecules corresponding to the indicated spectral ranges. The inverse is 
verified for the HYP trial loading plot (Fig. 2f). The various lobes observed in the plots with high absolute load-
ing values suggest that the separation of the two most distinct groups, observed in the score plots, is based on 

Figure 1.  Fourier transformed infrared (FTIR) spectra of gilthead seabream (Sparus aurata) liver submitted to 
three different stressful rearing conditions (overcrowding, net handling and hypoxia) and Pearson’s correlation 
coefficient matrices comparing the assigned bands of the spectra. (a–c) FTIR spectra, for each treatment, are 
shown as absorbance values (in arbitrary units (A.U.)) of 8 averaged spectra (solid line) ± standard deviation 
(shaded ribbon). For easier readability, mean spectra were offset along the absorbance axis. Numbers indicate 
the bands assigned to biomolecules, listed in Table 1. Plots in each row are prepared with the same vertical scale. 
(d–f) Plots are ordered by hierarchical clustering with complete linkage. Numbers indicate the bands assigned to 
biomolecules, following the same convention as Table 1. Thicker lines represent clusters. The degree of pairwise 
correlation concerning Pearson’s correlation coefficient is displayed by the colour gradient and dot size, while 
the colours define the signal of the correlation (positive or negative). The significance of the correlation is 
indicated by the label “*” inside the dots (*0.05 < P < 0.01, **0.01 < P < 0.001, *** P > 0.001).
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different spectral regions. The PC1-loadings belonging to the OC trial (Fig. 2d), revealed the strongest negative 
loadings in the 3020–2800 cm−1, 1740 cm−1 and 1450 cm−1 spectral regions, which correspond to vibrational 
bands highly associated to lipids (bands nº 3, 4, 5, 6 and 9), and the strongest positive loadings in the regions 
1600–1500 cm−1 and 1030 cm−1 (bands nº 7, 8 and 15), which were attributed to proteins and carbohydrates’ 
bands, respectively. The NET trial’s PC1-loading plot (Fig. 2e) shows the main positive loading peaks at 3060, 
1710, 1450 and 1400 cm−1 (bands nº 2, 9 and 10), which correspond to bands assigned to vibrational modes of 
proteins and lipids, and the higher negative loading peaks around 1150 and 1030 cm−1 (bands nº 13 and 15), 
corresponding to the carbohydrate characteristic region. The PC2-loadings of the HYP trial (Fig. 2f) show the 
most intense positive peak in the region between 3300 and 3400 cm−1, and the strongest negative loadings at 
3000–2800, 1740 and 1350–1150 cm−1, corresponding mainly to lipid-assigned bands (bands nº 3, 4, 5, 6, 11, 12 
and 13). These potential changes in these absorption bands appear to be all correlated and suggest a metabolic 
reprogramming in the fish system to deal with the increase of energy demand during adverse situations. The 
plasma levels of specific metabolites associated with the physiological response to stress were assessed in these 
fish in a previous study and published  elsewhere4. Activation of the HPI-axis was previously suggested and sup-
ports the hypothesis of a potential metabolic reprogramming to deal with the stressors that fish were exposed 
 to4. When fish is exposed to a challenging situation, a physiological response initiates to compensate and/or 
adapt to the new  situation2. When the coping capacity is surpassed, the so-called stress response mechanism 
is initiated by the rapid release of catecholamines into the bloodstream, followed by the delayed response of 
cortisol, which further widespreads effects on various  tissues35,36. Carbohydrates are essential and rapid sources 
of energy for fish in stressful  situations3. A potential hepatic carbohydrate increment in fish from OC30 group 
suggests the constant activation of the major gluconeogenic pathway by the chronic cortisol release. This leads 
to the synthesis of glucose in the liver, which, if not used or exported, can be stored in the form of glycogen 
(glycogenesis)37. Contrarily, the suggested decrease in hepatic carbohydrate content in NET4 fish is consistent 
with the stressor’s physically more intense nature. This reduction suggests the use of glycogen stores, by glycog-
enolysis, to synthesize glucose, and its immediate uptake, for energy production, or  outflow2,38. These results are 
consistent with previously reported plasma glucose levels for these  fish4. Proteins and amino acids are essential 
non-carbohydrate substrates for the gluconeogenesis and have been described as hepatic energy fuels in fish 
under different stressful  conditions37. Results suggest that the protein and amino acid contents increased in the 
liver of OC30 and NET4 fish, which can be indicative of a cortisol-mediated increased proteolytic activity and 
consequent mobilization of amino acids to the liver to be used as gluconeogenesis precursors. To some extent, 
this pattern reinforces the hypothesis of the activation of this pathway. Nonetheless, increased protein content 
can also be explained by a higher protein turnover and/or synthesis of proteins involved in  gluconeogenesis39. 
Finally, the OC and HYP trials PC-loadings suggested that the separation between control and OC30/HYP15 
groups might be due, mainly, to potential differences in the spectral bands associated to vibrational modes of 
lipids. Lipid metabolism in fish is also modulated by  cortisol37. Glycerol, resulting from the catabolism of triacyl-
glycerols is a suitable precursor for gluconeogenesis, while fatty acids are used as sources of energy in peripheral 
 tissues40. These differences suggest a cortisol-mediated activation of hepatic lipolysis and the posterior use of the 
lipids as substrates for gluconeogenesis and/or mobilization to other  tissues37. Other studies with fish exposed 
to high stocking densities report a reduction in hepatic lipid content and/or increased exportation of fatty acids 

Table 1.  Tentative assignment of spectral bands to molecular vibrations of functional groups and biochemical 
compounds, based on similar biological systems described in the  literature11,12,18,22,32,33.

Band Wavenumber  (cm−1) Vibrational modes and functional groups Main biochemical compounds Other biochemical compounds

1 3315–3290 N–H stretching of amides (Amide A) O–H stretching 
of polysaccharides Proteins Carbohydrates

2 3065 Olefinic = C–H stretching Unsaturated fatty acids Aromatics

3 3010 Olefinic = C–H stretching Unsaturated fatty acids Aromatics

4 2926 CH2,  CH3 asymmetric stretching Saturated lipids Proteins, carbohydrates, nucleic acids

5 2858 CH2,  CH3 symmetric stretching Saturated lipids Proteins, carbohydrates, nucleic acids

6 1750–1739 C=O stretching of esters and aldehydes Triglycerides, cholesterol esters Lipids, phospholipids

7 1655 C=O stretching of amides (Amide I) C=C stretching 
of unsaturated hydrocarbons Proteins Unsaturated fatty acids

8 1541 N–H bending and C–N stretching of amides (amide 
II) C=C stretching of aromatic hydrocarbons Proteins Aromatics

9 1455 CH2 symmetric and asymmetric bending Lipids Proteins

10 1415–1395 COO− symmetric stretching Amino acids and fatty acids Other carboxylates

11 1305 Olefinic C–H bending P=O stretching in phosphates Unsaturated fatty acids Alcohols, aromatic amino acids organic phosphates, 
carboxylates

12 1240 PO−
2 asymmetric stretching Nucleic acids Phospholipids

13 1155 CO–O–C asymmetric stretching of esters and glyco-
gen = C–H bending in aromatics Phospholipids and Carbohydrates Aromatics, cholesterol esters

14 1085 C–O stretching of glycogen  PO−
2 symmetric stretch-

ing Carbohydrates Phospholipids

15 1045–1025 O stretching of glycogen Carbohydrates
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into the  bloodstream41,42. Previous studies on different fish species also report a mobilization of lipids to the liver 
during exposure to prolonged  hypoxia43,44. More targeted hypothesis-driven approaches will be interesting to 
confirm the effects of these farming conditions on the described metabolic pathways.

Feature selection and k-nearest neighbour classification analysis. In order to assess if the spec-
tral features suggested to be responsible for the separation between the groups in the score plots generated by 
the unsupervised PCA were indeed discriminatory, a supervised classification analysis was performed. A full 
infrared spectrum contains hundreds or thousands of variables, and the neighbouring wavenumbers are always 
collinear. Hence, selecting the most discriminatory wavenumbers and discarding the uninformative ones can 
improve the accuracy and robustness of multivariate analyses and classification  models45. Spectral feature selec-
tion was achieved by a support vector machine based on recursive feature elimination (SVM-RFE)46. Compared 
with other feature selection methods, SVM-RFE is a scalable and efficient wrapper method. Firstly, linear SVM is 
trained on the initial set of features while assigning weights (w) to each one, and then RFE selects feature subsets 
by recursively considering smaller subsets of features at each  time47. Features were incrementally selected 5–30 
features with five steps, according to the importance of ranking, as input data to the classifier.

Plots displaying the importance of each spectral feature in the ranking are shown along with the wavenum-
ber range of 3600–950 cm−1 in Fig. 2g–i for comparison with the loadings generated by PCA . Selection of the 
most informative wavenumbers is generally in accordance with PCA loadings, except for the regions between 
3200–3000 and ~ 3300 cm−1, in the spectra from NET and HYP trials. The supervised classification analysis 
with the KNN algorithm was carried out for each trial, using only two out of the three classes: “control” and the 
experimental group that presented the most clear separation in the corresponding score plots (i.e. OC30, NET4 
and HYP15, in the case of OC, NET and HYP trials, respectively). The KNN algorithm is a non-parametric 
supervised classification method that allows categorizing unknown samples based on multivariate proximity to 
other samples of pre-assigned classes (majority voting)48. The unknown sample’s identity is based on the class of 
the nearest known samples, where each class represents an experimental group. In this process, 6 models were 

Figure 2.  Principal component analysis (PCA) on the Fourier transformed infrared spectra collected from 
the livers of gilthead seabream (Sparus aurata) submitted to three different stressful rearing conditions 
(overcrowding, net handling and hypoxia). (a–c) Score scatter plots on PC1 and PC2 computed for each 
trial with the 3600–950 cm−1 spectral range. Each point represents the projection of one spectrum, and each 
treatment is identified by a unique colour, as indicated in the legend. Percentages indicate the proportions of 
explained variance. Ellipses represent an 80% probability of samples being within the shape. (d–f) Principal 
component loadings along the corresponding wavenumber for each trial. (g–i) Ranking of the spectral features 
according to the SVM-RFE method for feature selection, along the wavenumber range of 3600–950 cm−1. Most 
well classified features in the ranking are shown in dark blue, while least important features are coloured in 
yellow.
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built, for each trial, with different subsets of features. The optimal number of neighbours (k) was calculated by 
LOOCV, where one point in the data set is set as the test data, and the remaining points are set as the training 
data. The classifier’s performance is shown in Fig. 3 and presented as the mean prediction accuracy ± standard 
deviation for the train and test datasets along the different subsets of selected features. The highest accuracy 
values were obtained for the classification analysis of the OC groups, with a subset of 10 spectral features (87% 
and 80% for the train and test datasets). Overall, the classification models for the NET4 and HYP15 trials had a 
satisfactory/poor performance in the discrimination of the experimental groups, which appears to be due, mainly, 
to high variability of biological responses. Increasing the number of observations per group could potentially 
improve the classification models’ performance and predictive ability.

conclusions
In light of the present findings, FTIR spectroscopy coupled with chemometric analysis of spectral data presents 
itself as an exploratory starting approach for the collective screening of alterations in the metabolism of proteins, 
lipids and carbohydrates simultaneously. Moreover, its holistic nature makes this technique a suitable analysis 
to be employed prior to any targeted approach. This study showed the main spectral differences in the liver of 
gilthead seabream exposed to high rearing densities (30 kg/m3), net handled four times a week and exposed 
to low levels of saturated oxygen (15%) when compared to the control groups. These alterations point towards 
a potential activation of the fish stress response and a consequent global rearrangement of the metabolism of 
the main biochemical compounds. Finally, a supervised classification analysis demonstrated that the ten most 
informative wavenumbers could discriminate between control and crowded fish with relatively reasonable clas-
sification accuracy. However, increasing the number of samples of the experimental treatments could benefit the 
overall predictions. This work introduces FTIR spectroscopy in fish stress research as a rapid broad-range tool 
to extract untargeted information regarding alterations on the hepatic IR spectra of fish exposed to challenging 
farming conditions. Validation analysis will greatly contribute to link these spectral changes to the fish liver 
biochemistry and potential alterations in specific biochemical compounds and metabolic pathways involved in 
the fish physiological stress response.

Methods
experimental design and sampling. The experiments were conducted at the Ramalhete Experimental 
Research Station of the Centre of Marine Sciences (CCMAR), in Faro, Portugal. For each trial, nine homogene-
ous groups of gilthead seabream (Sparus aurata) adults (supplied by a commercial fish farm—Maresa, Mariscos 
de Estero S.A., Huelva, Spain) were randomly stocked in indoor 500 L conical fiberglass tanks supplied with 
flow-through seawater. Each trial was conducted in a different period. Throughout the trials, the physicochemi-
cal parameters varied within a natural regime (natural photoperiod, temperature at 13.4 ± 2.2  °C, salinity at 
34.7 ± 0.8‰ and dissolved oxygen level above 5  mg  L−1). Fish were fed by hand once daily, in the morning, 
according to the fish initial body weight and the water temperature, with commercially available 6 mm feed 
(AquaSoja, Sorgal, S.A., Ovar, Portugal), manufactured according to the species’ nutritional requirements.

Following a 2-week acclimation period, three stress trials were established: OC—Overcrowding, NET—Net 
Handling, and HYP—Hypoxia. Each tank, with an initial rearing density of 10 kg/m3 (except for the high-
stocking groups), was randomly allocated to one of the three treatments, in triplicate. The OC trial lasted for 
54 days, and the fish, with an initial body weight of 372.33 ± 6.55 g, were subjected to high stocking densities 
over the entire experimental period, by increasing the number of fish in the tanks. Two intensities were tested, 
having as experimental groups:  OCCTRL—10 kg/m3,  OC30—30 kg/m3 and  OC45—45 kg/m3. For the NET trial, 
fish, with initial body weights of 375.69 ± 11.88 g, were stressed for 45 days. Specific nets were designed, fitted 
inside the tanks and lifted to air-expose the fish for 1 min. The experimental groups were established according 
to the number of times that the fish were lifted:  NETCTRL—undisturbed fish (the net was likewise fitted inside the 

Figure 3.  Classification analysis performed by the k-nearest neighbour (KNN) algorithm on the Fourier 
transformed infrared spectra collected from the livers of gilthead seabream (Sparus aurata) submitted to three 
different stressful rearing conditions ((a) OC trial, (b) NET trial, (c) HYP trial). Predictive performance of the 
models are presented as mean classification accuracy (%) of training and testing sets for each subset of selected 
features by SVM-RFE. Error bars represent the standard deviation obtained by tenfold cross validation of the 
initial data splitting.
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tanks but not lifted),  NET2—fish air-exposed twice a week, and  NET4—fish air-exposed four-times a week. In the 
HYP trial, fish, with an initial body weight of 397.99 ± 16.56 g, experienced low levels of saturated oxygen over 
48 h. Nitrogen was injected in the water according to the experimental groups’ requirements:  HYPCTRL—100% 
saturated oxygen,  HYP30—30% saturated oxygen, and  HYP15—15% saturated oxygen. Data regarding zootechni-
cal parameters were previously published by the  authors4.

At the end of each experimental period, three fish per tank (n = 9 per treatment) were lethally anaesthetized 
using tricaine methanesulfonate (MS-222; Sigma Aldrich, St. Louis, Missouri, USA). The livers of the sampled 
fish were collected for FTIR analysis and immediately frozen at − 80 °C. Before harvesting, fish were starved for 
48 h to clean the digestive tract.

This study was approved by the ORBEA Animal Welfare Committee of CCMAR and the Portuguese National 
Authority for the Animal Health (DGAV) on August 26th, 2019. The experiment described was conducted in 
accordance with the European guidelines on the protection of animals used for scientific purposes (Directive 
2010/63/EU) and the Portuguese legislation for the use of laboratory animals, under a “Group-1” license (permit 
number 0420/000/000-n.99–09/11/2009) from the Veterinary Medicine Directorate, the competent Portuguese 
authority for the protection of animals, Ministry of Agriculture, Rural Development and Fisheries, Portugal and 
following category C FELASA recommendations.

Sample preparation and ftiR spectroscopy analysis. Prior to FTIR analysis, liver samples were lyo-
philized for 48 h in a FreeZone 6 L Freeze Dry System (LabConco, Kansas City, MO, USA), to prevent peaks 
derived from O–H molecular vibrations of water molecules. Lyophilized samples were ground in an agate mor-
tar and pestle and blended with potassium bromide (Sigma Aldrich, St. Louis, MO, USA) until homogeneous, 
in a 1:3 ratio. The mixture was then placed in an evacuated die (13 mm diameter) and pressed (6 × 106 Pa) for 
2 min to obtain approximately a 1 mm-thick translucent pellet, which was then used for analysis by solid-phase 
transmissive FTIR spectroscopy.

Two individual FTIR spectra were acquired per biological sample (at distinct points of the pellet), in the 
transmission mode, using a FTIR Spectrophotometer (TENSOR 27 series, Bruker Optik GmbH, Ettlingen, 
Germany) controlled by the OPUS software (v5.5, Bruker GmbH). To enhance the signal-to-noise ratio (SNR), 
interferograms were averaged for 32 scans at 4 cm−1 resolution, over the middle-infrared wavenumber range of 
4000–600 cm−1, to obtain a single spectrum. Atypical observations (extreme outliers potentially due to techni-
cal errors during sample preparation and/or spectral acquisition) were immediately inspected and repeated if 
needed. Transmittance spectra generated were exported for further analysis.

Spectral preprocessing. The .dpt files from OPUS were imported into R v3.5.349 for MacOSX where all 
data preprocessing, univariate and multivariate statistical analyses were performed. Each spectrum was cor-
rected with a straight line fitted between 2410 and 2270 cm−1 to compensate for the atmospheric  CO2 peaks, 
converted from transmittance to absorbance (A = log10 1/T) and truncated to the spectral region of interest 
between 3600 and 950 cm−1. De-trending was applied for baseline correction and standard normal variate (SNV) 
transformation, followed by smoothing over 25 points with the Savitzky–Golay filter. All preprocessing tech-
niques were applied using the prospectr  package50. Outlier spectra detection was carried out by a robust principal 
component analysis (PCA) through the projection pursuit approach and using the GRID  algorithm51. One bad 
leverage point and one orthogonal outlier were removed from the corresponding datasets (see Supplementary 
Fig. S2). The functions PCAgrid and pcaDiagplot used for this analysis belonged to the pcaPP and chemometrics 
 packages52,53, respectively. Data points considered outliers were removed from further analyses. FTIR spectra 
from technical replicates were averaged by arithmetic mean. Determination of FTIR band positions (wavenum-
ber  (cm−1)) was performed, per averaged spectrum, according to the centre of weight, using the peak-picking 
function of the Essential FTIR software (free trial version, Operant LLC, Madison, WI, USA). Tentative assign-
ments of spectral features to classes of biochemical compounds are described in Table 1.

Multivariate statistical analyses. For statistical analyses, FTIR wavenumbers and absorbance values 
were treated as independent and dependent variables, respectively. Each trial was analysed separately. To assess 
metabolic patterns between assigned bands, the Pearson’s correlation coefficient and its significance were cal-
culated for the FTIR band matrix using the rcorr function, from package Hmisc54. The correlation matrix was 
illustrated through a correlogram using the function corrplot from package corrplot55. Detection of structural 
relationships between variables and pattern recognition was carried out through an exploratory PCA, using the 
standard prcomp R function in the auto-scaled matrices. The ordination diagram was generated for each trial 
with the assigned object scores relative to each principal component (PC1 and PC2). The loadings correspond-
ing to the most discriminative PCs were plotted to visualise and identify the most informative spectral features. 
Finally, a supervised classification analysis was performed to investigate whether the spectral changes allowed 
for the reliable discrimination between experimental groups. Feature selection was adopted to retain relevant 
information and deduct irrelevant information. This was achieved by support vector machine based on recursive 
feature elimination (SVM-RFE) and the top-ranked spectral features used as inputs for the k-nearest neighbour 
(KNN) classifier. Data splitting into training (70%) and testing (30%) sets was tenfold cross validated to ensure 
that every observation was incorporated into the testing set. Each training set was normalized by centering and 
scaling, and the parameters used to normalize the test set. Every training dataset was then used to train a model, 
and re-sampling was achieved by leave-one-out cross-validation (LOOCV). External validation was finally per-
formed on a testing dataset, with control as the positive class. The optimal number of neighbours (k) was also 
determined by inner LOOCV on the training sets, using accuracy as the parameter for selection, from 1 to 5, 
with a step of 2. Feature selection was performed using the package  sigFeature56, and the classification analysis 
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using the functions trainControl and train from the caret  package57. Categorization was predicted by the func-
tion predict from the same package.
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