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Coronavirus disease 2019 (COVID-19) is expanding rapidly, which made it as one of top priorities for scientists
to develop novel treatment strategies. Researchers are racing to develop treatments based on antibodies to block
and/or neutralize the coronavirus in affected patients. Initially, the genetic and structural similarity of the virus
to severe acute respiratory syndrome coronavirus (SARS-CoV) created the potential for understanding disease
pathogenesis. Researchers have published reports of specific monoclonal antibodies against to COVID-19 (B38,

H4, 47D11) and hope that this method is effective. As well as studies on patients who are plasma therapy, the
patient's condition shows improvement. The evidence for these studies is very promising and demonstrates the
potential of monoclonal antibody therapy as a therapeutic approach and prevention of covid-19 infection.

1. Introduction

At the end of 2019, a novel coronavirus disease (COVID-19), also
called as Severe Acute Respiratory Syndrome CoronaVirus-2 (SARS-
CoV-2), appeared in Wuhan, China [1]. It has spread to other countries
very soon, rapidly increased on a pandemic scale [2-4]. Coronaviruses
(CoVs) are found in avian and mammalian species [5], which have a
wide range from a common cold virus to more severe diseases such as
SARS-CoV and Middle East respiratory syndrome (MERS)-CoV [6]. It is
believed that they are originated from bats, but the exact source of
SARS-CoV-2, animal reservoirs, and enzymatic transmission patterns
have not fully understood yet [7]. Coronaviruses, resemble each other
in morphology and chemical structure, are enveloped viruses, spherical
or pleomorphic enveloped particles containing single-stranded (posi-
tive-sense) RNA associated with a nucleoprotein within a capsid and
comprised of spike (s) protein [6].

There are several efforts to design effecting drugs to treat COVID-19
infection, but no vaccine or curative drug has been found to treat the
disease so far [8]. Major researches have focused on identifying anti-
viral molecules that target S proteins, which play an important function
in virus entry and viral replication cycle in the host cell [6]. The genetic
and structural similarities of the virus with SARS-CoV created a po-
tential for understanding the pathogenesis of the this infection [9]. As
monoclonal antibodies could neutralize other coronaviruses biotherapy
of COVID-19 could also be as of interest [10,11]. Effective treatment

options for SARS-CoV-2 could be based on the use of broad-spectrum
antiviral drugs (BSA), or by using specific therapeutic molecules that
can directly disrupt each stage of the viral life cycle, or receptor pro-
teins located at the host cellular deactivated [9],(24), [25]. They in-
clude fusion inhibitor peptide, neutralizing antibodies against SARS-
CoV-2, anti-ACE2 (Angiotensin-converting enzyme 2) monoclonal an-
tibodies, and protease inhibitors [12],(13), [14].

2. Characteristics of SARS-CoV-2

The virus genome encodes structural and non-structural proteins.
The most important structural proteins of the virus include the spike
(S), membrane (M) and envelop (E) and nucleic capsid (N) proteins
(Fig. 1) [9]. CoVs infection begins through the interaction of spike
protein and receptor recognition by host cells [6,9]. The S protein has
two functional subunits that mediate cell attachment (the S1 subunit,
existing of four core domains S1A through S1D) and fusion of the viral
and cellular membrane (the S2 subunit). As shown in Fig. 2, SARS-CoV-
2 and SARS have a high genetic similarity to each other [15,16]. The
spike proteins of SARS-CoV-2 and SARS-CoV are 77.5 % identical by
primary amino acid sequence. Considering the importance of spike
protein in viral fusion and antigen receptor similarity between SARS-
CoV and SARS-CoV-2 (including ACE2 for SARS and SARS-CoV-2, DPP4
for MERS) [6,9,17], pathogenesis of COVID-19 could be better under-
stood, which could be helpful in designing therapeutic strategy.
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Fig. 1. (A) The novel coronavirus structure. (B)
Spike protein consists of two subunits S1 and
S2. Studies have shown that COVID-19 through
ACE2 receptor binds to human epithelial cells.
ACE2 is used as its receiver to the host. The
connection between the amplitude of the re-
ceptor binding in the spike protein and the cell
receptor mediated by membrane fusion and the
onset of the virus life cycle.
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Fig. 2. (A) Genome sequencing and codon positions of structural proteins in the novel Coronavirus, SARS-CoV and MERS-CoV. (B) Compare and evaluate the
structure of Spike protein and position RBD, receptor-binding domain; RBM, receptor-binding motif; HR1 / 2, heptad repeat 1/2 in SARS-CoV and COVID-19.

3. Monoclonal antibody therapy

Immunotherapy as an effective method for clinical treatment of
infectious diseases is also proposed [18]. Based on the available evi-
dence and previous experience in the treatment of other viral infections
such as influenza, SARS, MERS, and Ebola, early prescribing of stimu-
lant plasma or immunoglobulin overuse of patients with significant
antibody titers can lead to reduce the mortality rate [17],(18, 21), [22].
The use of monoclonal antibodies is a new outlook in the prevention of
infectious diseases. Monoclonal antibodies are used to bind to one
specific substance in the body. This binding is very versatile and can
mimic, block, or cause changes to enact precise mechanisms, and pro-
vide an effective therapeutic intervention with a very specific treatment
for diseases [19]. Passive immunization antibodies that can detect
epitope region from foreign particles of the virus can reduce virus
proliferation and disease severity [20]. As of the similarities between
the SARS-CoV-2 and SARS-CoV, several studies have suggested the use
of SARS antiviral monoclonal antibodies in patients with the SARS-CoV-
2 (Tables 1 and 2; anti-SARS antibodies. Most monoclonal antibodies
have been identified to identify the S1 fragment of SARS-CoV and re-
ceptor Binding Domain (RBD) in subunit S1 is the most important goal
for SARS-CoV-2 [21], as monoclonal antibodies can block the

interaction of RBD and its ACE2 receptor [22]. Some monoclonal an-
tibodies recognize the epitopes in unit S2 of SARS-CoV and suggest that
other mechanisms may play a role in neutralization [23]. The combi-
nation of monoclonal antibodies targeting S-proteins in SARS-CoV de-
tects different epitopes in laboratory and in vivo cells that can be po-
tentially effective at the viral level; for example, CR3022 alone did not
show neutralization, but a mixture of CR3022 and CR3014 showed
neutralization [24].

4. Human neutralizing antibodies block SARS-CoV-2

The results of the new studies are very promising; the researchers
proposed neutralizing antibodies that block COVID-19. B38, H4, 47D11
are new antibodies that have shown excellent results in neutralizing the
novel coronavirus infection.

4.1. 47D11

This antibody was discovered by Wang et al., using an ELISA-(cross)
reactivity approach, assessing antibody-containing supernatant derived
from immunized transgenic H2L2 mice. 47D11 was found to bind to
SARS-CoV-2 and SARS-CoV, and to potently inhibit the virus' infection



L. Jahanshahlu and N. Rezaei

Biomedicine & Pharmacotherapy 129 (2020) 110337

Table 1
Neutralizing monoclonal antibodies targeting S1 fragment of SARS-CoV.
M-antibody  Target Region Virus binding and virus blocking Identification Reference
Method
80R S1 domain 426 — 492 Antibody is bound to amino acid residues 426 —492 on S1 segment of SARS-CoV. The interaction = Phage display [13,34]
of S1 subunit protein with the ACE2 receptor is blocked.
CR3014 S1 domain 318-510 Antibody is bound to amino acid residues 318 —510 on S1 segment of SARS-CoV. The interaction = Phage display [22,35]

of S1 subunit protein with the ACE2 receptor is blocked.

CR3022 S1 domain 318-510 Antibody is bound to amino acid residues 318 —510 on S1 segment of SARS-CoV. The interaction = Phage display [24]
of S1 subunit protein with the ACE2 receptor is blocked.
68 S1 domain 130 —150 Antibody is bound to amino acid residues 130 —150 of SARS- CoV. HuMAb-Mouse [36,37]
201 S1 domain 490 —510 Antibody is bound to amino acid residues 490 —510 on S1 segment of SARS-CoV. The interaction ~HuMAb-Mouse [36-38]
of S1 subunit protein with the ACE2 receptor is blocked.
4D4 S1 domain 12-261 Antibody is bound to amino acid residues 12 —261 of SARS-CoV & N-terminal of RBD. Inhibiting - [39]
N-terminal of RBD the post-interaction in viral influence in vitro.
M396 S protein Antibody is bound to amino acid residues 482 —491 on S1 segment of SARS-CoV. The interaction = Phage display [37]1
of S subunit protein using CDR (complementary determining region) loops H1, H2, H3, and L3
with the ACE2 receptor is blocked.
$230 S protein Antibody is bound to SARS-CoV. The interaction of S1 subunit protein with the ACE2 receptor is EBV [40,41]
blocked. Transformed
Human B cell
F26G18 S1 domain 460 —476 Antibody is bound to amino acid residues 460 —476 on S1 segment of SARS-CoV. The interaction - [40]
of S1 subunit (RBD) protein with the ACE2 receptor is blocked.
F26G19 S1 domain 359—362, 391 —-392, Antibody is bound to S1 domain 359 —362, 391 — 392, 424 — 427,486 — 492 of SARSCoV. The - [40]
424 —-427, 486 —492 interaction of S1 subunit (RBD) protein with the ACE2 receptor is blocked.
Table 2
Neutralizing monoclonal antibodies targeting S2 fragment of SARS-CoV.
M-antibody  Target Region Virus binding and virus blocking Identification ~ Reference
Method
1A9 S2 domain HR1, HR2 Antibody is bound to the Heptad repeat (HR) loops including heptad repeat (HR1, HR2) domain on S2 - [42,43]
segment of SARS-CoV. The interaction of S2 subunit protein (amino acid residues 1111 —1130) with host cell
receptor is blocked.
Bl S2 domain Antibody is bound to amino acid residues 1023 —1189 on S2 segment of SARS-CoV. The interaction of S2 Phage display  [23]
1023-1189 subunit protein with the ACE2 receptor is blocked.
1F8 S2 domain HR1 Antibody is bound to the HR1 domain on S2 segment of SARS-CoV. The interaction of S2 subunit protein with ~ Xeno-Mouse [39]
the ACE2 receptor is blocked.
5E9 S2 domain HR2 Antibody is bound to the HR2 domain on S2 segment of SARS-CoV. The interaction of S2 subunit protein with ~ Xeno-Mouse [39]

the ACE2 receptor is blocked.

of Vero cells, a type of cell line. The chimeric 47D11 H2L.2 antibody was
reformatted and expressed as a fully human IgG1 isotope antibody for
further study. Using ELISA 47D11 was shown to target the S1B re-
ceptor-binding domain (RBD) of SARS-S and SARS2-S and inhibits the
binding of S protein to the human-ACE2 receptor. This study showed
that 47D11 neutralizes SARS-CoV and SARS-CoV-2 through a yet un-
known mechanism that is different from 86 receptor binding inter-
ference [25].

4.2. B38, H4

The report on four human-origin monoclonal antibodies (B5, B38, H2,
and H4) from a convalescent patient showed that all four antibodies bound
to SARS-CoV-2 receptor-binding domain (RBD), but not to SARS-CoV RBD.
Evaluation of the ability of each antibody to inhibit binding between RBD
and ACE showed that B38 and H4 have complete com-petition with ACE2
for binding to RBD. In contrast, B5 dis-played partial competition, while H2
did not compete with ACE2 for RBD binding [26].

5. Challenges in monoclonal antibody therapy

Although this method has promising results in neutralizing infec-
tion, large-scale production of monoclonal antibodies is intensive, ex-
pensive, and time-consuming, especially against emerging pathogens
[27]. Monoclonal antibody sequences that are effective against SARS-
CoV can be cloned and expressed in appropriate expression systems
such as mammals, yeasts or plants [28]. Expression systems in plants

can be used for the rapid production of monoclonal antibodies in a short
time and at reasonable cost [29], which could be one of the most im-
portant benefits of epidemic conditions.

6. Neutralizing antibodies (NAbs) responses to SARS-CoV-2

In a study of 175 COVID-19 recovered patients with mild symptoms,
SARS-CoV-2-specific NAbs were detected at the convalescent phase of
infection from day 10-15 after the onset of the disease and remained
thereafter. The titers of NAbs were variable in different patients. Plasma
NAbs titers in elderly and middle-age patients had significantly higher.
Plasma C-reactive protein (CRP) levels were positive correlated with
NAbs titer. The NAbs titer negative correlated with the lymphocyte
counts of patients at the time of admission; it could suggest that other
immune responses, including T cells or cytokines, may contribute to the
recovery of these patients. One of the important practical results of this
study was the highly variable levels of NAbs in the patients of COVID-
19. It could indicate that convalescent plasma and serum from re-
covered donors should be titrated before use in passive antibody
therapy; an easy task that can be performed using the PsV neutraliza-
tion assay [30].

7. Clinical statues patients’ treatment with COVID-19 with
convalescent plasma

Plasma therapy, including neutralizing monoclonal antibodies, is
one of the treatment strategies which have been investigated in several
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studies with promising results. Evaluation of computed tomography
(CT) scan of patients with an acute conditions has shown that the viral
load has decreased within a few days of treatment with plasma con-
gestion, while the clinical conditions of the patients were also improved
[31].

8. Future prospective

Since no effective vaccine or drug has been developed to treat and
combat the COVID-19 yet, the current approach for management focuses on
supportive care. Passive antibody therapy could be a way to limit the
progress of COVID-19 pandemic [32]. The current knowledge about neu-
tralizing antibodies provides useful information for passive antibody
therapy and vaccine development against SARS-CoV-2. However, the effect
of antibodies in protection against pulmonary SARS-CoV should be con-
sidered with precautions, while some patients with SARS died, showed
strong responses of neutralizing antibody and accumulation in lung in-
flammation, which can be due to acute injury fatal lung [33]. It is to be
hoped understanding the mechanisms of neutralizing monoclonal anti-
bodies performance will provide valuable implications for antibodies in
treatment of SARS-CoV-2 in the near future.
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