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Respiratory infections are one of the top causes of death in the elderly population,
displaying susceptibility factors with increasing age that are potentially amenable to
interventions. We posit that with increasing age there are predictable tissue-specific
changes that prevent the immune system from working effectively in the lung. This
mini-review highlights recent evidence for altered local tissue environment factors as
we age focusing on increased tissue oxidative stress with associated immune cell
changes, likely driven by the byproducts of age-associated inflammatory disease.
Potential intervention points are presented.
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GENERAL INTRODUCTION

The elderly population will double to 2 billion by 2050 (Publications, 2019). Age-associated cellular
decline begins to be notable in our 40s and accelerates in our 60s (Jones et al., 2002; Massudi et al.,
2012; López-Otín et al., 2013; Schneider et al., 2021). While aging represents a complex progression
involving many physiological and physical changes in metabolism and endurance, the field of aging
is advancing steadily, with greater understanding of the changes in cellular processes, and the critical
role that tissue-specific health plays in how we age. However, the molecular events driving age-
dependent physiological and physical decline and the molecular thresholds at the tissue and cellular
levels that determine the point(s) of no return or so-called tipping point(s), resulting in non-
recoverable tissue or systemic dysfunction are largely unknown. Here, we will highlight how and
when some aspects of age-associated cellular decline occur in the pulmonary space, a critical organ
that interfaces directly with the environment and is prone to infections. Such information can help
develop therapeutic strategies to enhance healthy pulmonary aging in a timely manner to mitigate or
delay deleterious events.

THE LUNG ALVEOLAR ENVIRONMENT DURING AGING

As we age, there are changes in the physical environment and mechanical function of the lung that
influence breathing and contribute to the increased susceptibility of the elderly to many infections

Edited by:
Laura Haynes,

University of Connecticut,
United States

Reviewed by:
Erica C. Lorenzo,

University of Connecticut,
United States

Dominique Martin,
University of Connecticut,

United States

*Correspondence:
Jordi B. Torrelles

jtorrelles@txbiomed.org
Blanca I. Restrepo

Blanca.I.Restrepo@uth.tmc.edu
Yidong Bai

BaiY@uthscsa.edu
Corinna Ross

cross@txbiomed.org
Larry S. Schlesinger

lschlesinger@txbiomed.org
Joanne Turner

joanneturner@txbiomed.org

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Aging and the Immune System,
a section of the journal

Frontiers in Aging

Received: 19 November 2021
Accepted: 03 January 2022
Published: 19 January 2022

Citation:
Torrelles JB, Restrepo BI, Bai Y,

Ross C, Schlesinger LS and Turner J
(2022) The Impact of Aging on the

Lung Alveolar Environment,
Predetermining Susceptibility to

Respiratory Infections.
Front. Aging 3:818700.

doi: 10.3389/fragi.2022.818700

Frontiers in Aging | www.frontiersin.org January 2022 | Volume 3 | Article 8187001

MINI REVIEW
published: 19 January 2022

doi: 10.3389/fragi.2022.818700

http://crossmark.crossref.org/dialog/?doi=10.3389/fragi.2022.818700&domain=pdf&date_stamp=2022-01-19
https://www.frontiersin.org/articles/10.3389/fragi.2022.818700/full
https://www.frontiersin.org/articles/10.3389/fragi.2022.818700/full
https://www.frontiersin.org/articles/10.3389/fragi.2022.818700/full
https://www.frontiersin.org/articles/10.3389/fragi.2022.818700/full
http://creativecommons.org/licenses/by/4.0/
mailto:jtorrelles@txbiomed.org
mailto:Blanca.I.Restrepo@uth.tmc.edu
mailto:BaiY@uthscsa.edu
mailto:cross@txbiomed.org
mailto:lschlesinger@txbiomed.org
mailto:joanneturner@txbiomed.org
https://doi.org/10.3389/fragi.2022.818700
https://www.frontiersin.org/journals/aging
www.frontiersin.org
https://www.frontiersin.org/journals/aging#articles
https://www.frontiersin.org/journals/aging
https://www.frontiersin.org/journals/aging#editorial-board
https://doi.org/10.3389/fragi.2022.818700


(Schneider et al., 2021; Dyer, 2012; Vaz Fragoso and Lee, 2012;
Haynes, 2020). Aging-related changes in the respiratory system
generally include structural changes in the thoracic cage and lung
parenchyma, abnormal lung function including ventilation and
gas exchange abnormalities, decreased exercise capacity, airway
nerve impairment, and reduced respiratory muscle strength and
elasticity; each of which affect the cough reflex, sneezing or
breathing (Figure 1) (Schneider et al., 2021). These

progressive changes cause a decline in lung function and
impaired immunological responses (Janssens et al., 1999;
Lowery et al., 2013; Sharma and Goodwin, 2006; van Oostrom
et al., 2018; Chalise, 2019; Thomas et al., 2019; Cho and Stout-
Delgado, 2020; Haynes, 2020). To avoid cumulative damage,
lung-resident cells rely on a robust homeostatic balance of stress
response and associated inflammatory pathways; however, there is
likely a tipping point (Figure 2), where age-associated changes

FIGURE 1 | Characteristics of the Aging lung. Mechanical, physiological and immunological (increased inflammation/immunosenescence) changes in the lung that
take place in elderly individuals increasing the risk of airway clearance failure and susceptibility to respiratory infections.

FIGURE 2 | Oxidative and inflammatory environment in the lung leads to immunological impartment and susceptibility to respiratory infections. As we age, cellular
senescence occurs. There are also alterations in cellular metabolic processes involving energy production and consumption among others. These events lead to an
accumulation of oxidative stressors (ROS/NOS) in the lumen of alveolar compartment cells (left boxes) causing increased cellular inflammation that cannot be efficiently
regulated. Subsequently, this accumulation of oxidative stressors outflows into the alveolar environment (e.g., upon cell death) (right boxes). This outflow causes
lung tissue inflammation and damage, and also drives the oxidation and impairment of lung soluble and cellular immunomodulators. Altogether, these events contribute
to the elderly becoming susceptible to acute and chronic respiratory infections and diseases.
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finally overwhelm these controlmechanisms leading to an increasing
oxidative environment and irreversible damage (Moliva et al., 2014;
Schöttker et al., 2015; Schneider et al., 2021). These factors combined
with reduced lung-specific homeostatic immune activities facilitate
entry of pathogens into the upper and lower respiratory tract leading
to an increased propensity for infection (Vaz Fragoso and Lee, 2012;
Haynes, 2020).

The Lung Mucosa
The alveolus is lined with lung mucosa, composed of a surfactant
lipid layer and an aqueous-hypophase called alveolar lining fluid
(ALF) (Torrelles and Schlesinger, 2017). ALF contains innate
soluble components with the primary role of maintaining proper
pulmonary function (Notter, 2000; Fronius et al., 2012; Torrelles
and Schlesinger, 2017). Our studies and others indicate that lung
tissue in the elderly (in humans and mice) has a high basal
inflammation and oxidative stress that leads to dysfunction of
critical innate soluble and cellular components that could drive
host susceptibility to respiratory infections and diseases [e.g.,
influenza, pneumonia, tuberculosis (TB)] (Toapanta and Ross,
2009; Shivshankar et al., 2011; Canan et al., 2014; Moliva et al.,
2014; Piergallini and Turner, 2018a; Keilich et al., 2019; Bulut
et al., 2020; Harpur et al., 2021). Thus, defining when and how
these changes occur at the cellular andmolecular level is critical to
understand age-associated lung-specific pathologies and aging in
general. Published studies demonstrate that the elderly have basal
inflammation (e.g., elevated levels of TNF-α, IL-6, IL-1β, and IL-
12), as well as increased protein oxidation with elevated levels of
proteins with carbonyl and nitrotyrosine residues indicative of
oxidation by reactive oxygen (ROS) and nitrogen (RNS) species,
respectively, and reduced protein function in the lung (Moliva
et al., 2014; Moliva et al., 2019). Indeed, studies focused on
studying the lung mucosa composition in the elderly showed
increased levels of innate surfactant proteins and components of
the complement system, but with diminished function (Moliva
et al., 2014). Dysfunction of innate soluble components of the
lung mucosa is linked directly to high levels of oxidative stress
[(e.g., elevated levels of ROS/RNS and myeloperoxidase (MPO)],
which impair their function, and oxidizes critical surfactant lipids
involved in keeping the lung alveolar space integrity and
functionality (Moliva et al., 2014).

Studies addressing the impact of the human lung mucosa from
the elderly on microbial pathogenesis are very limited. Upon
reaching the alveolar space, respiratory pathogens come in close
contact with the lung mucosa before and after their encounter
with host alveolar compartment cells [e.g., type 1 and 2 epithelial
cells (ATs) and alveolar macrophages (AMs)]. Our previous
studies show that homeostatic innate soluble components of
the ALF can quickly alter the cell envelope surface of
pathogens upon contact, influencing subsequent pathogen-host
cell interactions and infection outcomes (Arcos et al., 2011; Arcos
et al., 2015; Arcos et al., 2017; Hill et al., 2017; Scordo et al., 2017;
Scordo et al., 2019; Haynes, 2020). Alterations of a pathogen cell
envelope is mainly due to homeostatic hydrolytic activities
(hydrolases), primarily responsible for maintaining lung
health, that modify pathogens and influence their subsequent
interactions with host cells (Arcos et al., 2011; Hill et al., 2017;

Torrelles and Schlesinger, 2017). In this context we have
demonstrated that ALF from healthy 60 + year old individuals
is dysfunctional, with loss of homeostatic hydrolytic capacity and
impaired innate soluble responses linked to high local oxidative
stress, compared to healthy 18- to 45-year-old individuals
(Moliva et al., 2014). Importantly, a pathogen such as
Mycobacterium tuberculosis exposed to ALF from the elderly
demonstrates increased virulence in vitro and in vivo indicating
that impaired innate responses in the lung may play a critical role
in susceptibility to respiratory infection as we age (Moliva et al.,
2019). In this context, two major cell populations in the alveolar
space are AMs and ATs. Our studies indicate that after exposure
to ALF from the elderly, M. tuberculosis doubles its intracellular
growth rate in AMs, further indicating the impact of ALF
dysfunction as we age (Moliva et al., 2019). Thus, efforts to
mitigate oxidative stress in the lungs prior to a so-called tipping
point(s) may reduce inflammation and aid in functional recovery
of important innate immune-modulators against respiratory
pathogens (Piergallini and Turner, 2018b; Iddir et al., 2020;
Michaeloudes et al., 2020).

Evidence for a higher oxidative environment of the elderly
lung is also supported by proteomics studies in other tissues
and in-vitro studies with purified mitochondria from old mice
(Moliva et al., 2014; Stauch et al., 2015; Ingram and
Chakrabarti, 2016; Gómez-Serrano et al., 2018; Moliva
et al., 2019; Ubaida-Mohien et al., 2019; Yang et al., 2019).
However, the mechanism behind elevated oxidative stress in
the lungs as we age is still not completely understood. Based on
studies in other tissues, the oxidative pulmonary environment
may be attributed in part to mitochondrial dysfunction.
Mitochondria are primarily responsible for producing ATP
(Anderson et al., 2019) and are found in greater numbers in
tissues and organs where energy needs are high (e.g., muscle,
heart, brain, liver and kidney). However, few studies have
focused on the lung despite its direct exposure to oxygen, large
consumption of energy (Liu and Summer, 2019), and high risk
of dysfunction and disease in older age as mitochondrial
function declines (Short et al., 2005; Kim et al., 2015; Haas,
2019; Sekhar M.D. et al., 2019). Thus, interventions to address
the management of mitochondria-induced oxidative stressors
(e.g. reactive oxygen and nitrogen oxidative species, ROS,
NOS) in the lung tissue should mitigate lung oxidative
stress and inflammation, and lead to improved resistance of
the elderly to respiratory infections.

Alveolar Macrophages During Aging
Aging is associated with a weakening of immune function, called
cellular immunosenescence. In addition to this process there is a
baseline level of dysfunctional inflammation in old age termed
inflammaging (Franceschi et al., 2000; Moliva et al., 2014; Frasca
and Blomberg, 2016; Fulop et al., 2017; Lafuse et al., 2019; Moliva
et al., 2019). The relationship between inflammaging and
dysfunctional innate immunity is understood poorly, especially
in the lung. These changes are thought to be critical to
understanding why the elderly are at an increased risk of
developing and succumbing to malignancies, autoimmunity
(Linton and Dorshkind, 2004; Pawelec et al., 2010), and
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infectious diseases such as TB (Piergallini and Turner, 2018b;
Lafuse et al., 2019; Moliva et al., 2019).

AMs live in a unique tissue environment and we are only now
gaining insight into the local environmental factors that impact
AM phenotype and function (Guth et al., 2009; Davies and
Taylor, 2015; Allard et al., 2018; Papp et al., 2018; Hoeksema
and Glass, 2019; Lafuse et al., 2019). AM responses enable us to
maintain health (clearance of invaders) and at the same time,
must dampen pro-inflammatory responses to maintain alveolar
structure to enable gas exchange. Our failure to understand the
cellular and molecular events underlying AM development and
biology creates a critical barrier in our attempts to develop new
treatment strategies that target the lung. AMs, which constitute
>95% of the cells recovered by bronchoalveolar lavage in healthy
individuals, are thought to play a central role in lung
inflammaging due to their unique regulation by molecular
factors in the lung environment.

Indeed, our studies and others have demonstrated an AM
inflammatory signature in the elderly (Canan et al., 2014; Wong
et al., 2017; Lafuse et al., 2019; Duong et al., 2021). Specifically,
AMs from old mice express higher mRNA levels of the
macrophage migration inhibitory factor (MIF), TNF-α, IFN-β,
IL-10, IL-12p40, and CCL2 than young mice, and old mice also
contain higher levels of MIF, IL-1β, IFN-β, and CCL2 in their
alveolar lining fluid. Further, old mice have two distinct AM
subpopulations, a major CD11c+ CD11b− population and a
minor CD11c+ CD11b+ population; the latter is increased
significantly in old mice (∼4-fold). Expression of pattern
recognition receptors, antigen presentation molecules, and
activation markers such as CD206, TLR2, CD16/CD32, MHC
class II, and CD86 is higher in CD11c+ CD11b+ AMs, and these
cells express monocytic markers such as Ly6C, CX3CR1, and
CD115, suggesting monocytic origin. Oldmouse purified CD11c+

CD11b+ AMs phagocytose significantly moreM. tuberculosis, and
express higher RNA levels of genes favoring M. tuberculosis
intracellular growth. Thus, the lungs of old mice contain two
distinct AM subpopulations, a defined resident subpopulation
and an immigrating CD11c+ CD11b+ AM subpopulation
expressing monocytic markers, a unique inflammatory
signature, with enhanced M. tuberculosis phagocytosis capacity
and M. tuberculosis survival. Our findings suggest that this
CD11c+ CD11b+ AM subpopulation could be targeted by
respiratory pathogens as a niche for replication and survival
within the lung of the elderly population driving their
susceptibility to respiratory infections.

Nuclear receptors (NRs) function as cellular transcription
factors enabling macrophages and other myeloid cells to sense
their local environment and shape their immune and metabolic
responses (Murphy and Crean, 2015; LeopoldWager et al., 2019a;
Bichiou et al., 2021). Drugs targeting NRs represent 16% of all
drugs approved for sale in the United States in 2019,
demonstrating their feasibility as host-directed therapies
(HDTs) for disease management (Ricote and Glass, 2007;
Santos et al., 2017; Boudreaux et al., 2019; Zhang et al., 2020).
NRs are increasingly appreciated for their importance during
aging (Speeckaert et al., 2014; Paillasse and de Medina, 2015;
Cisneros and García-Aguirre, 2020; Xu et al., 2020). Most past

studies have focused on specific NRs in cell lines or murine cells,
thus their function and interactions within primary cells and the
lung environment are largely unexplored. Studies using human
and murine macrophages (Zollner and Trauner, 2009; Dhiman
et al., 2018; Leopold Wager et al., 2019a; Leopold Wager et al.,
2019b; Ning et al., 2019; Zhao et al., 2019; Zhao et al., 2020) in
cancer (Zhou et al., 2014; Dhiman et al., 2018; Zhao et al., 2019),
auto-immunity (Zollner and Trauner, 2009; Lee et al., 2011; Ning
et al., 2019; Olson et al., 2020) and infectious diseases (Renga
et al., 2012; Leopold Wager et al., 2019a; Leopold Wager et al.,
2019b) have highlighted the importance of NRs in maintaining
tissue homeostasis (Nagy et al., 2013; Zhao et al., 2020; Alatshan
and Benkő, 2021). Several NRs are postulated to dampen pro-
inflammatory networks (De Bosscher et al., 2006; Huang and
Glass, 2010; Mandard and Patsouris, 2013; Li et al., 2015; Wang
et al., 2017; Duez and Pourcet, 2021; Pulakazhi Venu et al., 2021;
Vuttaradhi et al., 2021). Thus, NR dysfunction during aging may
remove the brakes to pro-inflammatory and oxidative stress
pathways with associated altered mitochondrial function as
discussed above. Since NRs regulate metabolism and
inflammation in a tissue-specific manner, studying NR
expression and activity as well as their involvement in altering
lung macrophage lipid metabolism, cellular energy homeostasis
and protective immune responses during aging could help define
new biological pathways that play important roles in host
responses in the lung as we age.

One particularly important NR regulating AM development
and function is peroxisome proliferator-activated receptor
gamma (PPARγ), where our recent work has identified novel
targetable PPARγ effectors that regulate inflammation and cell
death pathways (Arnett et al., 2018). PPARγ endogenous ligands
include eicosanoids, which are critical determinants of cellular
metabolism and immune responses that exert both anti- and pro-
inflammatory actions (Nagy et al., 2012; Dennis and Norris, 2015;
Arnett et al., 2018; Bougarne et al., 2018), and likely play
important roles in controlling cellular aging. Indeed, PPARs
regulate gene expression through multiple mechanisms,
including heterodimerizing with the retinoid X receptor
(RXR), and binding to PPAR response elements in promoters.
PPARs also trans-repress NF-κB and other transcription factors
to negatively regulate pro-inflammatory pathways and stabilize
the NR co-repressor NCoR, to repress gene expression (Ricote
and Glass, 2007). Using macrophage-specific PPARγ knockout
mice (Odegaard et al., 2007), we showed that PPARγ specifically
in lungmacrophages is important for controlling bacterial growth
(e.g.M. tuberculosis) and limiting inflammation in vivo (Guirado
et al., 2018). These findings highlight a critical role of PPARγ in
controlling inflammation, yet the impact of aging on PPARγ and
expression and activity of other NRs is still unclear.

Based on our knowledge in the field (Oren et al., 1963; O’Neill
et al., 2016; Viola et al., 2019), several NRs are postulated to
dampen pro-inflammatory networks (De Bosscher et al., 2006;
Huang and Glass, 2010; Mandard and Patsouris, 2013; Papi et al.,
2014; Leopold Wager et al., 2019a; Klepsch et al., 2019; Duez and
Pourcet, 2021). Thus, it is plausible that NR expression and
activity are altered across the continuum of age and NRs
become dysfunctional; where age-related NR changes can
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induce aberrant lung macrophage inflammation, oxidative stress,
lipid metabolism, and energy programs. Thus, modulation of NR
activity with agonists or antagonists could restore healthy
immune homeostasis to slow or reverse the lung health issues
associated with aging, allowing for more robust protection against
lung infections and inflammatory diseases.

Other Cellular Changes in the Alveolar
Compartment During Aging
As we age, alveolar compartment cells become senescent due to
the shortening of telomeres and the accumulation of DNA lesions
driven by free oxidative radicals generated in the lung
environment. AMs, interstitial macrophages, neutrophils and
dendritic cells lose their microbicidal and antigen presenting
capacities (Wenisch et al., 2000; Uyemura et al., 2002; Stout
et al., 2005). Notably, neutrophils exhibit an alteration of their
homeostatic functions that may contribute to the susceptibility to
lung infections of the elderly (Barkaway et al., 2021). These
include decreased phagocytosis, reduced production of ROS
and extracellular traps (NETS) formation (Hazeldine et al.,
2014), as well as reduced apoptosis and chemotaxis
accompanied with dysregulated migration (Niwa et al., 1989;
Fulop et al., 2004). Natural killer (NK) cells, which also constitute
a first line of defense against virus-infected and malignant cells
(Hazeldine and Lord, 2013) change with age. In particular, NK
cells become dysfunctional for secretion of regulatory and anti-
microbial responses, cytotoxic capacity, and elimination of
transformed and senescent cells (Hazeldine and Lord, 2013).
These alterations have implications for age-associated immune
responses in the alveolar space of elderly individuals. Indeed,
several studies implicate NK dysfunction to increased cases of TB
reactivation in the elderly, as well as poor resolution of
inflammatory disorders and increased incidence of respiratory
infections (Hazeldine and Lord, 2013).

With regard to adaptive immunity, the number of B cells
decrease during aging leading to reduced immunoglobulin
diversity and affinity (Han et al., 2003; McElhaney et al., 2016;
Frasca et al., 2020). Age associated inflammation is also known to
impact B cell function (Hagen and Derudder, 2020), impacting
germinal center formation and cytokine mediated signaling.
Systemic T cell proliferation is impaired, repertoire diversity
decreases, homeostasis is modified, intracellular signal
transduction capability is dysregulated, and T cells produce
less cytokines and are less cytotoxic (Fülöp et al., 1999;
Voehringer et al., 2002; Ouyang et al., 2003; Naylor et al.,
2005). Indeed, CD4 and CD8 T cells show age-related changes
in function (Maue et al., 2009; Lorenzo et al., 2018; Haynes, 2020),
with changes in CD4 T cells during aging (Haynes and Swain,
2012; Lee et al., 2012) influencing both CD8 T function and B cell
antibody production in response to influenza (Maue et al., 2009;
Toapanta and Ross, 2009; Lorenzo et al., 2018). For CD4 T cells,
intrinsic defects promote delayed adaptive immune responses
and recovery from influenza infection, but adoptive transfer
studies have also shown that extrinsic factors also contribute
to poor T cell function in the lung. This eludes to the influence of
the myriad of changes in the alveolar space, such as oxidation of

innate molecules or altered AM function, with increasing age that
have wide reaching effect including an influence on adaptive
immune function. Significant to lung function in older age,
memory T cell populations start to lose their function, most
notable in tissue specific resident memory CD8 T cells (CD8 TRM

cells) (Schenkel et al., 2014; McMaster et al., 2015; Goplen et al.,
2020) (Hakim and Gress, 2007). CD8 TRM cells from old mice
have been shown to drive lung fibrosis following influenza, SARS-
CoV-2 and chikungunya infections, potentially via TGFβ, likely
delaying recovering of lung function and promoting conditions
for secondary infection and other age associated lung disorders
(Uhrlaub et al., 2016; Goplen et al., 2020; Goplen et al., 2021;
Shenoy and Mizgerd, 2021). Interestingly, within the lung
environment, we have also shown that resident effector CD8+

T cells demonstrate a robust innate-like response, driven by an
IL-12 dependent but antigen-independent secretion of IFNγ
(Vesosky et al., 2006a; Vesosky et al., 2006b; Rottinghaus
et al., 2009; Vesosky et al., 2009). Such CD8 effector cells were
shown to play a role in early innate control of M. tuberculosis
infection in old mice (Vesosky et al., 2006a; Rottinghaus et al.,
2009; Vesosky et al., 2009). The relevance of such cells is not clear,
but it is thought to be a compensatory mechanism to establish an
additional defense barrier against respiratory pathogens in the
elderly (Piergallini and Turner, 2018b), but could equally be one
that interferes with optimal antigen specific immunity or perhaps
contributes to lung tissue damage that has long term
consequences on pulmonary function with increasing age. The
study of adaptive immune cells specifically in the lung during
aging, in the context of chronic disease such as chronic
obstructive pulmonary disease or asthma, is an as yet
understudied area (Lee et al., 2012) but lung tissue specificity
and age-associated changes likely also play a contributing role to
the ability of T and B cells to exert their immune control as
we age.

DISCUSSION

Aging is accompanied by a decline in immune efficacy resulting
in increased vulnerability to infections. There is increasing
evidence that immune dysfunction linked to exacerbated
inflammatory reactivity is associated with failure in organ
systems (ex: lung, brain, skeletal muscle) leading to functional
decline, morbidity and mortality. Several of these syndromes and
diseases such as frailty, dementia, cardiovascular disease and
cancer, result in elderly persons being dependent on others for
daily living. Immune decline occurs at different ages, and can be
influenced by host genetics as well as external “perturbations”
such as metabolic status (e.g., dysglycemia) and lifetime exposure
to pathogens. The mechanisms underlying these alterations are
poorly understood; where it is unclear which changes are primary
consequences of aging, and which are compensatory.
Furthermore, it is unclear if inflammaging begins in the
periphery and spills over into organs such as the lung or vice
versa. Answering these questions is critical for the development
and implementation of therapeutics that delay, prevent or restore
an individual’s age-related decrease in immunity, including its
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associated failure of organ systems. Elucidation of these
interactions is best accomplished through longitudinal studies
spanning decades, which are logistically challenging and costly.
Alternatives are cross-sectional studies in individuals of all ages,
or short longitudinal assessments of individuals challenged by an
“insult” to their immune system that accelerates aging of their
immune cells. These studies in humans present interpretation
challenges due to high levels of variability in factors of interest
that may underlie responsivity to challenges, for example patients
with undiagnosed dysglycemia which is the most prevalent
metabolic perturbation in the elderly (Chia et al., 2018; Scordo
et al., 2021).

We postulate that there is a gradual increase in inflammation
and altered metabolism across the aging continuum, potentially
initiated in the pulmonary space, which is directly exposed to
environmental insults, that culminates in a cascade of organ and
systemic dysfunctions, reaching a peak or tipping point(s) where
inflammation and oxidation can no longer be reversed by
interventions (Figure 2). Modulating cellular oxidative stress-
related factors that occur during inflammaging in the alveolus
prior to the tipping point(s) may allow for the restoration and

maintenance of healthy immune and metabolic homeostasis
during aging.
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