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ABSTRACT Carbapenemase-producing Klebsiella pneumoniae is an important oppor-
tunistic pathogen due to its drug resistance. This study reports on the isolation
and characterization of a podophage, named Pylas, infecting this bacterium. The
complete genome of phage Pylas is described, and it is distantly related to the
well-studied phage N4.

Multidrug-resistant Klebsiella pneumoniae poses an urgent threat to public health
due to its ability to infect patients with a compromised immune system (1, 2). K.

pneumoniae strains producing carbapenemases are resistant to a broad range of antibiotics
and can cause infections leading to high mortality rates (3). Phages infecting K. pneumoniae
may be used in new therapies for treating this pathogen.

Phage Pylas was isolated from wastewater collected in College Station, TX, in 2015
against a carbapenemase-producing K. pneumoniae isolate. Host bacteria were cultured
on tryptic soy broth or agar (Difco) at 37°C with aeration. Phages were cultured and
propagated using the soft-agar overlay method (4). The phage was identified as a
podophage using negative-stain transmission electron microscopy performed at the
Texas A&M University Microscopy and Imaging Center as described previously (5).
Phage genomic DNA was prepared using a modified Promega Wizard DNA cleanup kit
protocol (5). Pooled indexed DNA libraries were prepared using the Illumina TruSeq
Nano LT kit, and the sequence was obtained with the Illumina MiSeq platform using the
MiSeq V2 500-cycle reagent kit following the manufacturer’s instructions, producing
773,101 paired-end 250-bp reads for the index containing the phage Pylas genome.
FastQC 0.11.5 (https://www.bioinformatics.babraham.ac.uk/projects/fastqc/) was used
to quality control the reads. The reads were trimmed with FastX-Toolkit 0.0.14 (http://
hannonlab.cshl.edu/fastx_toolkit/download.html) before being assembled using SPAdes
3.5.0 (6). Contig completion was confirmed with PCR using primers (5=-TTGAGTCTGTT
CACGCCAAC-3=, 5=-TACCAACAGTTGACCCAGCA-3=) facing off the ends of the assem-
bled contig and Sanger sequencing of the resulting product, with the contig sequence
manually corrected to match the resulting Sanger sequencing read. GLIMMER 3.0 (7)
and MetaGeneAnnotator 1.0 (8) were used to predict protein-coding genes with
manual verification, and tRNA genes were predicted with ARAGORN 2.36 (9). Rho-
independent termination sites were identified via TransTermHP (http://transterm.cbcb
.umd.edu/). Sequence similarity searches were done using BLASTp 2.2.28 (10) with a
maximum expectation cutoff of 0.001 against the NCBI nonredundant (nr), UniProt
Swiss-Prot (11), and TrEMBL databases. InterProScan 5.15-54.0 (12), LipoP (13), and
TMHMM 2.0 (14) were used to predict protein function. All analyses were conducted at
default settings via the CPT Galaxy (15) and WebApollo (16) interfaces (https://cpt.tamu
.edu/galaxy-pub).

Phage Pylas was assembled at 79.6-fold coverage into a unit genome of 70,408 bp
(17). The GC content of Pylas is 41%, in contrast to the 57% GC content of its Klebsiella
host (18). As determined by BLASTp, Pylas shares 30 proteins with Escherichia coli
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podophage N4 (GenBank accession no. NC_008720) (E value, �10�3) (19). These shared
proteins are involved in DNA replication, transcription, DNA packaging, and morpho-
genesis. Similar to N4, the Pylas genome has direct terminal repeats, which were
predicted by PhageTerm (17) to be 769 bp long; the Pylas genome is generally syntenic
with N4. Pylas is closely related to Klebsiella phage KpCHEMY26 (GenBank accession no.
MN163281), sharing 94% overall nucleotide identity (E value, 0) as determined by
BLASTn against the NCBI nucleotide (nt) database. The predicted lysis cassette of Pylas
is composed of a holin-antiholin pair, an embedded inner-outer spanin pair, and a
peptidoglycan hydrolase endolysin.

Data availability. The genome sequence of phage Pylas was submitted to GenBank
under the accession no. MH899585. The associated BioProject, SRA, and BioSample
accession numbers are PRJNA222858, SRR8556430, and SAMN10909361, respectively.
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