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Abstract: Fiber-reinforced polymer (FRP) has several benefits, in addition to excellent tensile strength
and low self-weight, including corrosion resistance, high durability, and easy construction, making
it among the most optimum options for concrete structure restoration. The bond behavior of the
FRP-concrete (FRPC) interface, on the other hand, is extremely intricate, making the bond strength
challenging to estimate. As a result, a robust modeling framework is necessary. In this paper, data-
driven hybrid models are developed by combining state-of-the-art population-based algorithms
(bald eagle search (BES), dynamic fitness distance balance-manta ray foraging optimization (dFDB-
MRFO), RUNge Kutta optimizer (RUN)) and artificial neural networks (ANN) named “BES-ANN”,
“dFDB-MRFO -ANN”, and “RUN-ANN” to estimate the FRPC interfacial-bond strength accurately.
The efficacy of these models in predicting bond strength is examined using an extensive database of
969 experimental samples. Compared to the BES-ANN and dFDB-MRFO models, the RUN-ANN
model better estimates the interfacial-bond strength. In addition, the SHapley Additive Explanations
(SHAP) approach is used to help interpret the best model and examine how the features influence the
model′s outcome. Among the studied hybrid models, the RUN-ANN algorithm is the most accurate
model with the highest coefficient of determination (R2 = 92%), least mean absolute error (0.078), and
least coefficient of variation (18.6%). The RUN-ANN algorithm also outperformed mechanics-based
models. Based on SHAP and sensitivity analysis method, the FRP bond length and width contribute
more to the final prediction results.

Keywords: fiber-reinforced polymer; interfacial bond; hybrid algorithm; neural network; machine
learning

1. Introduction

Fiber-reinforced polymer (FRP) has been widely employed as a successful approach
for reinforcing concrete structures [1–3] and steel structures [4,5]. FRP comprises numerous
layers, and essential performance advantages, such as excellent mechanical properties,
fatigue, creep, and corrosion resistance [6,7]. According to relevant studies, FRP composite
is a potential steel substitute due to its lightweight, high strength, and improved fatigue
and corrosion resistance [8]. A considerable amount of research effort has been allotted to
investigate the bearing performance of FRP reinforced concrete structures under static and
dynamic conditions. For example, Bagheri et al. [9] performed seismic analyses to obtain
the optimum length of the FRP on the retrofitted columns of reinforced concrete frames.
Various bond strength models based on empirical or semi-empirical methodologies have
been developed [10–14]. Previous research has primarily relied on experimental findings
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from the single-lap shear test to develop bond strength formulations [15,16]. Since the
valuable bond length of the FRP was not taken into account, the prediction powers of some
models were limited [17–19].

On the other hand, most empirical frameworks may yield considerable results when
applied to new data because they are generated based on the available experimental
results. Furthermore, some simplified hypotheses must be used to construct these empirical
strength models. Machine learning (ML), on the other hand, is one of the six branches
of artificial intelligence (AI) that allows us to train machines how to complete tasks by
showing them how they should be performed [20]. Several studies have recently been
reported on machine learning algorithms for damage estimation and prediction in civil
engineering. Based on the machine learning prediction outcomes, these studies can be
divided into two groups [21,22]: (1) techniques based on regression, when the output
is a continuous quantity (e.g., shear force), and (2) approaches based on classification,
where the output is a discrete variable (e.g., failure mode). These algorithms can account
for complex underlying interactions among input and output parameters. There is some
research on the interfacial bond strength of predicting FRP-concrete (FRPC) using machine
learning models [23–25]. Su et al. [26] used three distinct ML approaches, such as a support
vector machine (SVM) and a multiple linear regression (MLR), to establish the link between
the influential variables and the bond strength. They utilized random and grid search to
determine the best hyperparameters for the models. Chen et al. [27] developed an FRPC
interfacial bond strength prediction model built on 520 tested samples using an ensemble
learning approach called gradient boosted regression trees. Basaran et al. [28] employed
ML techniques, such as Gaussian process regression, artificial neural networks (ANN),
SVM regression, regression tree, and multiple linear regression for FRPC bond strength
prediction and compared them with experimental results. Zhou et al. [29] built artificial
neural networks for estimating fiber-reinforced polymer-concrete interfacial bond strength
using the backpropagation neural network method. The carbon FRP steel interfacial bond
strength is predicted by Chen et al. [30] using gradient enhanced decision trees and random
forests. They used 113 carbon FRP steel single-shear test samples to train the data-driven
model. While modern ML-based frameworks in structural engineering problems have
produced good results, new hybrid intelligent models (ANN with optimization algorithm)
for predicting FRPC interfacial bond strength have yet to be discovered.

The feed-forward neural network, which is trained using backpropagation, is the
most popular of the ANNs, but they have a variety of drawbacks, such as falling into
local minima and learning at a slow rate [31]. According to the literature, such flaws can
be solved by employing effective optimization strategies [32]. As a result, the research
reported in this paper aims to address the following issues: (1) providing an accurate
and efficient machine learning model for estimating the interfacial bonding strength of
FRPC using hybrid approaches; (2) Examining the forecasting accuracy of the best machine
learning model against that of existing mechanics-based models and (3) using the SHapley
Additive exPlanation approach [33] to describe the importance and participation of input
variables that influence FRPC interfacial bond strength. Hybrid algorithms are created
by combining state-of-the-art optimization algorithms, such as bald eagle search (BES),
dynamic fitness distance balance (dFDB)-manta ray foraging optimization (MRFO) dFDB-
MRFO, and RUNge Kutta optimizer (RUN) with AAN to achieve this purposes.

2. Data of Single-Lap Shear Tests

Nine hundred sixty-nine test data from available single-lap shear experiments (Figure 1)
on FRPC interfacial bond strength have been employed to build appropriate hybrid ML
models. This laboratory information was collected by Zhou et al. [29] from available
studies [13,14,34–42]. The design parameters or input variables retrieved from the gathered
specimens are used in machine learning models. However, while establishing input
parameters, parameters with no practical value for practicing engineers and parameters
without meaning for existing structures were not considered, such as loading rate. Besides
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the test results, the general form of many existing bond strength models based on either
the effective bond length model or fracture mechanics was reviewed by Zhou et al. [29]
when input parameters were determined.
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Figure 1. Shear deboning behavior—single-lap shear test. 

Figure 1. Shear deboning behavior—single-lap shear test.

Here, six design criteria are considered as input variables in these tests, and they are
divided into two groups; (1) geometric dimensions: the fiber-reinforced polymer sheet
(FRPS) thickness (t f ), FRPS width (b f ), the bond length of the FRPS (l f ), and width of
the concrete (bc); (2) material properties: concrete compressive strength ( f ′c) and FRPS
elastic modulus (E f ). Pu shown in Figure 1 is the ultimate bond strength of a sample.
The experimental dataset is randomly divided into a testing set (20%) and a training set
(80%) for the testing and training phase. To enhance the robustness of the database, the
original repository has been processed according to the basic rules: (1) One sample should
be eliminated from a set with the same test parameters if the ultimate bond strength differs
by more than fifteen percent from the other test data and the other data points differ
by less than fifteen percent. (2) If the difference between two samples in a set of data
under the identical test parameters is greater than fifteen percent, the entire set of data
must be discarded. The 969 samples were lowered to 855 using the filtering procedures
outlined above. Table 1 presents the statistical properties of the dataset. Figure 2a shows
statistical distributions of input variables. The correlation coefficient for the inputs is
shown in Figure 2b. The degree of the relationship between two separate input variables is
shown by each matrix element. Correlations have a very low absolute value. As a result,
Multicollinearity is not a problem in this case.

Table 1. Statistical properties of the dataset.

Statistical
Information

Inputs Output

bc (mm) f
′

c (MPa) Ef (GPa) tf (mm) bf (mm) lf (mm) Pu (kN)
Mean 144.30 39.54 204.79 0.51 57.52 172.96 17.80
STD 57.63 15.21 78.14 0.57 26.39 101.02 10.39
Min 80 8 22.5 0.083 10 20 2.4
Max 500 75.5 425.1 4 150 400 56.5
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3. Artificial Neural Network

Neurons or nodes generate the architecture of ANNs. Multiple inputs are available to
each neuron, and these inputs are mixed, and after processing, the result of that combination
is an output. The nodes are linked together, with each cell′s output serving as the input for
the next cell. Additionally, hidden layers are the layers between the input and output layers.
The connections between the neurons are weighted, reflecting the contribution amplitude
of each neuron to the neurons in the adjacent layer to which it is connected. When the
network object is built, the weights are randomized at first, but they are modified when
the ANN is trained. Here, to enhance the predictive accuracy of ANNs, the optimization
algorithms are applied to fine-tune the weights and biases of the ANN model.

3.1. Overview of BES-ANN Algorithm

The bald eagle search (BES) algorithm [43] simulates the behavior of bald eagles while
hunting. As a result, this algorithm has three stages: picking the search space, searching
inside the selected search area, and swooping. Within the designated search zone, bald
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eagles identify and select the ideal place (in terms of volume of food) where they can seek
prey during the select stage. Equation (1) is a mathematical representation of this behavior.

p(i + 1) = pbest + α · r · (pmean − p(i)) (1)

where r is a random value in (0, 1), α is a constant with a value of 2, pbest is the best position
based on previous experience, pmean denotes that the eagles have consumed all of the data
from the previous points, and p(i) is the position at iteration ith. Bald eagles look for
prey within the designated search space and travel in various directions inside a spiral
zone (Figure 3) to speed up their search in the search phase. The best swoop location is
represented mathematically in Equation (2).

p(i + 1) = p(i) + y(i) · (p(i)− p(i + 1)) + x(i) · (p(i)− pmean)

x(i) = xr(i)
max(|xr|) , y(i) = yr(i)

max(|yr|)
xr(i) = r(i) · sin(θ(i)) , yr(i) = r(i) · cos(θ(i))
θ(i) = 5π · rand , r(i) = θ(i) + 2 · rand

(2)

where rand is a random number in (0, 1]. The flowchart of the BES-ANN algorithm is
shown in Figure 4.
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3.2. Overview of dFDB-MRFO-ANN Algorithm

A Manta ray foraging algorithm is a bio-inspired method that differs from other
meta-heuristic search (MHS) techniques due to the nutritional tactics that are important in
determining the life cycle of the search process. Manta ray foraging optimization (MRFO)
uses a powerful selection method, so-called dynamic fitness-distance balance (dFDB), in
its design called dFDB-MRFO [44]. The dFDB features a dynamically changing weight
parameter, which is the most essential characteristic of the dFDB algorithm. Consequently,
the system is now capable of adjusting quickly and effectively to the search spaces for
a variety of situations. The dFDB-MRFO has three powerful nutritional strategies [44]:
(1) chain foraging: all of the manta rays are lined up. Those behind manta rays can,
therefore, harvest plankton that the front manta ray cannot (Equation (3)); (2) cyclone
foraging: Manta rays swim in deep water in a spiral shape toward plankton (Equation (4));
(3) somersault foraging: A food source′s location is chosen as a pivot point. Manta rays try
to improve their position by rotating around this pivot (Equation (5)).

xd
i (t + 1) =

{
xd

i (t) + r · (xd
best − xd

i (t)) + α · (xd
best − xd

i (t)), i = 1
xd

i (t) + r · (xd
i−1(t)− xd

i (t)) + α · (xd
best − xd

i (t)), i = 2, . . . , N
α = 2 · r ·

√
|log(r)|

(3)

xd
i (t + 1) =

{
xd

best + r · (xd
best − xd

i (t)) + β · (xd
best − xd

i (t)) , i = 1
xd

best + r · (xd
i−1(t)− xd

i (t) + β · (xd
best − xd

i (t)) , i = 2, . . . , N
β = 2er1

T−t+1
T · sin(2πr1)

(4)

xd
i (t + 1) = xd

i (t) + 2 · (r2 · xd
best − r3 · xd

i (t)), i = 1, 2, . . . , N (5)

where xd
i (t) is a vector of a position for the dth dimension at a time t, r is randomly

generated vectors in (0, 1], β is the weight coefficient, T is the total number of iterations, ri
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is a random number between (0, 1], and N is the search space dimension. The flowchart of
the dFDB-MRFO-AAN algorithm is shown in Figure 5.
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3.3. Overview of RUN-ANN Algorithm

RUNge Kutta optimizer (RUN) [45] is a novel swarm-based framework with stochastic
elements. RUN’s main concept is based on the Runge Kutta (RK) method’s calculated slope,
which is given by Equation (6), where y is a function of x [46].

y(x + ∆x) = y(x) + 1
6 (c1 + 2× c2 + 3× c3 + c4)∆x

c1 = dy
dx = f (x, y) , c2 = f (x + ∆x

2 , y + ∆x
2 × k1) , ∆x = xn+1 − xn

c3 = f (x + ∆x
2 + y + ∆x

2 × k2) , c4 = f (x + ∆x, y + ∆x× k3)

(6)
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In the first step, for a population of size N, N positions are produced at random. Each
member (xn) in the population is a D-dimensional solution to an optimization problem. The
RK technique is used by solutions to update their positions at each iteration (Equation (7)).

i f rand < 0.5
xn+1 = xc + (2 · (0.5− rand) · f ) · 1

6 · (c1 + 2 · c2 + 2 · c3 + c4) · ∆x + µ · xs
else

xn+1 = xm + (2 · (0.5− rand) · f ) · 1
6 · (c1 + 2 · c2 + 2 · c3 + c4) · ∆x + µ · xs′

end
µ = 0.5 + 0.1 · randn , f = a · exp(−b · rand · ( i

Max(i) ))

xs = randn · (xm − xc) , xs′ = randn · (xr1 − xr2)
xc = ϕ · xn + (1− ϕ) · xr1 , xm = ϕ · xb + (1− ϕ) · xlbest

(7)

where rand is a random value between 0 and 1, xri is a random position, xb is the best
position that achieved so far, xlbest is the best solution of the iteration, a and b are two
constant numbers, i is iteration number, Max(i) is the total iteration number, and ϕ is a
random number in (0, 1]. In the RUN algorithm, enhanced solution quality (ESQ) is utilized
to increase the solutions’ quality and prevent local optimum solutions in each algorithm
iteration. In ESQ, the mean of three random choices and the best position are used to
generate a new solution. The reader is directed to Ref. [45] for more information on the
RUN method. The flowchart of the RUN-AAN algorithm is shown in Figure 6.
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The mean absolute error (MAE, Equation (8)), the coefficient of determination (R2,
Equation (9)), and coefficient of variation (C.O.V, Equation (10)) are utilized to assess the
performance of hybrid algorithms.

MAE =
1
n

n

∑
i=1
|yi − yi

∗| (8)

R2 = 1−

n
∑

i=1
(yi − yi

∗)2

n
∑

i=1
(yi − y)2

(9)

C.O.V =
σ

y
(10)

where n presents the number of samples, yi is the recorded value, yi
∗ is the predicted value,

y is the mean of the total of samples, and σ is standard deviation results.

4. Results and Discussion

The neural network structure considered in this study has only three layers (input,
hidden, and output layer). Parameters that must be determined by trial-and-error are
the number of neurons in the hidden layer and the neural network activation function.
ANNs with many neurons and functions in the middle layer are created and evaluated
to discover the ideal structure for an ANN. Following the training and testing phases,
networks with the Tansig function are selected for the middle and output layers (codes
written in Matlab [47]). In addition, the number of neurons in the neural network′s hidden
layer is increased from two to 30. Changes in the number of neurons in the inner layer are
significant because they show the interaction between the input parameters. This means
that increasing the number of neurons and creating more relationships if these relationships
are not appropriate may reduce the efficiency of the neural network and the accuracy
of network prediction. Figure 7 shows changes in models’ performance (coefficient of
determination-R2) versus changes in the number of neurons for different hybrid models.
The maximum value of R2 for BES-ANN, dfDB-MRFO-ANN, and RUN-ANN is 0.91, 0.88,
and 0.92 with 18, 10, and 30 neurons, respectively. Figure 7d shows the results of the feed-
forward neural network trained using backpropagation. All hybrid models outperform the
feed-forward neural network trained using backpropagation.

Figure 8 shows the experimentally measured (Pu,exp) to analytically-predicted (Pu,pre)
ratio of the interfacial bond strength as a function of the FRPS thickness (t f ) and the FRPS
width (b f ). Figure 8 depicts how hybrid approaches suffer from variability when estimating
the effect of FRPS thickness on interfacial bond strength. Figure 8 also reveals that the
novel RUN-ANN model, on the other hand, minimizes such predictions by reducing
diversity. This enhanced performance is further validated by monitoring the impact of
FRPS width (b f ). Table 2 summarizes the average of the models’ errors. The standard
deviation is a number that expresses how far the values are spread out. A low standard
deviation indicates that the majority of the data points are near to the average. Therefore,
the coefficient of variation (C.O.V) also is computed. C.O.V represents the ratio of the
standard deviation to the mean, and it is a useful statistic for comparing the degree of
variation from one data series to another [20]. The mean of the RUN-ANN algorithm′s
errors (Pu,exp/Pu,pre) is quite near to a value of 1. The RUN-ANN also has the lowest
standard deviation. The quantitative measures of the hybrid models indicate that the
RUN-ANN algorithm is more in line with the experimental data. The value of standard
deviation and C.O.V are high for the BES-ANN and dfDB-MRFO-ANN models, which
means that there is a large amount of variability among the data points (Pu,exp/Pu,pre). The
RUN-ANN algorithm also has the lowest MAE (0.078), whereas MAE is 0.084 and 0.098 for
the BES-ANN and dfDB-MRFO-ANN models.
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Table 2. Characteristics of the predict-to-test ratio.

Model BES-ANN dfDB-MRFO-ANN RUN-ANN

Mean 1.09 1.12 1.04
Standard deviation 0.68 0.52 0.19

C.O.V (%) 62.7 46.2 18.6
Median 0.99 1.02 0.98

MAE 0.084 0.098 0.078

Figure 9 shows the Taylor diagram of the hybrid models. Taylor diagrams, which are
based on the Pearson correlation coefficient, the root-mean-square (RMS) error, and the
standard deviation, are statistical diagrams that reveal which of the various models is the
most reliable [48,49]. The more accurate a model predicts, the closer it is to the “observed”
point. The standard deviation of models that lie on the solid red-arc is right (closer to
the pattern of experimental data). In Figure 9 it can be seen that the RUN-ANN and
dfDB-MRFO-ANN algorithms’ standard deviations are closer to the experimental data’s
standard deviation. However, the RUN-ANN algorithm has a slightly higher correlation
coefficient with experimental data. Although the RUN-ANN and BES-ANN models are the
ones that most closely match experimental data (their points are near the point that shows
as “observed” on the x-axis), the BES-ANN model’s standard deviation is smaller than the
experimental data’s standard deviation.
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4.1. Model Interpretations

For engineers and researchers, model interpretability is critical. As a result, engineers
and researchers would like to discover how the model makes decisions and how the
attributes influence the model’s outcome. SHapley Additive Explanation (SHAP) is utilized
in this section to assist with model interpretation. Game theory’s Shapley value inspired
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the concept of the SHAPE method. The SHAP creates the EM() explanation model, which
may be stated as:

EM(z′) = φ0 +
IF

∑
j=1

φjz′j (11)

where z′ ∈ {0, 1}IF IF is the number of input parameters, φj ∈ R is the SHAP value for the
jth input parameter, and φ0 stands for the baseline prediction, which is defined as all the
features missing from the input space. The Shapley value specifies how the contributions
should be distributed adequately among the attributes. The SHAP value for the jth input
parameter can be determined using the following formula:

φj = ∑
D⊆F{mi}

|D|!(n−|D|−1)!
n!

[
v(D ∪

{
mi})− v(D)

]
D ⊆

{
m1, m2, . . . , mn}∣∣mi , F =

{
m1, m2, . . . , mn} (12)

where mi is an instance, |D| is the number of non-zero members of D, F
{

mi} represents
the possible subsets that do not include mi, and the model outcome for the subset D is
represented by v(D). According to Equation (12), the model must be retrained twice
for each subset: once for the subset including mi and once without it. The marginal
contribution per variable is derived by multiplying the likelihood of occurrence for each
subgroup without that variable by the different output with/without that variable [33].

Figure 10 shows the feature importance based on the best hybrid model (RUN-ANN).
The parameters are listed in descending order on a bar-important plot based on their
contribution. The top parameters have a higher predictive influence than the bottom ones,
contributing more to the model prediction. In fact, the importance factor values in Figure 10
are the mean of the absolute SHAP values for features across the whole dataset. The most
important variable is the FRPS width (b f ), which is followed by the bond length of the
FRPS (l f ), FRPS elastic modulus (E f ), and width of the concrete (bc). The SHAP approach
can also illustrate how much each attribute impacts the target parameter, both positively
and negatively, using the summary plot. The summary plot (Figure 11) is constructed from
all of the samples in the test data. Figure 11 shows that b f and l f are positively correlated
to the interfacial bond strength. In other words, increasing b f and l f leads to an increase in
the bond strength.
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4.2. Comparison with Mechanics-Based Models

It is useful to compare the RUN-ANN to existing equations. For comparisons, three
equations from the literature are used, which are given as follows (the parameters are
introduced in Section 2):

• Model 1: Wu et al. [50]

Pu =

 0.585b f f 0.1
c kw(E f t f )

0.54 i f l f ≥ le

0.585b f f 0.1
c kw(E f t f )

0.54
( l f

le

)1.2
i f l f < le

le = 0.395(E f t f )
0.54/ f 0.09

c , kw =

√
2.25−b f /bc
1.25+b f /bc

(13)

• Model 2: Lin et al. [12]

Pu = α
β E f t f b f kL , α = 0.094 f 0.026

c , β =
0.134(E f t f )

0.5

kw f 0.082
c

kL =
η
√

1−η2sinh(
√

1−η2L/β)

1+η cosh(
√

1−η2L/β)

kw = 1 + f 0.385
c [8(E f t f )

−0.438 + 0.001]
(1−b f /bc)

0.5

1+0.01b1.7
f

η = −3.61× e−0.4454
l f
β + 4.11× e−0.3835

l f
β

(14)

• Model 3: Wu et al. [51]

Pu = βwb f

√
2(1 + λ

∑ )E f t f Gc f

βw =

√
2−b f /bc
1+b f /bc

, λ = 3.5
t f

, ∑ =
E f

4730
√

f ′c
, Gc f = 0.17

(15)

The tested bond strength versus computed values from the three empirical models
and the RUN-ANN is shown in Figure 12. Table 3 summarizes the quantitative measures of
the experimentally measured (Pu,exp) to analytically-predicted (Pu,pre) ratio for the models.
It can be seen that selecting the best model from the three empirical models (Models 1–3) is
difficult. The mean results of Model 1 and Model 2 are larger than 1, which reveals that the
two models conservatively predict the bond strength. However, Model 3 overestimates
the bond strength. The quantitative indicators of the RUN-ANN are notably better than
that of the three empirical models. For example, the coefficient of variation of the tested to
predict ratios from the empirical models is in the range of 34 to 43 percent, while for the
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RUN-ANN model, it will decrease to 18.6%. MAE of the RUN-ANN model is lower than
2.5 kN, while the MAE of the rest models is higher than 4 kN. These results demonstrate
that the RUN-ANN model is more accurate than mechanics-based models.
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Table 3. Model performance comparisons.

Model Model 1 Model 2 Model 3 RUN-ANN

Mean 1.1 1.36 0.82 1.04
Standard deviation 0.47 0.48 0.28 0.19

Coefficient of variation (%) 42.7 35.5 34.0 18.6
Median 0.93 1.18 0.78 0.98

MAE (kN) 5.00 4.19 5.75 2.28

The weakness of mechanics-based models can be due to the following reasons: (1) They
were generated using a limited data set. As a result, when used to forecast experimental
bond strength results, other than those utilized for calibration/validation, they show
significant inconsistency and low accuracy. (2) Simple assumptions are considered in
building these models because they are often constructed using standard mathematical
programming and analytical or numerical methodologies. This makes complex nonlinear
shear behaviors not well considered. In other words, despite their effectiveness in dealing
with basic and idealized situations, similar strategies have exhibited significant flaws when
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dealing with complicated systems, primarily because of the simplifying assumptions that
are taken into account when developing them.

4.3. Sensitivity Analysis Based on Sobol’s Method

Another conventional method for investigating the impact of the changes in input pa-
rameters on the model’s outcome and vice versa is the use of the global sensitivity analysis
(SA) based on Sobol’s method [52]. Compared with the local SA method suitable for linear
models, the global SA technique is appropriate for complicated non-linear models [52].
The most prominent advantage of Sobol’s variance-based approach is that it does not
require any special analytic functions and can be used in a variety of situations. The Python
sensitivity analysis library (SALib [53]) is used in this study. A bar graph of the total order
index is shown in Figure 13. Figure 13 indicates that the FRPS bond length (l f ), width (b f ),
elastic modulus (E f ), and thickness (t f ) are the dominant parameters that contribute to
the interfacial-bond strength. These results are in agreement with Chen et al. [27], which
also reported that FRP sample’s width and bonding length were controlling factors in
forecasting the interfacial-bond strength.
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5. Conclusions

Fiber-reinforced polymers (FRPs) have been commonly used as an option to enhance
reinforced concrete structures’ strength. The nonlinear relationships between the input
variables and the bond strength make predicting the FRPC bond strength challenging. In
this paper, novel hybrid approaches were developed for predicting the bond strength of
FRPC using an artificial neural network (ANN) coupled with optimization algorithms, such
as bald eagle search (BES), dynamic fitness distance balance (dFDB)-manta ray foraging
optimization (MRFO) dFDB-MRFO, and RUNge Kutta optimizer (RUN). The weights and
biases of the ANN model were adjusted using optimization algorithms. SHAP (SHapley
Additive exPlanation) was used to determine the characteristics’ relevance.

The following conclusions were reached as a result of this research:

1. All hybrid models outperformed the feed-forward neural network trained using the
backpropagation algorithm.
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2. Among the studied hybrid models, the RUN-ANN algorithm was the most accurate
model with the highest coefficient of determination (R2 = 92%), least mean absolute
error (0.078), and least coefficient of variation (18.6%).

3. Compared with the mechanics-based models, the RUN-ANN model obtained the
greatest prediction. The mean absolute error and coefficient of variation values of the
RUN-ANN algorithm are 2.28 kN and 18.6%, lower than those of the three mechanics-
based models.

4. Although the R2 value of the BES-ANN and RUN-ANN was close, the BES-ANN
model’s standard deviation, unlike the RUN-ANN model, was far from the exper-
imental data’s standard deviation. In addition, the RUN-ANN model had a lower
mean absolute error value.

5. Based on the SHAP method, the most important variable was the FRPS width (b f ),
which was followed by the bond length of the FRPS (l f ), FRPS elastic modulus (E f ),
and width of the concrete (bc).

6. The global sensitivity analysis based on Sobol’s method indicated that the FRPS bond
length (l f ), width (b f ), elastic modulus (E f ), and thickness (t f ) are the dominant
parameters that contribute to the interfacial-bond strength.

Author Contributions: Conceptualization, M.S.B., D.J.A. and M.M.S.S.; methodology, M.S.B. and
D.J.A.; software, M.S.B. and D.J.A.; formal analysis, M.S.B., D.J.A. and M.M.S.S.; resources, M.S.B.,
writing—original draft preparation, M.S.B., D.J.A., D.V.U., M.M.S.S. and M.A.; writing—review and
editing, M.S.B., D.J.A., D.V.U., M.M.S.S. and M.A.; supervision, D.J.A., D.V.U. and M.M.S.S.; funding
acquisition, M.M.S.S. All authors have read and agreed to the published version of the manuscript.

Funding: The research is partially funded by the Ministry of Science and Higher Education of the
Russian Federation under the strategic academic leadership program ‘Priority 2030’ (Agreement
075-15-2021-1333 dated 30 September 2021).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data are available in the paper. Additionally, data from this article
can be found online at https://data.mendeley.com/datasets/hfk9syw9v5/1.

Conflicts of Interest: The authors declare that they have no conflict of interest.

References
1. Moghaddas, A.; Mostofinejad, D. Empirical FRP-concrete bond strength model for externally bonded reinforcement on grooves. J.

Compos. Constr. 2019, 23, 04018080. [CrossRef]
2. Wang, J.; Lu, S.; Yang, J. Behavior of eccentrically loaded rectangular RC columns wrapped with CFRP jackets under different

preloading levels. J. Build. Eng. 2021, 34, 101943. [CrossRef]
3. Kabashi, N.; Këpuska, A.; Krasniqi, E.; Avdyli, B. Bond Coefficient kb of Concrete Beams Reinforced with GFRP, CFRP, and Steel

Bars. Civ. Eng. J. 2021, 7, 1235–1243. [CrossRef]
4. Elchalakani, M.; Karrech, A.; Basarir, H.; Zhao, X.-L.; Fawzia, S.; Hassanein, M.F. Strengthening of mild steel struts using CFRP

sheets subjected to uniform axial compression. Thin-Walled Struct. 2017, 116, 96–112. [CrossRef]
5. Wei, Y.; Zhang, Y.; Chai, J.; Wu, G.; Dong, Z. Experimental investigation of rectangular concrete-filled fiber reinforced polymer

(FRP)-steel composite tube columns for various corner radii. Compos. Struct. 2020, 244, 112311. [CrossRef]
6. Li, C.; Xian, G. Novel wedge-shaped bond anchorage system for pultruded CFRP plates. Mater. Struct. 2018, 51, 162. [CrossRef]
7. Xian, G.; Guo, R.; Li, C.; Hong, B. Effects of rod size and fiber hybrid mode on the interface shear strength of carbon/glass fiber

composite rods exposed to freezing-thawing and outdoor environments. J. Mater. Res. Technol. 2021, 14, 2812–2831. [CrossRef]
8. Xian, G.; Guo, R.; Li, C. Combined effects of sustained bending loading, water immersion and fiber hybrid mode on the

mechanical properties of carbon/glass fiber reinforced polymer composite. Compos. Struct. 2022, 281, 115060. [CrossRef]
9. Bagheri, M.; Chahkandi, A.; Jahangir, H. Seismic reliability analysis of RC frames rehabilitated by glass fiber-reinforced polymers.

Int. J. Civ. Eng. 2019, 17, 1785–1797. [CrossRef]
10. Zhang, D.; Yang, J.; Chi, L.Y. The Bond-Slip Relationship at FRP-to-Brick Interfaces under Dynamic Loading. Materials 2021,

14, 545. [CrossRef]
11. Pan, J.; Wu, Y.-F. Analytical modeling of bond behavior between FRP plate and concrete. Compos. Part B Eng. 2014, 61, 17–25.

[CrossRef]

https://data.mendeley.com/datasets/hfk9syw9v5/1
http://doi.org/10.1061/(ASCE)CC.1943-5614.0000924
http://doi.org/10.1016/j.jobe.2020.101943
http://doi.org/10.28991/cej-2021-03091722
http://doi.org/10.1016/j.tws.2017.03.010
http://doi.org/10.1016/j.compstruct.2020.112311
http://doi.org/10.1617/s11527-018-1293-x
http://doi.org/10.1016/j.jmrt.2021.08.088
http://doi.org/10.1016/j.compstruct.2021.115060
http://doi.org/10.1007/s40999-019-00438-x
http://doi.org/10.3390/ma14030545
http://doi.org/10.1016/j.compositesb.2014.01.026


Materials 2022, 15, 3019 18 of 19

12. Lin, J.-P.; Wu, Y.-F.; Smith, S.T. Width factor for externally bonded FRP-to-concrete joints. Constr. Build. Mater. 2017, 155, 818–829.
[CrossRef]

13. Lu, X.; Ye, L.; Teng, J.; Jiang, J. Meso-scale finite element model for FRP sheets/plates bonded to concrete. Eng. Struct. 2005,
27, 564–575. [CrossRef]

14. Bilotta, A.; Di Ludovico, M.; Nigro, E. FRP-to-concrete interface debonding: Experimental calibration of a capacity model. Compos.
Part B Eng. 2011, 42, 1539–1553. [CrossRef]

15. Bencardino, F.; Condello, A.; Ashour, A.F. Single-lap shear bond tests on Steel Reinforced Geopolymeric Matrix-concrete joints.
Compos. Part B Eng. 2017, 110, 62–71. [CrossRef]

16. Mofrad, M.H.; Mostofinejad, D.; Hosseini, A. A generic non-linear bond-slip model for CFRP composites bonded to concrete
substrate using EBR and EBROG techniques. Compos. Struct. 2019, 220, 31–44. [CrossRef]

17. Tanaka, T. Shear resisting mechanism of reinforced concrete beams with CFS as shear reinforcement. Graduation Thesis, Hokkaido
University, Sapporo, Japan, 1996.

18. Chaallal, O.; Nollet, M.-J.; Perraton, D. Strengthening of reinforced concrete beams with externally bonded fiber-reinforced-plastic
plates: Design guidelines for shear and flexure. Can. J. Civ. Eng. 1998, 25, 692–704. [CrossRef]

19. Siddika, A.; Al Mamun, M.A.; Ferdous, W.; Alyousef, R. Performances, challenges and opportunities in strengthening reinforced
concrete structures by using FRPs–A state-of-the-art review. Eng. Fail. Anal. 2020, 111, 104480. [CrossRef]

20. Asim, M.; Ahmad, M.; Alam, M.; Ullah, S.; Iqbal, M.J.; Ali, S. Prediction of Rutting in Flexible Pavements using Finite Element
Method. Civ. Eng. J. 2021, 7. [CrossRef]

21. Barkhordari, M.S.; Feng, D.-C.; Tehranizadeh, M. Efficiency of Hybrid Algorithms for Estimating the Shear Strength of Deep
Reinforced Concrete Beams. Period. Polytech. Civ. Eng. 2022, 66, 398–410. [CrossRef]

22. Barkhordari, M.S.; Armaghani, D.J.; Mohammed, A.S.; Ulrikh, D.V. Data-Driven Compressive Strength Prediction of Fly Ash
Concrete Using Ensemble Learner Algorithms. Buildings 2022, 12, 132. [CrossRef]

23. Haddad, R.; Haddad, M. Predicting fiber-reinforced polymer–concrete bond strength using artificial neural networks: A
comparative analysis study. Struct. Concr. 2021, 22, 38–49. [CrossRef]

24. Coelho, M.R.; Sena-Cruz, J.M.; Neves, L.A.; Pereira, M.; Cortez, P.; Miranda, T. Using data mining algorithms to predict the bond
strength of NSM FRP systems in concrete. Constr. Build. Mater. 2016, 126, 484–495. [CrossRef]

25. Abdalla, J.A.; Hawileh, R.; Al-Tamimi, A. Prediction of FRP-concrete ultimate bond strength using Artificial Neural Network. In
Proceedings of the 2011 Fourth International Conference on Modeling, Simulation and Applied Optimization, Kuala Lumpur,
Malaysia, 19–21 April 2011; pp. 1–4.

26. Su, M.; Zhong, Q.; Peng, H.; Li, S. Selected machine learning approaches for predicting the interfacial bond strength between
FRPs and concrete. Constr. Build. Mater. 2021, 270, 121456. [CrossRef]

27. Chen, S.-Z.; Zhang, S.-Y.; Han, W.-S.; Wu, G. Ensemble learning based approach for FRP-concrete bond strength prediction. Constr.
Build. Mater. 2021, 302, 124230. [CrossRef]

28. Basaran, B.; Kalkan, I.; Bergil, E.; Erdal, E. Estimation of the FRP-concrete bond strength with code formulations and machine
learning algorithms. Compos. Struct. 2021, 268, 113972. [CrossRef]

29. Zhou, Y.; Zheng, S.; Huang, Z.; Sui, L.; Chen, Y. Explicit neural network model for predicting FRP-concrete interfacial bond
strength based on a large database. Compos. Struct. 2020, 240, 111998. [CrossRef]

30. Chen, S.-Z.; Feng, D.-C.; Han, W.-S.; Wu, G. Development of data-driven prediction model for CFRP-steel bond strength by
implementing ensemble learning algorithms. Constr. Build. Mater. 2021, 303, 124470. [CrossRef]

31. Lee, Y.; Oh, S.-H.; Kim, M.W. The effect of initial weights on premature saturation in back-propagation learning. In Proceedings
of the IJCNN-91-Seattle International Joint Conference on Neural Networks, Seattle, WA, USA, 8–14 July 1991; pp. 765–770.

32. Koopialipoor, M.; Armaghani, D.J.; Hedayat, A.; Marto, A.; Gordan, B. Applying various hybrid intelligent systems to evaluate
and predict slope stability under static and dynamic conditions. Soft Comput. 2019, 23, 5913–5929. [CrossRef]

33. Lundberg, S.M.; Lee, S.-I. A unified approach to interpreting model predictions. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, Long Beach, CA, USA, 4–9 December 2017; pp. 4768–4777.

34. Maeda, T. A study on bond mechanism of carbon fiber sheet. FRPTCS3 1997, 1, 279–286.
35. Yuan, H.; Wu, Z.; Yoshizawa, H. Theoretical solutions on interfacial stress transfer of externally bonded steel/composite laminates.

Doboku Gakkai Ronbunshu 2001, 2001, 27–39. [CrossRef]
36. Kanakubo, T.; Nakaba, K.; Furuta, T.; Yoshizawa, H. Proposal for Local Bond Stress-Slip Relationship between FRP Sheet and

Concrete. Concr. Res. Technol. JCI 2001, 12, 33–43. [CrossRef]
37. Pellegrino, C.; Tinazzi, D.; Modena, C. Experimental study on bond behavior between concrete and FRP reinforcement. J. Compos.

Constr. 2008, 12, 180–189. [CrossRef]
38. Ko, H.; Matthys, S.; Palmieri, A.; Sato, Y. Development of a simplified bond stress–slip model for bonded FRP–concrete interfaces.

Constr. Build. Mater. 2014, 68, 142–157. [CrossRef]
39. Huawen, Z.; Smith, S.T. Fibre-reinforced polymer (FRP)-to-concrete joints anchored with FRP anchors: Tests and experimental

trends. Can. J. Civ. Eng. 2013, 40, 1103–1116. [CrossRef]
40. Ueno, S.; Toutanji, H.; Vuddandam, R. Introduction of a stress state criterion to predict bond strength between FRP and concrete

substrate. J. Compos. Constr. 2015, 19, 04014024. [CrossRef]

http://doi.org/10.1016/j.conbuildmat.2017.08.104
http://doi.org/10.1016/j.engstruct.2004.11.015
http://doi.org/10.1016/j.compositesb.2011.04.016
http://doi.org/10.1016/j.compositesb.2016.11.005
http://doi.org/10.1016/j.compstruct.2019.03.063
http://doi.org/10.1139/l98-008
http://doi.org/10.1016/j.engfailanal.2020.104480
http://doi.org/10.28991/cej-2021-03091727
http://doi.org/10.3311/PPci.19323
http://doi.org/10.3390/buildings12020132
http://doi.org/10.1002/suco.201900298
http://doi.org/10.1016/j.conbuildmat.2016.09.048
http://doi.org/10.1016/j.conbuildmat.2020.121456
http://doi.org/10.1016/j.conbuildmat.2021.124230
http://doi.org/10.1016/j.compstruct.2021.113972
http://doi.org/10.1016/j.compstruct.2020.111998
http://doi.org/10.1016/j.conbuildmat.2021.124470
http://doi.org/10.1007/s00500-018-3253-3
http://doi.org/10.2208/jscej.2001.675_27
http://doi.org/10.3151/crt1990.12.1_33
http://doi.org/10.1061/(ASCE)1090-0268(2008)12:2(180)
http://doi.org/10.1016/j.conbuildmat.2014.06.037
http://doi.org/10.1139/cjce-2012-0525
http://doi.org/10.1061/(ASCE)CC.1943-5614.0000481


Materials 2022, 15, 3019 19 of 19

41. Fen, Z.L.; GX; Zhang, W.P.; Liu, L.M. Experimental study on bond behavior between carbon fiber reinforced polymer and concrete.
Struct. Eng. 2008, 24, 154–463.

42. Dai, J.-G.; Sato, Y.; Ueda, T. Improving the load transfer and effective bond length for FRP composites bonded to concrete. Proc.
Jpn. Concr. Inst. 2002, 24, 1423–1428.

43. Alsattar, H.; Zaidan, A.; Zaidan, B. Novel meta-heuristic bald eagle search optimisation algorithm. Artif. Intell. Rev. 2020,
53, 2237–2264. [CrossRef]

44. Kahraman, H.T.; Bakir, H.; Duman, S.; Katı, M.; ARAS, S.; Guvenc, U. Dynamic FDB selection method and its application:
Modeling and optimizing of directional overcurrent relays coordination. Appl. Intell. 2021, 52, 4873–4908. [CrossRef]

45. Ahmadianfar, I.; Heidari, A.A.; Gandomi, A.H.; Chu, X.; Chen, H. RUN beyond the metaphor: An efficient optimization algorithm
based on Runge Kutta method. Expert Syst. Appl. 2021, 181, 115079. [CrossRef]

46. England, R. Error estimates for Runge-Kutta type solutions to systems of ordinary differential equations. Comput. J. 1969,
12, 166–170. [CrossRef]

47. Matlab R2021a; v9.10.0.1684407. The MathWorks Inc.: Natick, MA, USA, 2021.
48. Taylor, K.E. Summarizing multiple aspects of model performance in a single diagram. J. Geophys. Res. Atmos. 2001, 106, 7183–7192.

[CrossRef]
49. Stow, C.A.; Jolliff, J.; McGillicuddy, D.J., Jr.; Doney, S.C.; Allen, J.I.; Friedrichs, M.A.; Rose, K.A.; Wallhead, P. Skill assessment for

coupled biological/physical models of marine systems. J. Mar. Syst. 2009, 76, 4–15. [CrossRef] [PubMed]
50. Wu, Z.; Islam, S.; Said, H. A three-parameter bond strength model for frp—concrete interface. J. Reinf. Plast. Compos. 2009,

28, 2309–2323. [CrossRef]
51. Wu, Y.; Zhou, Z.; Yang, Q.; Chen, W. On shear bond strength of FRP-concrete structures. Eng. Struct. 2010, 32, 897–905. [CrossRef]
52. Sobol, I.M. Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul.

2001, 55, 271–280. [CrossRef]
53. Herman, J.; Usher, W. SALib: An open-source Python library for sensitivity analysis. J. Open Source Softw. 2017, 2, 97. [CrossRef]

http://doi.org/10.1007/s10462-019-09732-5
http://doi.org/10.1007/s10489-021-02629-3
http://doi.org/10.1016/j.eswa.2021.115079
http://doi.org/10.1093/comjnl/12.2.166
http://doi.org/10.1029/2000JD900719
http://doi.org/10.1016/j.jmarsys.2008.03.011
http://www.ncbi.nlm.nih.gov/pubmed/28366997
http://doi.org/10.1177/0731684408091961
http://doi.org/10.1016/j.engstruct.2009.12.017
http://doi.org/10.1016/S0378-4754(00)00270-6
http://doi.org/10.21105/joss.00097

	Introduction 
	Data of Single-Lap Shear Tests 
	Artificial Neural Network 
	Overview of BES-ANN Algorithm 
	Overview of dFDB-MRFO-ANN Algorithm 
	Overview of RUN-ANN Algorithm 

	Results and Discussion 
	Model Interpretations 
	Comparison with Mechanics-Based Models 
	Sensitivity Analysis Based on Sobol's Method 

	Conclusions 
	References

