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ABSTRACT: The accelerated molecular dynamics (aMD) method
has recently been shown to enhance the sampling of biomolecules in
molecular dynamics (MD) simulations, often by several orders of
magnitude. Here, we describe an implementation of the aMD
method for the OpenMM application layer that takes full advantage
of graphics processing units (GPUs) computing. The aMD method
is shown to work in combination with the AMOEBA polarizable
force field (AMOEBA-aMD), allowing the simulation of long time-
scale events with a polarizable force field. Benchmarks are provided
to show that the AMOEBA-aMD method is efficiently implemented
and produces accurate results in its standard parametrization. For
the BPTI protein, we demonstrate that the protein structure
described with AMOEBA remains stable even on the extended time scales accessed at high levels of accelerations. For the DNA
repair metalloenzyme endonuclease IV, we show that the use of the AMOEBA force field is a significant improvement over fixed
charged models for describing the enzyme active-site. The new AMOEBA-aMD method is publicly available (http://wiki.simtk.
org/openmm/VirtualRepository) and promises to be interesting for studying complex systems that can benefit from both the use
of a polarizable force field and enhanced sampling.

■ INTRODUCTION

Molecular dynamics (MD) is one of the most prominent
techniques used to study the dynamics and equilibrium
properties of biomolecules. It solves Newton’s equations of
motion for all atoms, using force fields that account for bonded
and nonbonded atomic interactions. These force fields have
been parametrized to agree with quantum mechanical
simulations and experiments. Ever since the seminal first
protein MD simulation of bovine pancreatic trypsin inhibitor
(BPTI),1 tremendous progress has been made both in terms of
accuracy and sampling efficiency. Even larger macromolecular
systems can now be simulated on the order of microseconds.
However, many important biological processes occur on time
scales far beyond this regime posing the need for millisecond or
longer simulations. The development of the Anton super-
computer2 certainly marked a large step in the right direction;
however, that kind of computational fire power is not readily
available to the average researcher. One of the most significant
speed improvements of the last years was the utilization of
graphics processing units (GPUs) for molecular dynamics.
Efficient MD codes have been developed to aid with this
endeavor.3 Nonetheless, it will take many years before

nonspecialized computer hardware can routinely simulate
large molecular systems on the time scales of their slowest
motions, which is needed to fully characterize their free energy
landscapes.
In the meantime, enhanced sampling methods are one

solution to this problem. A plethora of methods exist that
perturb the underlying potential energy landscape to increase
the chance of transitions between low energy states.4 Three
notable examples are the adaptive biasing force (ABF5),
metadynamics6 and driven adiabatic dynamics7 methods. In
addition to these methods, accelerated MD (aMD) is a
promising technique that directly modifies regions of the
potential energy landscape that are below a certain cutoff
energy.8 By energetically raising these regions and thus
lowering barriers between energy wells, the landscape is
perturbed to allow more frequent transitions between low
energy states. This results in an enhanced sampling of the
conformational space accessible to the simulation. aMD has
been previously implemented for classical (nonpolarizable)
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simulations in AMBER8a and NAMD,9 and for ab initio MD in
CPMD.10

In addition to improvements in sampling (the precision
problem), the force fields used to propagate atoms may also
need to be improved (the accuracy problem). Moreover,
sampling and force field accuracy are related challenges, since
better sampling allows for more precise calculations of
experimental quantities that in turn can lead to the detection
of smaller force field deficiencies. Although the functional form
of biomolecular force fields has remained largely unchanged
since the first MD simulation of a protein conducted more than
35 years ago, recent studies highlight certain shortcomings
present in all current force fields that are unlikely to be solved
simply by tuning their parametrization. For example, none of
the current methods seem to be able to accurately capture the
temperature dependency of proteins secondary structure
propensities.11 In addition, polarizability may be essential to
accurately simulate highly charged systems, such as nucleic
acids in DNA and RNA.12 For this reason, substantial efforts
are under way to develop force fields with more sophisticated
functional forms, including polarizable force fields that can
capture the redistribution of electrons around each atom in
response to changes in the environment. This approach may
eventually replace conventional force fields in several key areas
(e.g., the modeling of protein folding,13 computer-aided drug
design,14 the calculation of ion channel properties,15 or the
description of allostery16).
The AMOEBA (Atomic Multipole Optimized Energetics for

Biomolecular Applications) polarizable force field17 was
developed by Ponder and co-workers with the aim to move
away from the well-established fixed point charge models and
toward more expensive models that should allow a more
accurate description of molecular properties. AMOEBA is one
of the most widely used polarizable force fields to date, and it
has been demonstrated to perform better than nonpolarizable
force fields for describing solvation free energies of drug-like
small molecules, and dynamical properties away from ambient
condition.18 However, despite the impressive acceleration
provided by GPU computing,19 the time performance of
AMOEBA remains a significant limitation to its wider use to
simulate large-scale biomolecular systems, since such simu-
lations remain about 1−2 orders of magnitude more expensive
than their nonpolarizable equivalents. For this reason, practical
usage of AMOEBA has been limited, especially when target
events are in micro- to millisecond time scales. AMOEBA has
been previously combined with an enhanced-sampling free
energy methodorthogonal space random walk (OSRW)to
achieve ab initio prediction of organic crystal structures and
thermodynamics.20 Similarly, combining AMOEBA with the
enhanced sampling capabilities of aMD represents an attractive
prospect. OpenMM is the perfect platform to implement the
aMD method, as it already allows a wide user base to take
advantage of GPU-accelerated MD simulations.3c,19

In this paper, we show that the aMD method and the
AMOEBA force field can be synergistically combined in a way
that conserves the accuracy of the polarizable force field, while
significantly enhancing sampling. Using three examples, we
show that (1) with larger energy boost levels, the AMEOBA-
based aMD simulations can maintain structural stability, (2) the
choice of aMD parameters is the same for AMOEBA and for
nonpolarizable force fields, and (3) the AMOEBA-based aMD
simulations allow metalloenzyme reactive sites to be better
simulated.

■ MATERIAL AND METHODS
Implementation of aMD into OpenMM. Over the years,

different variants of the aMD algorithm have been proposed.8b

In the original implementation,8a aMD was used to only boost
the dihedral potential since many protein conformational
changes are governed by changes in the torsional degrees of
freedom. Subsequent work introduced an aMD version that
boosted the total potential.21 In a more recent implementation,
aMD uses a dual boosting approach that applies one boost
potential only to the torsional terms and another separate boost
potential to the total potential.22 Here, we present the
implementation of all three flavors of aMD into OpenMM
using the CustomIntegrator, an integrator used to implement
arbitrary, user defined integration algorithms. A detailed
summary of the theory of aMD can be found in refs 8a and
22, so that we will only list the most important equations that
were used for the implementation. In aMD, whenever the
system’s potential energy, V(r), falls below a threshold energy,
E, a boost potential, ΔV(r), is added to yield the biased
potential V*(r).
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The total force on the system is calculated as a sum of
constitutive forces, each obtained from the different compo-
nents (“comp”) of the potential energy (e.g., dihedrals). A
general expression can be derived for the aMD forces that is
valid irrespectively of the choice made for the boosted
components, as8a,22
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where F is the total force of the unaccelerated system and Fcomp
is the unaccelerated force of the component that is accelerated
(e.g., dihedrals). The forces for the three flavors of aMD then
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dual boost:

γ γ* = − +F F F F( )torsion tot torsion torsion

Note that, in the dual boost implementation, the dihedral
force is only boosted once. This is in agreement with current
aMD implementations in AMBER and NAMD. The Custom
Integrator allows convenient implementation of aMD, by
scaling the forces at every simulation step according to the
boost. For this, the energy and forces associated with the
component to be boosted have to be retrieved. Then, the total
force is scaled depending on whether the system is above or
below the threshold energy. The aMD CustomIntegrator is
available online at http://wiki.simtk.org/openmm/
VirtualRepository.
Systems and MD Simulations. Three different systems

were studied: the alanine dipeptide (N-acetyl-N′-methyl-
alaninamide), BPTI, and endonuclease IV. Alanine dipeptide
was solvated with a water box containing a buffer region of 10
Å. To eliminate any steric clashes, 100 steps of conjugate
gradient minimization were performed using SANDER.23 A
short 50 ps NPT simulation was used to heat up the system to a
temperature of 300 K. BPTI and Endonuclease IV were
prepared based on PDB entries 5PTI24 and 1QTW,25

respectively. Tleap23 was used to neutralize the systems by
adding 6 Cl− and 6 Na+ counterions respectively and solvate
them with a water box. TIP3P water26 was used for the
nonpolarizable simulations. The fully solvated system contained
17 155 and 52 011 atoms, respectively. Minimization using
SANDER23 was carried out in two stages: an initial
minimization of 1000 steps for the solvent and ions with the
protein restrained by a force constant of 500 kcal/mol/Å2,
followed by a 2500 step minimization of the entire system. A
short initial 20 ps MD simulation with weak restraints (10 kcal/
mol/Å2) on the protein residues was used to heat the system to
a temperature of 300 K.
All production MD simulations for the alanine dipeptide,

BPTI, and endonuclease IV were conducted in the NPT
ensemble at 300 K, using the OpenMM Python-based
application layer.19 Periodic boundary conditions were used,
along with a nonbonded interaction cutoff of 10 Å. Particle
Mesh Ewald was used.27 Nonpolarizable simulations were
performed using the AMBER ff99SBildn force field28 while
polarizable simulations were performed using the AMOEBA
force field.18 For the AMBER simulations, bonds involving
hydrogen atoms were constrained using the SHAKE
algorithm,29 allowing for a time step of 2 fs. A time step of 1
fs was used for the AMOEBA simulations, while no constraints
were used. Mutual polarization was used along with an induced
target ε of 0.01. Energy conservation was monitored and none
of the simulations showed energy drift.
The acceleration level for the aMD method is defined in

terms of E and α, where E is the threshold boost energy and α
is a tuning parameter that determines the shape of the
accelerated potential.8a To define the acceleration parameters,

equilibrium MD simulations were first conducted, with the
AMBER ff99SBildn and AMOEBA force fields, to calculate the
average potential and dihedral energies. For the total potential/
torsional energy term, the boost energy was defined as the
average total/dihedral angle energy plus 3.5 times the number
of residues in the solute, and α was defined as 20% of E. From
previous experience, this empirical formula produces marked
enhancement in the sampling, while allowing for the accurate
reconstruction of the thermodynamic ensemble.9,30 Despite the
explicit inclusion of polarization and anharmonic corrections in
the AMOEBA force field, we have found that similar
parameters can be used to enhance the sampling in AMBER
ff99SBildn and AMOEBA aMD simulations. Table 1
summarizes the boost parameters for our aMD simulations.

■ RESULTS AND DISCUSSION
Our results are presented as follows; first we use the workhorse
of molecular simulations, the alanine dipeptide, to ensure that

the aMD implementation does indeed significantly enhance the
conformational space sampling. We then use BPTI to show that
even at very high acceleration levels, AMOEBA-aMD
simulations are stable, as indicated by low root-mean-square
deviations (RMSD) with respect to the BPTI crystal structure.
Finally, we study the enzyme endonuclease IV to showcase a
large protein system, for which nonpolarizable simulations fail
to accurately describe structural details.

aMD Samples All Conformations of the Alanine
Dipeptide. To test our aMD implementation, four different
types of simulations were performed for alanine dipeptide: 500
ns of conventional MD (cMD), 100 ns of dihedral boost aMD,

Table 1. Acceleration Parameters for the aMD Simulations

system force field αtot [kcal/mol] Etot [kcal/mol] αtorsion [kcal/mol] Etorsion [kcal/mol]

alanine dipeptide ff99SBildn 382.4 −5668.2 2.1 19.5
BPTI ff99SBildn 3431.0 −50 335.4 40.6 821.3

AMOEBA 3431.0 −56 857.9 40.6 310.1
endonuclease IV ff99SBildn 10 402.2 −149 530.1 199.5 4,129.6

AMOEBA 10 402.2 −169 944.8 199.5 1,971.8

Figure 1. φ−ψ free energy maps (in kcal/mol) for alanine dipeptide
calculated from cMD simulations of length (A) 50 ns, (B) 100 ns, (C)
300 ns, and (D) 500 ns.
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100 ns of total energy boost aMD, and 100 ns of dual boost
aMD. The conformational space sampling is evaluated by
deriving a free energy profile from occupancy of states in the
φ−ψ dihedral backbone angle space. Pioneering theoretical
work in the late 1980s and early 1990s established the four free

energy minima accessible to alanine dipeptide in the φ−ψ
conformational space:31 the β region (φ < 0° and 120° < ψ <
180°, corresponding to a β-strand conformation), the αR region
(φ < 0° and −60° < ψ < 60°, corresponding to a right-handed
α-helical conformation), the αL region (φ ∼ 60° and ψ ∼ 60°,
corresponding to a left-handed α-helical conformation) and the
C7

ax region (φ ∼60° and ψ ∼ −80°). For an excellent graphical
representation of the free energy surface please refer to ref 32.
Figure 1 shows the φ−ψ free energy maps calculated from

the cMD simulation and different simulation times. Despite the
simplicity of the alanine dipeptide system, conventional MD
cannot sample the entire φ−ψ dihedral backbone angle space.
Within the first 50 ns, only the two deepest energy minima (β
and αR) are sampled. Within 500 ns sampling is extended to
cover roughly the αL region. No sampling of the C7

ax region is
seen within 500 ns of cMD simulation.
In contrast, dual boost aMD samples the conformational

space much more efficiently. Figure 2 shows the φ−ψ free
energy maps for different simulation times of the dual boost
aMD simulation. Even within 25 ns, all four regions (including
the C7

ax region) are sampled. After 100 ns of dual boost aMD
the reweighted energy profile clearly matches previously
reported profile generated by umbrella sampling.32 This
demonstrates the power of the aMD method to enhance
sampling by orders of magnitude and its correct implementa-
tion in OpenMM. It is worth noting that an explicit boost of
the dihedral energy is often beneficial for peptide and protein

Figure 2. Reweighted φ−ψ free energy maps (in kcal/mol) for alanine
dipeptide calculated from dual boost aMD simulations of length (A)
25 ns, (B) 50 ns, (C) 75 ns, and (D) 100 ns.

Figure 3. RMSD vs time plots for simulations of BPTI. RMSD values over the course of the simulations are shown for eight different BPTI
simulations: MD AMBER ff99SBildn, total energy boost aMD AMBER ff99SBildn, dual boost aMD AMBER ff99SBildn, dihedral boost aMD
AMBER ff99SBildn, MD AMOEBA, total energy boost aMD AMOEBA, dual boost aMD AMOEBA, and dihedral boost aMD AMOEBA.
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simulations. For instance, in this test, only boosting the total
energy was not sufficient to sample the αL and C7

ax regions
within 100 ns (Supporting Information Figure 1), while the
dihedral boost aMD samples the conformational space similar
to the dual boost aMD (Supporting Information Figure 2).
AMOEBA-aMD Simulations of BPTI Do Not Exhibit

Instabilities. The BPTI protein is often used to test new
methods. In particular, it was used to test a previous
implementation of aMD for the Amber code,33 based on
nonpolarizable AMBER force fields. It was shown that, at high
acceleration levels, aMD simulations of ∼500 ns can replicate
all the energy minima of BPTI that were observed by Shaw and
co-workers using millisecond simulations,34 thus leading to an
acceleration in the sampling of 3−4 orders of magnitude.
Here, we were interested to show that BPTI is stable at

similar high acceleration levels in our aMD OpenMM
implementation, with both the AMBER ff99SBildn, and the
AMOEBA force fields. For each force field, a total of four
different simulations were performed: cMD, dihedral boost
aMD, total energy boost aMD and dual boost aMD. The
simulations were run for 100 ns, and 3 ns, for the AMBER
ff99SBildn and AMOEBA force fields, respectively. Simulation
speeds of ∼30 ns/day for AMBER and ∼300 ps/day for
AMOEBA were observed. To allow for a fair comparison, we
also performed a short 1 ns benchmark AMOEBA simulation
using the RESPA integrator (allowing for a 2 fs time step for
the multipole force evaluation, while maintaining a 1 fs time

step for all other forces). The simulations ran at 632 ps/day.
Thus, depending on the parameters, AMOEBA simulations are
about 1−2 orders of magnitude slower than cMD; however,
enhanced sampling with aMD has been previously shown for
BPTI to enhance sampling by several orders of magnitude33

and therefore should be able to bridge this gap. The BPTI
protein stability was judged by its RMSD to the starting
structure. Potential unfolding events or instabilities due to
excessive boosting would show up as an increase in the RMSD.
Figure 3 summarizes the RMSDs for the simulations and shows
that none of the aMD simulations exceeds 3 Å in the RMSD,
which is similar to the unaccelerated simulations.

AMOEBA Improves the Description of Endonuclease
IV. Next, we demonstrate that AMOEBA can achieve more
accurate results than nonpolarizable force field simulations. For
this, we chose to simulate the endonuclease IV metallo-enzyme.
The enzyme has been determined at a very high resolution
(1.02 Å) using X-ray crystallography.25 Figure 4A,B shows the
enzyme with its active site. It contains a stable three zinc cluster
coordinated by histidine, aspartate, and glutamate residues. The
zinc ions form a structure reminiscent of a right triangle with
distinct relative distances. The trinuclear cluster has been
previously studied with hybrid quantum mechanics/molecular
mechanics (QM/MM) simulations and was found to be
stable.35 However, QM/MM simulations are typically time-
consuming and can often probe only the picosecond time scale.
Our initial hypothesis was that AMOEBA simulations should be

Figure 4. Structure of endonuclease IV. (A) Ribbon representation of entire protein with its zinc cluster in the center. (B) Close-up view of the
endonuclease IV active site in the high resolution crystal structure (1QTW, 1.02 Å resolution). The zinc ions are forming a right triangle geometry
coordinated by histidine, aspartate, and glutamate residues. (C) Superposition of the crystal structure active site and the active site after 3 ns of
AMBER ff99SBildn simulation. Crystal structure zinc is shown in gray, while the simulated zinc is shown in green. (D) Superposition of the crystal
structure active site and the active site after 3 ns of AMOEBA simulation. Crystal structure zinc is shown in gray, while the simulated zinc is shown in
red.
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able to more accurately describe the zinc cluster geometry than
nonpolarizable AMBER simulations. To show this, we ran
nonpolarizable and polarizable simulations on the protein and
monitored the relative zinc distances. Again, depending on the
simulation parameters, we observed about 1−2 orders of
magnitude faster sampling for nonpolarizable force field
simulations (∼9 ns/day, for AMBER, versus ∼90 ps/day, for
AMOEBA without RESPA). However, the accuracy was
improved with AMOEBA. For instance, Figure 5 shows the
Zn−Zn distances over the course of the simulations. In all three
independent AMBER ff99SBildn simulations, the relative
positions of the zinc cluster were perturbed within 3 ns,
demonstrating a failure of the nonpolarizable force field to
correctly capture the coordination structure around these
charged ions. In contrast, the AMOEBA force field maintained
the zinc geometry over the course of the 3 ns simulation. Figure
4C,D summarizes the active site residues and zinc positions
after 3 ns of simulation, superimposed with the crystal
structure. The most pronounced perturbation in the non-
polarizable simulations is the displacement of Zn2 away from
the active site, facilitated by the displacement of the
coordinating side chain ASP 229, and transferring the
coordination of Zn2 from HIS 182 to GLN 150.

■ CONCLUSIONS

In this paper, we presented the synergistic combination of the
enhanced sampling method aMD with the polarizable force
field AMOEBA. The implementation of the aMD sampling
method into OpenMM should provide a fast and simple avenue
for studying biomolecular systems that require extensive

sampling (e.g., micro- to milliseconds), in addition to a
polarizable force field. The tests presented here suggest that it is
possible to maintain the accuracy of the AMOEBA polarizable
force field while significantly improving the simulation sampling
efficiency. At the acceleration levels used, the sampling
efficiency for medium size protein simulations is typically
increased by 2−3 orders in magnitude.33,36 Finally, the superior
performance of AMOEBA was demonstrated for describing the
active-site of a zinc metalloenzyme, which is consistent with
previous studies.37 The AMOEBA-aMD implementation takes
full advantage of GPU computing and is publicly available in
OpenMM (https://simtk.org/home/openmm).
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