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Abstract: In plants, calcineurin B-like (CBL) proteins and their interacting protein kinases (CIPK)
form functional complexes that transduce downstream signals to membrane effectors assisting in their
adaptation to adverse environmental conditions. This study addresses the issue of the physiological
role of CIPK9 in adaptive responses to salinity, osmotic stress, and K* deficiency in rice plants.
Whole-plant physiological studies revealed that Oscipk9 rice mutant lacks a functional CIPK9 gene
and displayed a mildly stronger phenotype, both under saline and osmotic stress conditions. The
reported difference was attributed to the ability of Oscipk9 to maintain significantly higher stomatal
conductance (thus, a greater carbon gain). Oscipk9 plants contained much less K* in their tissues,
implying the role of CIPK9 in K* acquisition and homeostasis in rice. Oscipk9 roots also showed
hypersensitivity to ROS under conditions of low K* availability suggesting an important role of
H,O, signalling as a component of plant adaptive responses to a low-K environment. The likely
mechanistic basis of above physiological responses is discussed.

Keywords: calcium signalling; potassium transport; AKT; HAK; reactive oxygen species; ABA;
stomata; CBL; CIPK

1. Introduction

An understanding of plant responses to abiotic stress is vital for the genetic engineer-
ing of climate-resilient crops. This involves understanding the mechanisms by which plants
sense stresses and generate appropriate stress-induced signals, such as changes in the cy-
tosolic free Ca?* and ROS [1-3]. These changes then produce what is known as the “Ca®*
signature” [4,5] triggering a protein phosphorylation cascade that finally targets proteins
directly involved in cellular protection, or transcriptional factors regulating stress-induced
genes [6]. Salinity [7-9], drought [10,11], and K* deficiency [12] have all been shown to
induce transient Ca®* influx, thereby increasing cytosolic Ca?* concentration. This change
in the cytosolic Ca®* levels can be detected by numerous high-affinity calcium sensors. In
higher plants, several families of Ca®* sensors have been recognised, including calmodulin
(CaM) and CaM-related proteins [13,14], Ca?>* dependent protein kinases (CDPKs) [15,16],
and calcineurin B-like (CBL) proteins and their interacting protein kinases (CIPKs) [17].
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CBL—-CIPKs interactions transduce downstream signals to membrane effectors (various
membrane ion channels, pumps, and transporters) which, in turn, facilitate ionic home-
ostasis by controlling ion uptake, long-distance transport, and sequestration [18]. Ten CBL
and 26 CIPK isoforms are present in Arabidopsis, and in rice these numbers are 10 and
30, respectively [19,20]. OsCIPKs genes are highly responsive to external stimuli, with
15,12, 12, and 16 OsCIPKs being induced by drought, salinity, PEG, and ABA treatments,
respectively, in rice [21].

The salt overly sensitive (SOS) pathway is one of the classical examples of a CBL-CIPK
signalling pathway in response to salt stress. SOS3/CBL4 has been identified as a Ca®*
binding protein [17]. In response to salt stress, the transient alleviation in the cytosolic Ca?*
concentration activates SOS3/CBL4, which then interacts with SOS2/CIPK24 to directly
regulate the downstream component of SOS1, a putative Na*/H™" antiporter, with the
final result being the maintenance of low intracellular Na* [22]. The SOS3-SOS2 complex
may also regulate the tonoplast Na*/H" antiporter, assisting in compartmentation of
toxic Na* in the vacuole, thus lowering Na* concentration in the cytosol [23]. In addition,
SOS2/CIPK24 may modulate the plasma membrane H* /Ca?* antiporter (CAX1) to control
intracellular Ca?* homeostasis [24]. Rice OsCIPK24 and OsCBL4 were also able to activate
OsSOS1 in yeast cells [25], although the beneficial effects of such activation on salinity
tolerance was questioned [26].

The ability of plants to maintain cytosolic K* homeostasis is critical to confer both
salinity and drought tolerance [27-29]. The CBL1/CBL9-CIPK23 complex regulates the
AKT1 pathways that play a key role in K* homeostasis under water stress. A loss of
function of Atcipk23 and cbl1/cbl9 results in an increased drought tolerance in Arabidopsis
resulting from the mutants possessing a hypersensitivity of stomata to ABA, which in turn
caused a reduction in transpiration rate [30]. In rice, OsCBL1-OsCIPK23 operates upstream
of OsAKT1, and it has been reported that loss of function of Oscipk23 caused similar
symptoms of K* deficiency as occurred in the Osakt]1 mutant under low K* conditions. This
suggested the critical role of OsCIPK23 in modulating AKT1 activity in K* homeostasis
in rice plants [31]. High affinity K* uptake systems are also regulated by CBL-CIPK
interaction [32].

With the large number of members of CBL-CIPK families, not all of them have been
properly characterized at the functional level. One of these is CIPK9 (Locus At1G01140).
In Arabidopsis, AtCIPK9 expression was ubiquitous in the mature root zone, but less pro-
nounced in the elongation zone [33]. Moreover, its expression was inducible under abiotic
stress (osmotic stress; salinity; cold) as well as under low K* conditions [33]. Atcipk9
mutant plants were hypersensitive to K*-deficient conditions [34], most likely as a conse-
quence of impaired AtHAK5-mediated K* uptake [35]. It was also shown that AtCIPK9
interacts with tonoplast CBL2 and CBL3, to confer K* homeostasis in Arabidopsis [36].
Consistent with this, no significant difference in K* uptake or content was observed in
plants cultivated both in high K* (20 mM), and low K* (0.02 mM) growth media [33]. Other
reported roles of CIPK9 in Arabidopsis include responses to wounding [37], regulation of
Mg homeostasis [38], and growth under high external Mg?* conditions [39], as well as
NHjy-dependent root growth [40]. Although AtCIPK9 and OsCIPK9 are orthologous by
phylogenetic analysis, and have about 79% of identity in protein sequences [41], the role of
CIPKO9 in regulation of K* homeostasis and responses to abiotic stresses in rice has never
been revealed. In this study, we aimed to fill this gap in the knowledge. By conducting a
range of whole-plant physiological and cell-based electrophysiological experiments, here
we demonstrate that Oscipk9 rice mutant, lacking a functional CIPK9 gene, displayed a
mildly stronger phenotype, both under saline and osmotic stress conditions. This difference
was attributed to the ability of Oscipk9 plants to maintain significantly higher stomatal
conductance. OsCIPK9 also played an important role in K* acquisition and homeostasis,
with Oscipk9 roots showing hypersensitivity to ROS under conditions of low K* availability.
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2. Results
2.1. Oscipk9 Mutant Is Mildly Salt-Tolerant

The Oscipk9 mutant showed a significantly (by 47%; p < 0.01) higher dry weight than
the wild type (WT) under control (non-saline condition) (Figure 1A,B). Its dry weight (DW)
was not affected by exposure to moderate salinity (40 mM) for 3 weeks, while WT plants
showed a significant (~24%; p < 0.05) decline (Figure 1B). More severe (80 mM) salinity
treatment caused a further reduction in plant DW that was more pronounced in the Oscipk9
mutant. Stomatal conductance was identical for 0 and 40 mM NaCl treatments between two
lines, but significantly higher in cipk9 knockout under the high saline condition (Figure 1C)
compared with WT. Both lines had the same shoot osmolality under control conditions
(Figure 1D) that progressively increased upon salinity exposure. At all concentrations, the
osmolality was significantly (p < 0.01) lower in the Oscipk9 mutant compared to the WT
(Figure 1D). Overall, this data indicates a mildly salt-tolerant phenotype in Oscipk9 mutant.
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Figure 1. Effects of salinity stress on growth and phenotype of Oscipk9 and WT plants. (A) plant
phenotype under control, mild (40 mM NaCl for 3 weeks) and severe (80 mM NaCl) treatments;
(B) plant dry weight; (C) stomatal conductance; and (D) shoot osmolality. Closed circles—WT; open
circles—Oscipk9 mutant line. Data are the mean + SE (1 = 18). Asterisk denotes significant difference
between WT and cipk9 plants at p < 0.05.

Oscipk9 mutant had a similar shoot Na* (Figure 2A) but much lower (by 43%; sig-
nificant at p < 0.01; Figure 2B) K* content in the shoot when grown under the non-saline
control condition, compared with WT. Exposure to salinity for 3 weeks altered both the
Na* and K* content in both shoots and roots, in both lines. Under moderate salinity, the
shoot Na* content gradually increased, but was not significantly different between the
lines (Figure 2A), while the shoot K* content was not affected and remained similar to the
control level (Figure 2B). Severe (80 mM NacCl) salinity treatment reduced K* content in
Oscipk9, but not in WT shoots (Figure 2B). Shoot Na* content was slightly higher in WT
but not significantly (p< 0.05) different under severe salinity treatment. No significant dif-
ferences were detected in root Na* and K* contents between the lines under the non-saline
condition (Figure 2C,D). The dose-dependent increase in root Na* content was reported
for Oscipk9 plants, while in WT root Na* has “stabilized” at around 150 mM level and did
not increase with increasing salinity (Figure 2C). Root K* content declined in both lines
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in a dose-dependent manner, with no clear difference between Oscipk9 and WT plants
(Figure 2D).
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Figure 2. Effect of salinity on plant ionic composition. (A) shoot Na* content, (B) shoot K* content;
(C) root Na* content; and (D) root K* content. Plants of both lines were grown in a hydroponic
system for 21 days under three NaCl levels (0, 40, and 80 mM NaCl). Closed circles—WT; open
circles—Oscipk9 mutant line. Data are the mean + SE (1 = 6). Asterisk denotes significant difference
between WT and cipk9 plants at p < 0.05.

2.2. Oscipk9 Mutant Performs Better under Osmotic Stress Conditions

Oscipk9 mutant experienced a stronger vegetative growth and produced a larger
number of tillers (Figure 3A) resulting in a significantly (~40%; p < 0.01) higher dry weight
(compared with WT) in plants grown under control conditions (Figure 3B).
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Figure 3. Effect of osmotic stress on growth and phenotype of Oscipk9 and WT plants. Osmotic stress
was induced by adding 11.8% (w/v) of PEG4000 (imposing an osmotic stress of 0.362 MPa) to the
hydroponics growth solution. (A) plant phenotype; (B) plant dry weight; (C) chlorophyl content (SPAD
values); and (D) stomatal conductance. Closed bars-WT; open bars-Oscipk9 mutant line. Data are the
mean =+ SE (1 = 18). Data labelled with different low-case letters is significantly different at p < 0.05.
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No significant (at p < 0.0) difference was reported for either leaf chlorophyll content
(SPAD values; Figure 3C) or stomatal conductance (Figure 3D) between two lines under
control conditions. Osmotic stress (PEG treatment) reduced plant DW in both lines by
~40%, with no significant (p < 0.05) difference in relative DW changes between the lines
(Figure 3B). Chlorophyll content and stomatal conductance decreased slightly in WT but
not Oscipk9 plants (Figure 3C,D, respectively). Shoot Na* and K* contents have both
increased under drought conditions in WT, but remained unchanged in Oscipk9 mutant
(Figure 4A,B). In roots, osmotic stress reduced Na* content slightly in both lines (Figure 4C),
while K* content remained unchanged in WT but declined in stress-exposed Oscipk9 plants
(Figure 4D).
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Figure 4. Effect of osmotic stress on plant ionic composition. (A) shoot Na* content, (B) shoot
K* content; (C) root Na* content; and (D) root K* content. Plants of both lines were grown in a
hydroponic system for 21 days and treated with PEG4000. Closed bars—WT; open bars—Oscipk9
mutant line. Data are the mean + SE (n = 6). Data labelled with different low-case letters is
significantly different at p < 0.05.

2.3. Oscipk9 Mutant Is More Sensitive to Low K* Availability

Low K" availability came with the penalty to Oscipk9 mutant growth as compared to
WT while these plants were more responsive to high K* (Figure 5A). No significant effects
of K* availability on stomatal conductance were found (Figure 5B). Shoot Na* content
remained unchanged regarding K* availability in WT, but increased under conditions of K
deficiency in Oscipk9 mutant (Figure 5C). Root Na* content decreased dramatically in both
lines under luxury K* supply (Figure 5E). Shoot K* content has increased by increasing
K* availability in WT but remained unchanged in Oscipk9 mutant (Figure 5D), and K*
content was consistently higher in WT. In roots, plants grown under low-K* conditions

had significantly (p < 0.05) less K* (Figure 5F), with the lowest K* content reported in
WT plants.



Plants 2021, 10, 1513

6 of 15

A C E
04 - mlowK + +
a S Shoot Na 10 1 @ Root Na
] I:lngh K J
£ 0.3 4 ) b g )
S 5o 31 6 -
Dj = 2 4 c c
5 011 E |
o) = 11 2 4
s : I
> 0> 'g 0 - 0 A L |
a
Oscipk9 g WT  Oscipk9 WT  Oscipk9
[=]
B $D . F .
60 2 Shoot K Root K
™ 400 - a 160 - a
50 4 b a
T 40 1 120 - .
'E 30 N i 80 i
g 20 1 c
£ 10 - l 40 1
g ol ] )l
Oscipk9 Oscipk9 WT Oscipk9

Figure 5. Effects of two K* availability on agronomical and physiological characteristics of WT
Oscipk9 mutant plants. (A) plant dry weight; (B) stomatal conductance; (C) shoot Na* content; (D)
shoot K* content; (E) root Na* content; and (F) root K* content. Closed bars—WT; open bars—
Oscipk9 mutant line. Data are the mean =+ SE (n = 18). Data labelled with different low-case letters is
significantly different at p < 0.05.

2.4. Roots of Oscipk9 Mutant Are More Sensitive to HyO,

Both salinity and osmotic stress results in overaccumulation of reactive oxygen species
that may affect plant ionic homeostasis (hence, growth). These ROS are also known to
interact with Ca?* transport and signalling systems, forming so-called “ROS-Ca?* Hub” [42]
by forming a feedback loop between Ca?*-permeable plasma membrane channels and
NADPH oxidase that generates apoplastic ROS. Given the important role of CIPKs in Ca?*
signalling, we have compared the differences in kinetics of ROS-induced net Ca?* and K*
fluxes between Oscipk9 and WT plants under conditions of various K+ and Ca* availability.

Oxidative stress (5 mM H,O, treatment) triggered massive K* loss from plant roots
under low-K* conditions (Figure 6A,B); this loss was much more pronounced in Oscipk9
mutant (about 2-fold stronger net K* efflux; significant at p < 0.05). In WT, these responses
were independent of Ca?* availability, while in the mutant, low Ca?* availability increased
sensitivity of ROS-activated K*-permeable channels to H,O,. Under luxury K* supply
(10 mM) H,O; treatment did not cause any net K* loss (Figure 6C,D) but instead triggered
a shift towards increased K* uptake. No significant (at p <0.05) effects of Ca®* availability
were detected in this case.

ROS treatment has resulted in an increased Ca?* uptake in plant roots (Figure 7).
No significant difference was found between ROS-induced Ca?* flux responses under
conditions of high-K* supply (Figure 7C,D), while under low-K* conditions, Oscipk9
mutant was more sensitive to ROS treatment (Figure 7A,B).
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Figure 6. Effect of K* and Ca* availability on kinetics of ROS-induced net K* efflux measured from
epidermal mature root cells of Oscipk9 mutant and its WT. ROS stress was imposed by adding 5 mM
H,O, to 5-6-day-old seedlings. (A) high Ca/low K (1.5 mM/0.1 mM) conditions; (B) low Ca/low
K (0.1 mM/0.1 mM) conditions; (C) high Ca/high K (1.5 mM/10 mM) conditions; and (D) low
Ca/high K (0.1 mM/10 mM) conditions. Data are the mean =+ SE (1 = 6). The sign convention is
“efflux negative”. The inserts in the top two panels depict the magnitude of responses in each line.
The sign convention is “efflux negative”. The inserts in the top two panels depict the magnitude
of responses in each line. Open symbols-Oscipk9; closed symbols-WT. Asterisk denotes significant
difference between WT and cipk9 plants at p < 0.05.
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Figure 7. Effect of K* and Ca?* availability on kinetics of ROS-induced net Ca®* fluxes measured
from epidermal mature root cells of Oscipk9 mutant and its WT. ROS stress was imposed by adding
5 mM H,O, to 5-6-day-old seedlings. (A) high Ca/low K (1.5 mM/0.1 mM) conditions; (B) low
Ca/low K (0.1 mM/0.1 mM) conditions; (C) high Ca/high K (1.5 mM/10 mM) conditions; and
(D) low Ca/high K (0.1 mM/10 mM) conditions. Open symbols—Oscipk9; closed symbols—WT.

3. Discussion

The CBL-CIPK interacting complexes transduce various developmental and adaptive
signals to downstream effectors, thus mediating plants responses to environment. In
this work, we have shown that the loss of function in CIPK9 gene resulted in a mildly
salt- and osmotic-stress-tolerant phenotype in rice. Oscipk9 plants accumulated less K*
in the shoot (Figure 4) but possessed higher stomatal conductance (Gs) (Figures 2 and 3).
Oscipk9 roots also showed hypersensitivity to ROS under conditions of low K* availability
(Figures 6 and 7).

3.1. CIPK9 Is Essential for Stomata Operation under Stress Conditions

The loss of functionality in CIPK9 has resulted in mildly salt- (Figure 1) and osmotic
(Figure 3) stress-tolerant phenotypes in rice, which could be related to the ability of Oscipk9
plants to maintain higher Gs values (Figure 1C; Figure 3D) compared with WT; hence, they
assimilate more carbon under conditions of reduced water availability.

Stomata represent the microscopic sphincters on the leaf surface that balance CO,
intake and water loss [43], and the ability of a plant to optimise stomatal aperture is critical
for adaptation to adverse environmental conditions, especially salinity and drought [44].
Each stoma consists of a pair of guard cells, and its aperture is regulated by changes in
the guard cell turgor mediated by rapid fluxes of ions into or out of cell [45]. This is
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achieved by sensing and transducing numerous environmental and internal signals. In the
latter case, ABA is arguably the most prominent second messenger controlling stomata
aperture [46,47]. It was shown that halophytic and glycophytic species (contrasting in their
salinity stress tolerance), possess different baseline ABA levels, and that halophyte stomata
are more sensitive to the fluctuation in ABA content in leaf mesophyll [45].

Early studies have suggested that cipk9-1, a null mutant of CIPK9, was hypersensitive
to ABA during seed germination [48,49]. More recently, Lu et al. [50] have shown that
overexpression of NtCIPK9 from Nitraria tangutorum in Arabidopsis resulted in a higher
germination rate in the presence of NaCl, and they attributed this effect to the regulation
of endogenous ABA levels in plants. These findings suggest a causal link between CIPK9
operation and ABA production/signalling that could potentially explain higher Gs values
in stress-exposed Oscipk9 plants in our study. It has been shown [51] that the functional loss
of the CBL2/3-CIPK9/17 complex in Arabidopsis guard cells resulted in ABA hypersensitive
stomatal closure and enhanced drought tolerance. This hypersensitive response was
attributed to rapid modulation of potassium homeostasis at the tonoplast, presumably
via activity of NHX K*(Na*)/H* exchangers [51] although no supportive evidence was
presented. More recently, Tang and co-authors demonstrated that CIPK9 preferentially
phosphorylates two of its CBL partners, CBL2 and CBL3, and regulates TPK (two-pore
potassium) vacuolar channels involved in remobilization of K* from the vacuole [52]. Taken
together, the data suggests that the higher Gs values and mildly tolerant phenotype of
Oscipk9 plants under water-limiting conditions may be a result of the negative regulation of
tonoplast K* channels in guard cell vacuoles by CIPK9-CBL2/CBL3 complex, downstream
of stress-induced ABA signalling.

3.2. CIPKO9 Is Essential for Rice Responses to Low K* Availability

Plant K* acquisition is mediated by several low- and high-affinity uptake systems; of
these, AKT1 inward-rectifying K* channels and high affinity HAKS5 K* transporters are
considered to be critical [29]. Both are located at the plasma membrane and activated by
CBL-CIPK complexes [53], specifically by CIPK23-CBL1/CBL9 [6,54]. Upon interaction
with one of these CBLs, CIPK23 is recruited to the plasma membrane phosphorylates AKT1
K* channel, so that AKT1-mediated root K* uptake is enhanced [54].

CIPKO9 is also known as a regulator of K* deficiency [55], and the growth of Atcipk9
mutants was negatively affected at low (0.01 mM) K* availability suggesting that CIPK9
may function in plant adaptation to K* starvation [33]. Arabidopsis plants lacking CIPK9
displayed a tolerant phenotype to low-K stress, and it was shown that CIPK9 interacts
with the calcium sensors CBL3 and CBL2 to regulate plant adaptive responses to K*
starvation [38,56]. Here, we show that the loss of CIPK9 in rice also compromises plant
growth under conditions of low- but not high-K availability (Figure 5A). Thus, although
CIPK orthologs from different species can have various roles [50], the essential role of
CIPKO9 in plant adaptation to K* starvation is preserved amongst multiple species.

3.3. CIPK9 Control over K* Translocation and Compartmentalization

Recently, Tang et al. [52] showed that, although cbl2 cbl3 double mutant plants were
extremely sensitive to low-K levels in the medium, they exhibited a significantly higher
K content as compared with the wild type, particularly under low-K conditions. These
findings suggest that it is K* homeostasis, but not uptake per se, that may be affected
by CBL-CIPK interacting complex, suggesting a likely role of CIPK9 in K* translocation
between shoots and roots, especially under low-K conditions [36]. Consistent with these
suggestions are our findings that while shoot K* was not different between Oscipk9 plants
grown under low- and high-K conditions (Figure 5D), a nearly two-fold difference was
observed in plant roots (Figure 5F). It was suggested earlier that the overexpression of
CIPK9, CBL2, and CBL3 may impair root K* uptake from the environment [36]; thus, our
observation of higher root K* content in the mutant plants lacking functional CIPK9 gene
(Figure 5F) are consistent with those reports.
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In a stark contrast to CIPK23, that is localized predominantly at the plasma membrane,
CIPK9 is associated with a tonoplast [6] and, hence, controls plant K* homeostasis by
regulating its transport between vacuolar and cytosolic compartments. Salinity stress
results in a massive K* loss from the root cytosol mediated by a range of depolarization-
and ROS-activated K* channels [28,57]. To maintain normal metabolic activity, this cytosolic
K* depletion needs to be buffered, at the expense of the vacuolar pool, until plants activate
additional K* uptake systems, to regain lost K* [29]. The vacuolar K* pool reserves are
estimated to maintain cytosolic K* homeostasis for ~6 h [28] but need to be precisely
regulated. Recently, Tang et al. [52] identified vacuolar TPK (two-pore K*) channels as
a key player in this process in Arabidopsis and reported their regulation by CBL-CIPK
interaction. Four CIPKs—CIPK3, 9, 23, and 26—were identified as partners of CBL2 and
CBL3 that together regulate K* homeostasis through activating vacuolar K* efflux to the
cytoplasm [52]. We believe that a similar scenario may be applicable to rice plants as well.

3.4. The Loss of Function of OsCIPK9 Results in a Hypersensitivity to ROS under Conditions of
K* Deficiency

Stress-induced calcium “signatures” are crucial for activation of plant adaptive cas-
cades [3] and CBL-CIPK complexes operate as downstream Ca?* sensors in this regu-
lation [6,53]. As a result, activation of K* uptake systems is tightly regulated by Ca?*
(e.g., AKT1 by CBL1-CIPK23 [56,58]). Previous studies on Arabidopsis showed that CIPK9
did not interact with any major plasma membrane-based K* transporters such as AKT1,
HAKS5, AKT2, or SKOR [33]. However, whole-plant phenotypic observations are prone
to possible misinterpretation, due to the functional redundancy of various CBL-CIPK
members. Cell-based phenotyping offers better insights into mechanistic roles of plant
kinases as regulators of membrane transport processes.

Both salinity and drought stresses result in accumulation of ROS species in plant
tissues. Stress-induced ROS production is also reported in response to a broad range
of other abiotic and biotic stresses. In this study, we showed that roots of Oscipk9 also
showed hypersensitivity to ROS under conditions of low K* availability with a two-fold
difference in the magnitude of H,O;-induced K* efflux between mutant and WT plants
(Figure 6). This difference disappeared when plants were exposed to adequate K* supply.
Consistent with these observations, also significant was the difference in the magnitude of
ROS-induced Ca?* fluxes between WT and Oscipk9 roots (Figure 7) under low-K conditions.
These results imply that the loss of function of OsCIPK9 results in a hypersensitivity to
ROS and implements H,O, signalling as a component of plant adaptive responses to
low-K environment.

ROS and Ca?* signals interact in a positive feedback manner forming self-amplifying
loops composed of NADPH oxidase (encoded by RBOH genes) and ROS-activated Ca®*
channels [42]. Plants grown under conditions of K* starvation possess higher basal levels
of H,O5 [59], so activation of a “Ca%*-NADPH hub” will be more pronounced and rapid in
this case. This is reflected in a bigger magnitude of ROS-induced Ca?* uptake and K* loss
in low-K grown plants. The higher sensitivity of Oscipk9 plants to H,O, stimulation may
be related either to the disturbance in Ca?* sensing process or a possible role of CIPK9 in
regulation of NADPH oxidase activity. The specific details of this process are the subject
of separate studies. It should be also kept in mind that H,O; is not the only ROS species
produced in response to abiotic stresses. Other ROS types, such as superoxide or hydroxyl
radicals, are also produced in various intracellular compartments, and might affect plant
metabolism. In this context, understanding the role of CIPK9 in regulation of plant redox
homeostasis and signalling warrants a separate investigation.

4. Materials and Methods
4.1. Plant Material and Growth Conditions

Seeds of rice plants, Oryza sativa L. Japonica cv Dongjin wild type, and its mutant
Oscipk9, were obtained from Dr Chang-deok Han (National Institute of Agricultural
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Biotechnology, Seoul, Korea) and described in detail elsewhere [40]. Seeds were surface-
sterilised with 1% v/v sodium hypochlorite (commercial bleach) for 10 min, and then
thoroughly rinsed with sterile deionised water at least five times. Seeds were sown in
sand, and then incubated at 28 °C and 100% relative humidity, and kept in darkness for
five days, until germination. The seedlings were then transferred to a 5-litre hydroponic
system, consisting of a number of light-tight black plastic containers, each holding 9 plants.
Hoagland solution was used as the growth medium (1.25 mM KNO3; 0.5 mM Ca(NOs),,
0.5 mM MgSOy; 42.5 uM Fe-EDTA; 0.625 mM KH,POy; 0.16 uM CuSOy; 0.38 uM ZnSOy;
1.8 uM MnSQOy; 45 pM H3BOg3; 0.015 uM (NH4)2MO70Oy4; and 0.01 uM CoCl, (pH 5.5-6.0)).
Containers were placed into a climate-controlled glasshouse that was set on a light/dark
cycle of 16/8 h and a day/night temperature of 28/20 °C, and relative humidity of ~80%.
Two mercury vapour lamps (2 x 400 W) were set to provide 16-h days. The experiment
design was a randomised block design with three replicates, with each container (replicate)
holding nine plants for each treatment. The nutrient solution was changed every seven
days. The rice seedlings were exposed to different abiotic stress conditions for 3 weeks, as
described below. Experiments were conducted twice, with consistent results.

4.2. Treatments

Three types of experiments were conducted to study the effect of loss of function
of Oscipk9 on plant’s growth and development, under various environmental conditions.
Firstly, eleven-day-old seedlings were exposed to two levels of salinity (moderate stress,
40 mM; and severe stress, 80 mM NaCl) for three weeks. In the second experiment, osmotic
stress was implemented by addition of 11.8% (w/v) of polyethylene glycol 4000 (PEG4000)
(isotonic to 80 mM NaCl), imposing an osmotic stress of 0.362 MPa. All treatments lasted
for 3 weeks.

4.3. Whole-Plant Physiological Assessment

Chlorophyll content and stomatal conductance were measured on six randomly se-
lected youngest fully expanded leaves of each treatment. All measurements were taken
on a sunny day between 11:00 am and 1:00 pm, to minimize the diurnal influences. The
chlorophyll content was measured using a Minolta Chlorophyll Meter SPAD-502 (Konica
Minolta, Osaka, Japan); a Decagon leaf porometer (Decagon Devices Inc., Pullman, WA,
USA) was used for the stomatal conductance measurements. Plants were then harvested,
and their fresh weight was measured. Plants were then dried at 65 °C in a drier (Unitherm,
Birmingham, UK) and their dry weight was recorded.

4.4. Osmolality and lon Content

Leaf and root osmolality, and K* and Na* contents were determined using the freeze-
thaw method. Harvested root samples were rinsed in 10 mM CaCl, to remove the apoplas-
tic Na*, then blotted dry on tissue paper. Next, the samples were placed into 1.5 mL
microfuge tubes and stored at —20 °C for at least 24 h. The samples were subsequently
thawed, and the sap squeezed from the tissues using a pointed glass rod. A small portion
(10 uL) of these sap samples was used for osmolality determination using a vapour pressure
osmometer (Vapo, Wescor Inc., Logan, UT, USA). The remainder of the sap samples were
diluted x100 times with distilled water and K* and Na* contents of the leaves and roots
were measured using a flame photometer (Model PFP7 flame photometer, Jenway, Bibby
Scientific Ltd., Staffordshire ST15 0SA, UK).

4.5. Non-Invasive Ion Flux Measurements

Net K* and Ca?* fluxes from roots were measured using the non-invasive MIFE
microelectrode system (University of Tasmania, Hobart, Australia). All details on micro-
electrode fabrication and calibration, as well as the theory of MIFE ion flux measurements,
are available from our previous publications [60,61]. Rice seeds were germinated inside
an incubator set at 28 °C and 100% relative humidity. Four different combinations of
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potassium and calcium ions were used in the growth solution: low K* (0.5 mM)/high Ca?*
(1.5 mM), low K* /low Ca?* (0.1 mM), high K* (50 mM) /high Ca?*, and high K*/low Ca?*.
Roots of uniform and healthy 5-6-day-old seedlings were chosen and carefully placed on
the centre of a glass holder and fixed firmly with Parafilm strips on both sides to avoid
root movement during the measurement. The glass holder was then placed inside the
measuring chamber that was partially filled with the bathing medium, BSM (Basal Salts
Medium), consisting of 200 uM NaCl, 100 uM CaCl,, and 200 uM KCI. The pH level of the
BSM solution was maintained at ~5.6. For conditioning, the roots were left in the bathing
solution for approximately 30—60 min. The measuring chamber was then positioned on
a microscope stage, and electrode tips aligned and positioned next to the root surface, at
a distance of 50 um. Basal net Ca?>* and K* fluxes were recorded for 5-7 min from the
mature root epidermis (ca 10 mm from the root tip). Then, 5 mM of H,O, was administered
to plants, and transient responses were recorded for another 25-30 min. The ion fluxes
were then calculated using MIFEFLUX software, and the resulting data imported to an
Excel spreadsheet for further analysis. To ensure consistency of results, plants were grown
in several batches so data for each treatment came from plants grown in 3 or 4 batches
(e.g., independent treatments).

4.6. Statistical Analysis

All data used in this paper are expressed as mean values £ SE. The statistical signifi-
cance of mean and standard error values was determined by the t-test at p < 0.05 using
SPSS software version 20 (IBM support portal, Pullman, WA, USA).

5. Conclusions

The findings of this study revealed that the calcineurin B-like protein-interacting pro-
tein kinase 9 (CIPK9) is involved in regulation of K* homeostasis in rice plants, particularly
under the K*-deficient condition. The loss of function of CIPK results in a hypersensitivity
to ROS in plant roots and mild salt- and osmotic-stress-tolerant phenotypes, attributed to
the better control of stomata. Understanding the downstream signalling pathway and the
role of CIPK9 in the cross-talks between ROS and ABA signalling may be instrumental
for engineering plants with improved salinity and drought tolerance, to reduce impact of
climate-driven abiotic stresses of crop production and food security.
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