SCIENTIFIC REPORTS

Received: 14 February 2016 Accepted: 12 April 2016 Published: 27 April 2016

OPEN Low-temperature catalytic oxidative coupling of methane in an electric field over a Ce-W-O catalyst system

Kei Sugiura, Shuhei Ogo, Kousei Iwasaki, Tomohiro Yabe & Yasushi Sekine

We examined oxidative coupling of methane (OCM) over various Ce–W–O catalysts at 423 K in an electric field. $Ce_2(WO_4)_3/CeO_2$ catalyst showed high OCM activity. In a periodic operation test over $Ce_2(WO_4)_3/CeO_2$ CeO₂ catalyst, C₂ selectivity exceeded 60% during three redox cycles. However, Ce₂(WO₄)₃/CeO₂ catalyst without the electric field showed low activity, even at 1073 K: CH₄ Conv., 6.0%; C₂ Sel., 2.1%. A synergetic effect between the Ce₂(WO₄)₃ structure and electric field created the reactive oxygen species for selective oxidation of methane. Results of XAFS, in-situ Raman and periodic operation tests demonstrated that OCM occurred as the lattice oxygen in Ce₂(WO₄)₃ (short W–O bonds in distorted WO₄ unit) was consumed. The consumed oxygen was reproduced by a redox mechanism in the electric field.

Natural gas is being discovered in many countries around the world. The United States and China have recently started to extract large amounts of shale gas. Nevertheless, the state of natural gas, especially methane, at room temperature and atmospheric pressures is gaseous. Therefore, it is transported using gas pipelines or LNG systems. Small and medium-sized natural gas fields have difficulty using such methods. Therefore, efficient conversion of methane to valuable chemicals and fuels is necessary for such cases. Methane conversion processes are categorized into two methods: selective oxidation of methane to useful hydrocarbons or oxygenates, and production of syngas by steam reforming, dry reforming, or partial oxidation of methane. We specifically examined direct catalytic methane conversion to C_2 hydrocarbons by oxidative coupling of methane (OCM)¹⁻⁵. The formula can be described as presented below (eq. 1).

$$CH_4 + 1/2O_2 \rightarrow 1/2C_2H_4 + H_2O(\Delta H_{298}^\circ = -140.1 \text{ kJ mol}^{-1})$$
 (1)

Because of its stable tetrahedral structure, methane activation requires temperatures higher than 973 K. Furthermore, the reactivity of ethylene is higher than that of methane. Consequently, C2 selectivity decreases because gas-phase non-selective and sequential oxidation with oxygen to form CO and CO₂ is unavoidable at such high temperatures. Therefore, it is extremely difficult to obtain high C₂ yield with OCM.

To resolve the difficulties described above, we adopted a non-conventional catalytic system, a catalytic reaction in an electric field, in anticipation of methane activation at low temperatures. Results show that various low-temperature catalytic reactions such as methane steam reforming⁶⁻¹⁰ can proceed in the electric field. We also reported that OCM proceeded at a low temperature (423 K) in the electric field over Sr-La₂O₃ (Sr/La = 1/20) catalyst^{11,12}. Although the Sr-La₂O₃ catalyst showed high C₂ selectivity (49.0%), CH₄ conversion remained low (8.9%) in the electric field with imposition of 3.0 mA of current. Further catalyst development is necessary for OCM in an electric field at low temperatures.

As described in this paper, we specifically examined Ce-W-O system oxide catalysts, including Keggin-type heteropoly acids (HPAs) as catalysts, for improving OCM activity in the electric field. HPAs are inorganic metal-oxide anion clusters having multi-electronic redox properties^{13,14}. Keggin-type heteropolytungstates are polyoxotungstates containing one central heteroatom X surrounded by 12 condensed W-O octahedra to form $[XW_{12}O_{40}]^{n-}$ (X: P (n=3), Si (n=4), etc.). Keggin-type HPAs and the substituted Keggin-type HPAs show unique redox and catalytic properties^{15–23}. Many studies of the partial oxidation of methane using HPAs have been conducted using these properties of HPAs. J. B. Moffat *et al.*^{24–27} reported the partial oxidation of methane

Department of Applied Chemistry, Waseda University, 3-4-1, Okubo, Shinjuku, Tokyo, 169-8555 Japan. Correspondence and requests for materials should be addressed to S.O. (email: ogo@aoni.waseda.jp)

.....

into CO, HCHO, and CH₃OH (oxidant: O₂ and N₂O) over HPAs/SiO₂, but the conversion of methane was low (approx. 5%, 843 K). Mizuno *et al.*²⁸⁻³¹ reported selective partial oxidation of propane with O₂ over Cs_{2.5}Fe_{0.08}H_{1.26} PVMo₁₁O₄₀. The yield of acrylic acid was 13% at 653 K. For the partial oxidation of methane, the conversion of methane was 0.2%; the catalyst showed almost no activity. Mizuno *et al.* concluded that the order of C–H bond strength is C₃H₈ < C₂H₆ < CH₄ and that the difference in the activity for lower alkane conversions is attributable to the C–H bond strength.

Based on the discussion presented above, we investigated application of the electric field to Ce–W–O system catalysts including HPAs for low-temperature methane conversion. Important findings included the following: 1) 40 wt%TBA-PW₁₂O₄₀/CeO₂ catalyst showed high OCM activity only in the electric field. The structure was changed to Ce₂(WO₄)₃/CeO₂. 2) The Ce₂(WO₄)₃ structure, which functioned as an active site structure for selective oxidation of methane, worked only in an electric field. 3) Short W–O bonds of the distorted WO₄ unit in Ce₂(WO₄)₃ was an active site in the electric field; OCM occurred by a redox mechanism.

Results and Discussion

Activity tests over TBA-HPAs/CeO₂ catalysts. First, catalytic oxidative coupling of methane (OCM) over various Ce–W–O oxide system catalysts including 40 wt%TBA-PW₁₂O₄₀/CeO₂ (TBA: tetrabutylammonium) without an electric field was conducted at 573–1073 K (Supplementary Information Table S1). TBA-PW₁₂O₄₀/CeO₂ catalyst showed low OCM activity (CH₄ Conv., 5.0%; C₂ Sel., 3.5%) without the electric field, even at the high temperatures of 1073 K.

Next, we evaluated the effects of an electric field on OCM activity over various catalysts including TBA-PW₁₂O₄₀/CeO₂ catalyst (Supplementary Information Tables S2 and S3). TBA-PW₁₂O₄₀/CeO₂ catalyst showed high OCM activity (CH₄ Conv., 52.8%; C₂ Sel., 32.0%; C₂ Yield, 16.9% at imposed current 7.0 mA) in the electric field. Bare CeO₂ catalyst showed high CH₄ conversion (28.2%), but CeO₂ contributed to complete oxidation of methane to produce CO₂ with 98% selectivity in the electric field. Results show that the OCM activity of TBA-PW₁₂O₄₀/CeO₂ was derived from the supported TBA-PW₁₂O₄₀. However, bare TBA-PW₁₂O₄₀ was unsuitable for imposing the electric field because of its electric conductivity.

As-made and after-reaction samples were characterized with Raman, XRD, and FT-IR (Supplementary Information Figs S1–S3). As-made samples were attributed to TBA-PW₁₂O₄₀ and CeO₂. After reaction, the peaks corresponding to TBA-PW₁₂O₄₀ disappeared. New peaks, which were attributable to WO₃ and Ce₂(WO₄)₃, appeared. Therefore, it is likely that these oxides contribute to OCM activity.

To confirm the OCM activity for these oxides without an electric field, OCM over TBA-PW₁₂O₄₀/CeO₂ catalyst at 573–1073 K without an electric field was conducted after reaction with an electric field (423 K, 3.0 mA) to form the oxides described above (Supplementary Information Fig. S4). With an electric field, TBA-PW₁₂O₄₀/CeO₂ catalyst showed the following: CH₄ Conv., 14.1%; C₂ Sel., 44.4%. After turning off the electric field, CH₄ and O₂ conversion and C₂ selectivity decreased dramatically at 1073 K: CH₄ Conv., 2.1%; C₂ Sel., 5.0%. Results show that the formed oxides can produce reactive oxygen species and activate methane only when an electric field is applied.

Clarification of the active site structure. As described in the section above, the supported TBA-PW₁₂O₄₀ on CeO₂ was converted to Ce₂(WO₄)₃ and WO₃ during OCM with an electric field. The formed oxides might play an important role for OCM with an electric field. Therefore, OCM activities over Ce₂(WO₄)₃/CeO₂, WO₃/CeO₂, Ce₂(WO₄)₃, and WO₃ catalysts were investigated in the electric field. Structures of the supported and the unsupported oxide catalysts were confirmed using Raman and XRD measurements (Fig. 1(a) and Supplementary Information Fig. S5(a)). Results of activity tests over these oxides at 423 K with an electric field are presented in Table 1, which shows that Ce₂(WO₄)₃/CeO₂, WO₃/CeO₂ and Ce₂(WO₄)₃ showed OCM activity, although WO₃

Catalysts	$T_{tc}^{\ b}/K$	Voltage/KV	CH ₄ Conv./%	O ₂ Conv./%	C ₂ Sel./%	C ₂ Yield/%	Field intensity/V $\rm mm^{-1}$	Faradiac number/—
TBA-PW ₁₂ /CeO ₂	689	1.3	14.9	20.6	43.4	6.4	260	83.3
$Ce_2(WO_4)_3/CeO_2$	649	0.9	13.6	18.5	39.0	5.3	225	73.9
WO ₃ /CeO ₂	634	0.8	14.3	20.8	32.4	4.6	145	74.0
$Ce_2(WO_4)_3$	659	0.7	9.7	11.6	41.2	4.0	189	53.3
WO ₃	484	0.2	0.0	2.5	0.0	0.0	54	0.2

Table 1. Catalytic activities over various oxide catalysts in the electric field^a. ^aFeed gas,

 $CH_4:O_2:Ar = 25:15:60$ SCCM; input current, 3.0 mA; catalyst weight, 100 mg; furnace temperature, 423 K. ^bCatalyst bed temperature measured using a thermocouple.

.....

Conditions	External temp./K	CH ₄ Conv./%	O ₂ Conv./%	C ₂ Sel./%	C ₂ Yield/%
with EF $(3.0 \text{ mA})^a$	423 (649) ^c	13.6	18.5	39.0	5.3
without EF ^b	573	0.0	0.5	0.0	0.0
	673	0.0	0.7	0.0	0.0
	773	0.0	1.6	0.0	0.0
	873	0.1	2.5	0.0	0.0
	973	0.5	2.1	0.0	0.0
	1073	6.0	14.8	2.1	0.1

Table 2. Effect of reaction field on catalytic activity over $Ce_2(WO_4)_3/CeO_2$ with and without an electricfield. "Feed gas, $CH_4:O_2:Ar = 25:15:60$ SCCM; input current, 3.0 mA; catalyst weight, 100 mg; furnacetemperature, 423 K. "Feed gas, $CH_4:O_2:Ar = 25:15:60$ SCCM; catalyst weight, 100 mg; furnace temperature,573–1073 K. "Catalyst bed temperature measured using a thermocouple.

.....

showed no OCM activity. Actually, $Ce_2(WO_4)_3/CeO_2$ showed the following for T_{tc} of 649 K: CH_4 Conv., 13.6%; C_2 Sel., 39.0%. For T_{tc} of 634 K, WO_3/CeO_2 showed the following: CH_4 Conv., 14.3%; C_2 Sel., 32.4%. Also, $Ce_2(WO_4)_3$ showed the following for T_{tc} of 659 K: CH_4 Conv., 9.7%; C_2 Sel.: 41.2%. Additionally, WO_3 catalyst showed no OCM activity even at almost the same temperature (around 650 K) or at almost the same input power (around 2.5 W) as the other catalysts (Supplementary Information Tables S4 and S5). $Ce_2(WO_4)_3/CeO_2$ catalyst showed the higher OCM activity than TBA-PW₁₂/CeO₂ catalyst at almost the same input power (2.6–2.7 W) (Supplementary Information Tables S4).

The structures of $Ce_2(WO_4)_3/CeO_2$, WO_3/CeO_2 , $Ce_2(WO_4)_3$, and WO_3 catalysts before and after reaction with electric field were analyzed using Raman spectroscopy and XRD (Fig. 1(b) and Supplementary Information Fig. S5(b)). As shown in Fig. 1(b), the structures of $Ce_2(WO_4)_3/CeO_2$, $Ce_2(WO_4)_3$, and WO_3 after reaction with the electric field were not markedly different from as-made. However, the spectrum of WO_3/CeO_2 after reaction with an electric field differed considerably from as-made. The Raman spectrum showed that W species in WO_3/CeO_2 changed to $Ce_2(WO_4)_3$ from WO_3 after reaction in the electric field. Supplementary Information Fig. S5 (XRD patterns) presents similar results. It is conceivable that the formation of $Ce_2(WO_4)_3$ proceeded as a solid–solid reaction between CeO_2 and WO_3 in the reaction with an electric field³². In light of the activity test over WO_3/CeO_2 , one can infer that the $Ce_2(WO_4)_3$ formed on WO_3/CeO_2 activated methane and that it showed OCM activity. Therefore, activity tests and characterizations demonstrated that the active site structure for OCM with the electric field was $Ce_2(WO_4)_3$. Moreover, the active site structure, $Ce_2(WO_4)_3$, showed stable OCM activity for at least one hour (Supplementary Information Fig. S6).

Contribution of the active site to OCM activity. To elucidate the contribution of the active site to OCM activity, OCM at 573–1073 K over $Ce_2(WO_4)_3/CeO_2$ catalyst was conducted without an electric field. Results of activity tests (573–1073 K) are presented in Table 2. In the reaction at 1073 K without the electric field, the catalyst showed results (CH₄ Conv., 6.0%; C₂ Sel., 2.1%) that were much lower than those in the reaction with the electric field at external temperature of 423 K (T_{tc} measured catalyst bed temperature by thermocouple: 649 K): CH₄ Conv., 13.6%; C₂ Sel., 39.0%. These results demonstrate that $Ce_2(WO_4)_3/CeO_2$ catalyst can produce reactive oxygen species and activate methane only when an electric field is applied.

In the reaction with an electric field, the catalyst bed temperature increased by Joule heating. Therefore, to elucidate the influence of Joule heating on OCM in the gas phase, the temperature dependency of OCM in the electric field was evaluated. Table 3 presents the activities of OCM over $Ce_2(WO_4)_3/CeO_2$ at 423, 673, and 873 K with the electric field (3.0 mA). C_2 selectivity and C_2 yield decreased in association with increasing furnace temperature. This reduction caused by combustion of C_2 species with O_2 in gas phase because O_2 conversion increased in proportion to increasing temperature. Therefore, OCM in the gas phase is not promoted by Joule heating from the electric field. The effect of Joule heating by an electric field is unimportant in the system. In other words, because the catalyst was able to activate methane at a low gas-phase temperature, C_2 selectivity was high in the OCM with the electric field at low temperature. The same trend was obtained in the case of electric power fixing to normalize the electric factor (Supplementary Information Table S6).

Furnace temp./K	$T_{\rm tc}^{\ b}/{ m K}$	Voltage/kV	CH ₄ Conv./%	O ₂ Conv./%	C ₂ Sel./%	C ₂ Yield/%	Field intensity/V $\rm mm^{-1}$
423	649	0.9	13.6	18.5	39.0	5.3	225
673	793	0.6	7.5	25.5	38.4	2.9	146
873	931	0.3	4.7	31.5	21.4	1.0	71

Table 3. Temperature dependency over $Ce_2(WO_4)_3/CeO_2$ in the electric field^a. ^aFeed gas, $CH_4:O_2:Ar = 25:15:60$ SCCM; input current, 3.0 mA; catalyst weight, 100 mg; furnace temperature, 423, 673, 873 K. ^bCatalyst bed temperature measured using a thermocouple.

Figure 2. Influence of W/F_{CH4} on catalytic activity for OCM over Ce₂(WO₄)₃/CeO₂ in the electric field (423 K, 3.0 mA): CH₄/O₂ = 1.67; \bigcirc , CH₄ Conv.; \square , O₂ Conv.; \blacklozenge , C₂ Sel.

Next, to clarify the reaction mechanism, the influence of contact time (W/ F_{CH4}) on OCM activity over Ce₂(WO₄)₃/CeO₂ in the electric field was investigated. As presented in Fig. 2, CH₄ conversion and O₂ conversion increased and C₂ selectivity decreased concomitantly with increasing contact time. The decrease of C₂ selectivity resulted from combustion of C₂ hydrocarbons with O₂ in gas phase.

Figure 3 shows the relation between CH₄ conversion and C_2H_4 , C_2H_6 , and C_2H_2 selectivity over Ce₂(WO₄)₃/CeO₂ in the electric field (423 K, 3.0 mA). As shown in Fig. 3, as CH₄ conversion approaches 0%, C_2H_4 and C_2H_6 selectivity increase and C_2H_2 selectivity decreases. In the range of very low CH₄ conversion, production of C_2H_4 and C_2H_6 were the main reactions. One can infer that methyl radical and carbene were produced on the catalyst surface in the electric field. Accordingly, $Ce_2(WO_4)_3$ can extract one or two H atoms from CH₄ and produced methyl radical and carbene. However, C_2H_2 selectivity increased concomitantly with increased CH₄ conversion up to 15% and then decreased. These results suggest that C_2H_2 was generated through oxidative dehydrogenation of C_2H_4 or through coupling of CH species, which was formed from CH₄ with electric energy³³; then it was oxidized to CO and CO₂.

To confirm that reactive oxygen species are formed on the catalyst surface in the electric field, the periodic operation test at 473 K over $Ce_2(WO_4)_3/CeO_2$ catalyst was conducted with the electric field. Results of activity tests are presented in Table 4. The results were the activities at 2 min after from methane+Ar supply. Table 4 shows that the C_2 selectivity was higher than 60% and that it was maintained during three cycles. When increasing the CH₄ conversion by increasing the contact time, C_2 selectivity was higher than 65% and was maintained during three cycles. However, in the periodic operation test without an electric field at 1073 K, C_2 selectivity was very low; CO and CO₂ were mainly formed (Supplementary Information Table S7). These results demonstrate that reactive oxygen species suitable for OCM were formed on the catalyst surface in the electric field. The synergic effect of $Ce_2(WO_4)_3$ and electric field created the reactive oxygen species for selective oxidation of methane and activated methane because the active site structure for OCM with the electric field was $Ce_2(WO_4)_3$.

In-situ Raman over $Ce_2(WO_4)_3/CeO_2$ with and without electric field. Many researchers have reported that Na_2WO_4 - Mn_2O_3/SiO_2 catalyst has high OCM activity^{2,34}. A short W–O bond in the distorted WO_4 unit is proposed as the active site of Na_2WO_4 - Mn_2O_3/SiO_2 . This W–O bond is observed at 927 cm⁻¹ in Raman spectrum³⁵. Specific examination of the $Ce_2(WO_4)_3$ structure reveals that it has WO_4 units of two kinds. Both are physically distorted. It is likely that W–O bonds in $Ce_2(WO_4)_3/CeO_2$ work as an active site for OCM in the electric field. Comparison of $Ce_2(WO_4)_3$ with Na_2WO_4 reveals that $Ce_2(WO_4)_3$ has a stable structure and short W–O bonds in the distorted WO_4 unit, which are observed at 949 cm⁻¹ and 931 cm^{-1 32}. We conducted *in-situ* Raman measurements over $Ce_2(WO_4)_3/CeO_2$ in the electric field to clarify the W–O bond behavior in the electric field. Figure 4 portrays Raman spectra with and without the electric field. The peak positions of the short W–O bonds

Figure 3. Relation between CH₄ conversion and C₂H₄, C₂H₆, C₂H₂ selectivity over Ce₂(WO₄)₃/CeO₂ in the electric field (423 K, 3.0 mA): CH₄/O₂ = 1.67; \bigcirc , C₂H₄; \square , C₂H₆; \blacklozenge , C₂H₂.

CH ₄ flow rate/SCCM	Cycle number/-	$T_{\rm tc}^{\rm c}/{\rm K}$	Voltage/V	CH ₄ Conv./%	C ₂ Sel./%	CO _x Sel./%	C ₂ Yield/%	Field intensity/V mm ⁻¹
25 ^a	1	577	0.2	0.02	60.0	40.0	0.01	54
	2	603	0.2	0.06	73.0	27.0	0.04	54
	3	593	0.2	0.08	63.2	36.8	0.05	54
5 ^b	1	522	0.2	2.6	74.4	25.6	1.9	48
	2	520	0.3	1.4	67.4	32.6	0.9	71
	3	515	0.1	1.4	70.6	29.4	1.0	24

Table 4. Results of periodic operation test (after 2 min from CH₄ supply) over Ce₂(WO₄)₃/CeO₂ in the electric field. ^aFeed gas, O₂:Ar = 5:50 SCCM, CH₄:Ar = 25:50 SCCM; input current, 7.0 mA; catalyst weight, 100 mg; furnace temperature, 473 K. ^bFeed gas, O₂:Ar = 5:50 SCCM, CH₄:Ar = 5:50 SCCM; input current, 3.0 mA; catalyst weight, 100 mg; furnace temperature, 473 K. ^cCatalyst bed temperature measured using a thermocouple.

.....

in distorted WO₄ unit are summarized in Supplementary Information Table S8. Figure 4 shows that the spectra of Ce₂(WO₄)₃/CeO₂ with an electric field (Fig. 4c–e) differed from inert (Fig. 4a) and the peak of W–O bonds shifted to a lower wavenumber and broadened. From Supplementary Information Table S8, the peak shift of W–O peaks in the electric field was about 7–10 cm⁻¹. The shift and broadening of the W–O peaks were attributed to the electric field because the spectrum without electric field after imposing electric field in CH₄ + O₂ flow (Fig. 4f) was almost identical to that of the spectrum without an electric field under inert (Fig. 4a). These results suggest that the Ce₂(WO₄)₃/CeO₂ structure was distorted and that the W–O bonds were weakened by the electric field. It acted as the reactive oxygen suitable for selective oxidation of methane to C₂ hydrocarbons. For comparison, the Raman spectrum over Ce₂(WO₄)₃/CeO₂ at 603–703 K without an electric field. The shift of W–O peaks was about 2–3 cm⁻¹, indicating a small effect of Joule heat from the electric field on W–O bond activation. These results imply that W–O bond activation is attributable mainly to the electric field and that the W–O bond activated by the electric field functioned as an active site for OCM in the electric field.

Next, XAFS spectra were recorded. The results are presented in Supplementary Information Figs S7 and S8 and Table S9. Regarding the coordination number of W–O bonds in $Ce_2(WO_4)_3$ from XAFS measurements, the catalyst after 1 cycle in periodic operation test in the electric field showed a smaller coordination number than in the as-made material and after O₂ supply in the periodic operation test in the electric field. This result supports our inference that surface oxygen of $Ce_2(WO_4)_3$ activated by the electric field was consumed by methane. Therefore, results of XAFS, *in-situ* Raman, and periodic operation tests demonstrated that OCM which occurred as lattice oxygen in $Ce_2(WO_4)_3$ (short W–O bonds in distorted WO₄ unit) was consumed and reproduced by the redox mechanism. A possible reaction mechanism is described in Supplementary Information Fig. S9. In addition, redox reaction of Ce cation ($Ce^{3+} \leftrightarrow Ce^{4+} + e^{-}$) might be also responsible for the OCM reaction.

Figure 4. Raman spectra of $Ce_2(WO_4)_3/CeO_2$ with and without electric field: (a) inert at room temperature, (b) without EF in air at 603–703 K, (c) 6.0 mA in air (0.69 kV), (d) 6.0 mA in CH₄ (0.73 kV), (e) 6.0 mA in CH₄ + O₂ (0.67 kV), and (f) without EF after (e).

Conclusion

Oxidative coupling of methane (OCM) over 40 wt%TBA-PW₁₂O₄₀/CeO₂ in the electric field was conducted. The catalyst showed high OCM activity, although the catalyst showed extremely low OCM activity, even at the high temperature of 1073 K without an electric field. After reaction with the electric field, Raman spectra confirmed that the structure of TBA-PW₁₂O₄₀/CeO₂ catalyst was changed to Ce₂(WO₄)₃/CeO₂.

Then, OCM activities over $Ce_2(WO_4)_3/CeO_2$, WO_3/CeO_2 , $Ce_2(WO_4)_3$, and WO_3 catalysts in an electric field (3.0 mA) were investigated to clarify the structure of the active site. $Ce_2(WO_4)_3/CeO_2$, WO_3/CeO_2 and $Ce_2(WO_4)_3$ catalysts showed OCM activity; WO_3 showed no OCM activity. After reaction with the electric field, Raman spectra showed that W species in WO_3/CeO_2 changed to $Ce_2(WO_4)_3$ from WO_3 . Therefore, the active site structure for OCM with the electric field was $Ce_2(WO_4)_3$.

Also, $Ce_2(WO_4)_3/CeO_2$ catalyst showed extremely low OCM activity at 1073 K. In the periodic operation test over $Ce_2(WO_4)_3/CeO_2$ catalyst, C_2 selectivity was higher than 60% and was maintained during three cycles. Therefore, synergic effects of $Ce_2(WO_4)_3$ and the electric field created the reactive oxygen species suitable for selective oxidation of methane, activated methane, and progressed OCM only when an electric field was applied.

Results of XAFS, *in-situ* Raman and periodic operation test demonstrated that OCM occurred using the lattice oxygen of $Ce_2(WO_4)_3$ (short W–O bonds in distorted WO₄ unit), which were consumed and reproduced by the redox mechanism in the electric field.

Methods

Catalyst preparation. Tetrabutylammonium (TBA) salt of Keggin-type HPAs (denoted as TBA-HPAs), such as $(TBA)_n[PW_{12-x}V_xO_{40}]$ (x = 0, 1, 2; n = 3, 4, 5), were prepared according to the published procedure with some modifications^{36–39}. They were analyzed using IR spectroscopy (*see* Supplementary Information). As a reference catalyst, WO₃ (Kanto Chemical Co. Inc.) was used as supplied. All other chemicals were reagent-grade; they were used as supplied.

Keggin-type TBA-HPAs supported on CeO₂ (JRC-CEO-1) catalysts were prepared by impregnation with acetone as the impregnation solvent. The loading amount of TBA-HPAs was 40 wt%. First, acetone (30 mL) and CeO₂ (0.6 g) were added to a 300 mL eggplant flask and were stirred for 2 h using a rotary evaporator. Subsequently, TBA-HPAs (0.4 g) dissolved into acetone (10 mL) were added to the flask and were stirred for 2 h again. The resulting suspension was dried. Then the resulting solid was dried overnight at 393 K.

 WO_3/CeO_2 catalyst containing 11.9 wt% W was prepared using impregnation with water as the impregnation solvent, as described in a previous report³². An ammonium metatungstate hydrate ((NH₄)₆H₂W₁₂O₄₀·H₂O) was used as a precursor. After impregnation, the resulting suspension was dried. Then the resulting solid was dried at 393 K overnight, followed by calcination for 3 h in air at 773 K under a ramping rate of 0.5 K min⁻¹.

 $Ce_2(WO_4)_3/CeO_2$ catalyst containing 11.9 wt% W was prepared by impregnating CeO_2 with an aqueous solution of ammonium metatungstate hydrate using a similar method to that for WO₃/CeO₂, except that the calcination temperature was 1173 K³². As a reference, unsupported $Ce_2(WO_4)_3$ was prepared using a complex method combining ethylenediamine tetraacetic acid and citrate ions, as described in previous reports^{40,41}.

Activity test. Catalytic activity tests were conducted with a fixed bed flow-type reactor equipped with a quartz tube (4.0 mm i.d.). A schematic image of the reaction system is presented in Supplementary Information Fig. S10. The catalyst was sieved into $355-500 \,\mu$ m. Then 100 mg of it was charged in the reactor. The reactant feed gases were methane, oxygen, and Ar (CH₄: O₂: Ar = 25: 15: 60, total flow rate: 100 SCCM). The effect of contact time (W/F_{CH4}) was investigated by changing the total flow rate. The standard W/F_{CH4} was 1.6 g_{cat} h mol⁻¹. For the reaction in the electric field, two stainless steel electrodes (2.0 mm o.d.) were inserted contiguously into the catalyst bed in the reactor. The electric field was controlled using a constant current (3, 5, or 7 mA) with a DC power supply. The imposed voltage depended on the electric properties of the catalyst. Current and voltage profiles were measured using an oscilloscope (TDS 3052B; Tektronix Inc.). The reactor temperature was set to 423 K to avoid the condensation of water produced by the reactions, except for reactions that used no electric field. Product gases after passing a cold trap were analyzed using a GC-FID (GC-14B; Shimadzu Corp.) with a Porapak N packed column and methanizer (Ru/Al₂O₃ catalyst), and using a GC-TCD (GC-2014; Shimadzu Corp.) with a molecular sieve 5A packed column. The respective calculation formulae for conversion, C₂ yield, C₂ selectivity, and Faradaic number in this study are shown below (eqs 2–6).

$$CH_4 Conversion (\%) = \frac{Carbon moles of (CO, CO_2, C_2H_4, C_2H_6 and C_2H_2)}{Carbon moles of input methane} \times 100$$
(2)

$$O_2 \text{ Conversion (\%)} = \frac{\text{Consumption moles of } O_2}{\text{Input oxygen moles}} \times 100$$
(3)

$$C_2 \text{ Yield (\%, C-based)} = \frac{\text{Carbon moles of } (C_2H_4, C_2H_6 \text{ and } C_2H_2)}{\text{Carbon moles of input methane}} \times 100$$
(4)

$$C_2 \text{ Selectivity (\%, C-based)} = \frac{C_2 \text{ Yield}}{CH_4 \text{ Conversion}} \times 100$$
(5)

$$Faradaic number = \frac{Carbon moles of reacted methane}{Moles of input electron}$$
(6)

A periodic operation test was conducted to elucidate surface active species on the catalyst in the following steps. In the first step, oxygen and Ar were supplied to the reactor with an electric field for 10 min for oxidation of the catalyst surface. For the second step, residual oxygen in the gas phase of the reactor was removed with Ar purge for 5 min. For the third step, methane and Ar were supplied to the reactor with an electric field for 12 min to evaluate the oxidation catalysis of the surface oxygen species on the catalyst. As the final step, Ar purge was conducted for 20 min to remove all residual gases. The steps described above were repeated for three cycles. Product gases were analyzed at 5 min after oxygen+Ar supply, and at 2 and 12 min after methane +Ar supply (CO_x and desorbed CH_4 were detected at 5 min after from oxygen+Ar supply and no products were detected at 12 min after

from methane + Ar supply). Gas flow was O_2 : Ar = 1: 10, total 55 mL min⁻¹ (for oxidation of the catalyst surface) and CH₄: Ar = 1: 10 or 1: 2, total 55 or 75 mL min⁻¹ (for oxidation of supplied methane by surface oxygen species). The reactor temperature was fixed at 473 K. The imposed current was set at 3.0 or 7.0 mA.

Characterization of catalyst. FT-IR spectra were recorded on a spectrometer (FT-IR/6200; Jasco Corp.) using a KBr pelletizing method. Raman spectra were recorded on a Raman spectrometer (excitation line $\lambda = 532$ nm, NRS-1000; Jasco Corp.). The crystalline structure was characterized using powder X-ray diffraction (XRD, RINT-Ultima III; Rigaku Corp.) operating at 40 kV and 40 mA with Cu-K α radiation. The specific surface area of the catalyst was measured using N₂ adsorption using the BET method (Gemini VII; Micromeritics Instrument Corp.) after pre-treatment at 473 K in N₂ atmosphere for 2 h. Results of BET measurements are presented in Supplementary Information Table S10. W L₃-edge X-ray absorption fine structure (XAFS) spectra were recorded on BL14B2 in SPring-8 (Hyogo, Japan). Catalysts treated in the reaction condition were ground into powder and were pressed into pellets. Then, pellets were packed into gas-barrier bags. The pellets were diluted with BN to adjust for XAFS measurement. EXAFS analysis and curve fitting were performed using software (Athena ver. 0.8.056; Artemis ver. 0.8.012).

In-situ Raman. *In-situ* Raman measurements in the electric field were conducted using a Raman spectrometer with a hand-made glass reactor and gold wire electrodes (see Supplementary Information Fig. S11). The reactant feed gases were supplied with canned standard gases ($CH_4(0.995\%) + Ar and/or O_2(99.9\%)$). The electric field was imposed using a constant current at 6.0 mA.

Raman spectra for catalyst heated at reaction temperature (603–703 K) without an electric field were also observed to elucidate the effect of Joule heating on the catalyst structure. A Ni-Cr wire was inserted into the sample for heating by resistance heating.

References

- 1. Lunsford, J. H. The catalytic oxidative coupling of methane. Angew. Chem. Int. Ed. Engl. 34, 970-980 (1995).
- Jiang, Z.-C., Yu, C.-J., Fang, X.-P., Li, S.-B. & Wang, H.-L. Oxide/support interaction and surface reconstruction in the Na₂WO₄/SiO₂ system. J. Phys. Chem. 97, 12870–12875 (1993).
- Choudhary, V. R. & Uphade, B. S. Oxidative conversion of methane/natural gas into higher hydrocarbons. Catal. Surv. Asia 8, 15–25 (2004).
- Sekine, Y., Tanaka, K., Matsukata, M. & Kikuchi, E. Oxidative coupling of methane on Fe-doped La₂O₃ catalyst. *Energy Fuels* 23, 613–616 (2009).
- 5. Takanabe, K. Catalytic conversion of methane: carbon dioxide reforming and oxidative coupling a review –. *J. Jpn. Petrol. Inst.* **55(1)**, 1–12 (2012).
- Sekine, Y., Haraguchi, M., Tomioka, M., Matsukata, M. & Kikuchi, E. Low-temperature hydrogen production by highly efficient catalytic system assisted by an electric field. J. Phys. Chem. A 114, 3824–3833 (2010).
- Sekine, Y., Haraguchi, M., Matsukata, M. & Kikuchi, E. Low temperature steam reforming of methane over metal catalyst supported on Ce_xZr_{1-x}O₂ in an electric field. *Catal. Today* 171, 116–125 (2011).
- Oshima, K., Shinagawa, T., Haraguchi, M. & Sekine, Y. Low temperature hydrogen production by catalytic steam reforming of methane in an electric field. *Int. J. Hydrogen Energy* 38, 3003–3011 (2013).
- Oshima, K., Tanaka, K., Yabe, T., Kikuchi, E. & Sekine, Y. Oxidative coupling of methane using carbon dioxide in an electric field over La-ZrO₂ catalyst at low external temperature. *Fuel* **107**, 879–881 (2013).
- 10. Oshima, K., Shinagawa, T. & Sekine, Y. Methane conversion assisted by plasma or electric field a review –. J. Jpn. Petrol. Inst. 56(1), 11–21 (2013).
- 11. Tanaka, K. *et al.* Catalytic oxidative coupling of methane assisted electric power over a semiconductor catalyst. *Chem. Lett.* **41**, 351–353 (2012).
- 12. Oshima, K., Tanaka, K., Yabe, T., Tanaka, Y. & Sekine, Y. Catalytic oxidative coupling of methane with a dark current in an electric field at low external temperature. *Int. J. Plasma Environ. Sci. Technol.* 6(3), 266–271 (2012).
- Hill, C. L. & Prosser-McCartha, C. M. Homogeneous catalysis by transition metal oxygen anion clusters. Coord. Chem. Rev. 143, 407–455 (1995).
- 14. Pope, M. T. & Müller, A. Polyoxometalate chemistry: an old field with new dimensions in several disciplines. *Angew. Chem. Int. Ed. Engl.* **30**, 30–48 (1991).
- 15. Keita, B. & Nadjo, L. Polyoxometalate-based homogeneous catalysis of electrode reactions: recent achievement. J. Mol. Catal. A: Chem. 262, 190–215 (2007).
- Long, D.-L., Tsunashima, R. & Cronin, L. Polyoxometalates: building blocks for functional nanoscale systems. Angew. Chem. Int. Ed. 49, 1736–1758 (2010).
- 17. Izarova, N. V., Pope, M. T. & Kortz, U. Noble metals in polyoxometalates. Angew. Chem. Int. Ed. 51, 9492-9510 (2012).
- 18. Putaj, P. & Lefebvre, F. Polyoxometalates containing late transition and noble metal atoms. *Coord. Chem. Rev.* 252, 1642–1685 (2011).
- Ogo, S., Miyamoto, M., Ide, Y., Sano, T. & Sadakane, M. Hydrothermal and solid-state transformation of ruthenium-supported Keggin-type heteropolytungstates [XW₁₁O₃₉{Ru(II)(benzene)(H₂O)}]ⁿ⁻ (X=P(n=5), Si(n=6), Ge(n=6)) to ruthenium-substituted Keggin-type heteropolytungstates. *Dalton Trans.* 41, 9901–9907 (2012).
- Himeno, S. & Ishio, N. A voltammetric study on the formation of V(V)- and V(IV)-substituted molybdophosphate(V) complexes in aqueous solution. J. Electroanal. Chem. 451, 203–209 (1998).
- Ueda, T., Komatsu, M. & Hojo, M. Spectroscopic and voltammetric studies on the formation of Keggin-type V(V)-substituted tungstoarsenate(V) and -phosphate(V) complexes in aqueous and aqueous-organic solution. *Inorg. Chim. Acta* 344, 77–84 (2003).
- Kanno, M., Yasukawa, Y., Ninomiya, W., Ooyachi, K. & Kamiya, Y. Catalytic oxidation of methacrolein to methacrylic acid over silica-supported 11-molybdo-1-vanadophosphoric acid with different heteropolyacid loadings. J. Catal. 273, 1–8 (2010).
- Kanno, M. *et al.* 11-Molybdo-1-vanadophosphoricacid H₄PMo₁₁VO₄₀ supported on ammonia-modified silica as highly active and selective catalyst for oxidation of methacrolein. *Catal. Commun.* 13, 59–62 (2011).
- 24. Kasztelan, S. & Moffat, J. B. The oxidation of methane on heteropolyoxometalates I. Catalytic properties of silica-supported heteropolyacids. J. Catal. 106, 512–524 (1987).
- Kasztelan, S. & Moffat, J. B. The oxidation of methane on heteropolyoxometalates II. Nature and stability of the supported species. J. Catal. 109, 206–211 (1988).
- Kasztelan, S. & Moffat, J. B. The oxidation of methane on heteropolyoxometalates III. Effect of the addition of cesium on silicasupported 12-molybdophosphoric acid, molybdena, vanadia, and iron Oxide. J. Catal. 112, 54–65 (1988).

- Kasztelan, S. & Moffat, J. B. The oxidation of methane on heteropolyoxometalates IV. Properties of the silica-supported salts of 12-molybdophosphoric acid. J. Catal. 116, 82–94 (1989).
- Mizuno, N., Tateishi, M. & Iwamoto, M. Enhancement of catalytic activity of Cs_{2.5}Ni_{0.08}H_{0.34}PMo₁₂O₄₀ by V⁵⁺-substitution for oxidation of isobutane into methacrylic acid. *Appl. Catal. A: Gen.* **118**, L1–L4 (1994).
- Mizuno, N., Tateishi, M. & Iwamoto, M. Pronounced catalytic activity of Fe_{0.08}Cs_{2.5}H_{1.26}PVMo₁₁O₄₀ for direct oxidation of propane into acrylic acid. *Appl. Catal. A: Gen.* 128, L165–L170 (1995).
- Mizuno, N., Tateishi, M. & Iwamoto, M. Oxidation of isobutane catalyzed by Cs_xH_{3.x}PMo₁₂O₄₀-based heteropoly compounds. *J. Catal.* 163, 87–94 (1996).
- Mizuno, N., Suh, D.-J., Han, W. & Kudo, T. Catalytic performance of Cs_{2.5}Fe_{0.08}H_{1.26}PVMo₁₁O₄₀ for direct oxidation of lower alkanes. J. Mol. Catal. A: Chem. 114, 309–317 (1996).
- 32. Mamede, A.-S. *et al.* Characterization of WO_x/CeO₂ catalysts and their reactivity in the isomerization of hexane. *J. Catal.* **223**, 1–12 (2004).
- Kado, S. *et al.* Reaction mechanism of methane activation using non-equilibrium pulsed discharge at room temperature. *Fuel* 82, 2291–2297 (2003).
- 34. Li, S. *et al.* Surface WO₄ tetrahedron: The essence of the oxidative coupling of methane over M–W–Mn/SiO₂ catalysts. *J. Catal.* **220**, 47–56 (2003).
- 35. Wu, J. & Li, S. The role of distorted WO₄ in the oxidative coupling of methane on tungsten oxide supported catalyst. *J. Phys. Chem.* **99**, 4566–4568 (1995).
- 36. Himeno, S., Takamoto, M. & Ueda, T. Synthesis, characterization and voltammetric study of a β-Keggin-type [PW₁₂O₄₀]³⁻ complex. J. Electroanal. Chem. 465, 129–135 (1999).
- Rocchiccioli-Deltcheff, C., Fournier, M., Franck, R. & Thouvenot, R. Vibrational investigations of polyoxometalates. 2. Evidence for anion-anion interactions in molybdenum(VI) and tungsten(VI) compounds related to the Keggin structure. *Inorg. Chem.* 22, 207–216 (1983).
- Sanchez, C., Livage, J., Launay, J. P., Fournier, M. & Jeannin, Y. Electron delocalization in mixed-valence molybdenum Polyanions. J. Am. Chem. Soc. 104, 3194–3202 (1982).
- Filowitz, M., Ho, R. K. C., Klemperer, W. G. & Shum, W. ¹⁷O nuclear magnetic resonance spectroscopy of polyoxometalates. 1. Sensitivity and resolution. *Inorg. Chem.* 18, 93–103 (1979).
- Lopes, F. W. B. *et al.* High temperature conduction and methane conversion capability of BaCeO₃ perovskite. *Powder Technol.* 219, 186–192 (2012).
- Arab, M. *et al.* Strontium and cerium tungstate materials SrWO₄ and Ce₂(WO₄)₃: Methane oxidation and mixed conduction. *Catal. Today* 208, 35–41 (2013).

Acknowledgements

This work was supported by JST CREST program.

Author Contributions

K.S. and S.O. designed the experiments, analyzed data, and wrote the manuscript. K.S. and K.I. conducted experimental work. T.Y. assisted in analyses of results. Y.S. supervised the project and revised the manuscript text. All authors participated in discussion of the research and review of the manuscript.

Additional Information

Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Sugiura, K. *et al.* Low-temperature catalytic oxidative coupling of methane in an electric field over a Ce-W-O catalyst system. *Sci. Rep.* **6**, 25154; doi: 10.1038/srep25154 (2016).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article's Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/