
8:2 120–131C J Teixeira et al. Maternal pancreatic β-cell 
renewal

RESEARCH

Dexamethasone during pregnancy impairs 
maternal pancreatic β-cell renewal during 
lactation
Caio Jordão Teixeira1, Junia Carolina Santos-Silva1, Dailson Nogueira de Souza1, Alex Rafacho2, Gabriel Forato Anhe1 
and Silvana Bordin3

1Department of Pharmacology, Faculty of Medical Sciences, State University of Campinas, Campinas, Brazil
2Department of Physiological Sciences, Center of Biological Sciences, Federal University of Santa Catarina, Florianópolis, Brazil
3Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil

Correspondence should be addressed to S Bordin: sbordin@icb.usp.br

Abstract

Pancreatic islets from pregnant rats develop a transitory increase in the pancreatic β-cell 
proliferation rate and mass. Increased apoptosis during early lactation contributes to 
the rapid reversal of those morphological changes. Exposure to synthetic glucocorticoids 
during pregnancy has been previously reported to impair insulin secretion, but its 
impacts on pancreatic islet morphological changes during pregnancy and lactation have 
not been described. To address this issue, we assessed the morphological and molecular 
characteristics of pancreatic islets from rats that underwent undisturbed pregnancy (CTL) 
or were treated with dexamethasone between the 14th and 19th days of pregnancy (DEX). 
Pancreatic islets were analyzed on the 20th day of pregnancy (P20) and on the 3rd, 8th, 
14th and 21st days of lactation (L3, L8, L14 and L21, respectively). Pancreatic islets from 
CTL rats exhibited transitory increases in cellular proliferation and pancreatic β-cell mass 
at P20, which were reversed at L3, when a transitory increase in apoptosis was observed. 
This was followed by the appearance of morphological features of pancreatic islet 
neogenesis at L8. Islets from DEX rats did not demonstrate an increase in apoptosis at L3, 
which coincided with an increase in the expression of M2 macrophage markers relative to 
M1 macrophage and T lymphocyte markers. Islets from DEX rats also did not exhibit the 
morphological characteristics of pancreatic islet neogenesis at L8. Our data demonstrate 
that maternal pancreatic islets undergo a renewal process during lactation that is impaired 
by exposure to DEX during pregnancy.

Introduction

Although randomized controlled trials have shown 
that antenatal corticosteroid therapy yields consistent 
benefits to preterm newborns (1, 2), recent observational 
studies have noted that this strategy correlates with 
maternal hyperglycemia in nondiabetic women  
(3, 4). Concordantly, experiments with rats showed that 
exposure to dexamethasone (DEX) during the last third 
of pregnancy impaired maternal glucose-induced insulin 

secretion in vivo, leading to glucose intolerance prior to 
delivery (5).

Increased glucose oxidation and glucose-stimulated 
insulin secretion (GSIS) by pancreatic islets are the basis 
of the functional adaptation of the endocrine pancreas 
that takes place during pregnancy (6, 7). This functional 
adaptation depends on the action of hormones such 
as placental lactogen, growth hormone and prolactin  
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(8, 9, 10). Interestingly, DEX was also reported to 
abrogate the upregulation of GSIS induced by prolactin in 
pancreatic islets in vitro (11, 12).

Undisturbed pregnancies in humans and rodents 
are also distinguished by morphological changes in 
the pancreatic islets. The most evident morphological 
adaptations described in the human endocrine pancreas 
are an increase in the pancreatic β-cell fractional area and 
an increase in the number of small islets (13). Pancreatic 
islets of pregnant rodents, however, undergo an increase 
in size with a parallel increase in pancreatic β-cell 
proliferation and mass (6, 14, 15). The endocrine pancreas 
of pregnant rats show evident plasticity, which allows the 
morphological structures to return to the nonpregnant 
state just after delivery. Increased apoptosis and reduced 
proliferation account for the reversal of pancreatic β-cell 
mass as early as 3–4 days after delivery (15, 16).

Therefore, the present study was conducted to 
evaluate yet unknown putative effects of antenatal DEX 
therapy on the morphological adaptation of the maternal 
endocrine pancreas to pregnancy. We also assessed whether 
the treatment of pregnant rats with DEX impacted the 
physiological reset of the maternal endocrine pancreas 
that occurs after delivery.

Materials and methods

Experimental design

The experimental procedures were performed in 
accordance with the guidelines of the Brazilian College 
for Animal Experimentation (COBEA) and approved by 
the State University of Campinas Committee for Ethics 
in Animal Experimentation (protocol No. 3973-1). Female 
Wistar rats were obtained at 4  weeks of age from the 
Animal Breeding Center at the University of Campinas 
(CEMIB, Campinas, Sao Paulo, Brazil) and kept under a 
12-h light–dark cycle at 22 ± 2°C and allowed ad libitum 
access to standard rat chow and water. At 12 weeks of age, 
females were housed in individual cages with one male 
for 3  days. The concomitant presence of spermatozoa 
and estrous cells in a vaginal lavage indicated day 0 of 
gestation. Pregnant rats were isolated until the last day 
of lactation. Age-matched virgin females were maintained 
in the same animal care facility under the same housing 
conditions. On the 14th day of pregnancy, rats were 
assigned to two groups that received either a vehicle (CTL) 
or dexamethasone (DEX) (0.1 mg/kg body mass; Achê 
Pharmaceutical Laboratories, Guarulhos, SP, Brazil) in 

the drinking water for 6 days. On the day of delivery, the 
number of pups was adjusted to six per lactating mother, 
and the remaining neonates were killed by decapitation. 
The mothers were used for experimental procedures on 
the 20th day of pregnancy (P20) or on the 3rd (L3), 8th 
(L8), 14th (L14) and 21st (L21) days of lactation. On 
the day of the experiments, rats were killed with an i.p. 
injection of a lethal dose of sodium thiopental (80 mg/kg 
body mass) followed by decapitation.

Immunohistochemistry

The intact pancreas was carefully excised, cleared of fat 
and lymph nodes, weighed, immersed in 4% (wt/vol) 
paraformaldehyde fixative solution for 24 h and embedded 
in paraffin for a posterior immunoperoxidase reaction. 
Serial sections (5 μm thick and 200 μm apart from each 
other) were mounted onto aminopropyltriethoxysilane-
coated glass slides. After paraffin removal, sections were 
rehydrated and washed with 0.05 M Tris buffered saline 
(TBS) (pH 7.4) and incubated with 0.01 M Tris-EDTA buffer 
containing 0.05% Tween-20 (pH 9.0) for 24 min at 98°C 
for antigen retrieval. Endogenous peroxidase activity was 
blocked with a 0.3% solution of hydrogen peroxide before 
permeabilization with TBS containing 0.1% Tween-20 and 
5% bovine serum albumin (BSA) at room temperature. 
Sections were incubated with either polyclonal guinea 
pig anti-insulin (1:400; Dako North America, Inc.; cat. 
no. A0564) or rabbit monoclonal anti-Ki-67 (1:75; 
Spring Bioscience, Pleasanton, CA, USA; cat. no. M3064) 
antibodies diluted in TBS containing 3% BSA overnight 
at 4°C. Subsequently, sections were washed with TBS and 
incubated either with HRP-conjugated anti-guinea-pig IgG 
(1:1000; Invitrogen; cat. no. 614620) or HRP-conjugated 
anti-rabbit IgG (Nichirei Bioscience, Tokyo, Japan; cat. no. 
414191F) for 2 h at room temperature. Insulin- and Ki-67-
positive cells were detected with 3,3′-diaminobenzidine 
(Sigma Chemical) solution. All slides were counterstained 
with Ehrlich’s hematoxylin and mounted for observation 
by microscopy.

Pancreas morphology

Two sections of each pancreas were randomly selected 
for analysis of endocrine pancreas morphology. All 
islets of the sections were captured in images under 
a final magnification of 20× using a light microscope 
(Olympus BX51TF) coupled to a digital camera (Olympus 
DP72). The pancreatic islet area was obtained by manual 
tracing of all islets on the sections. Pancreatic β-cell and  

This work is licensed under a Creative Commons 
Attribution-NonCommercial 4.0 International License.https://doi.org/10.1530/EC-18-0505

https://ec.bioscientifica.com	 © 2019 The authors
Published by Bioscientifica Ltd

https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1530/EC-18-0505
https://ec.bioscientifica.com


C J Teixeira et al. Maternal pancreatic β-cell 
renewal

1228:2

non-β-cell areas were obtained by manual tracing of 
insulin-positive and insulin-negative cells from all islets 
on the sections. Images analysis was performed with 
ImageJ software (http://imagej.nih.gov/ij). The relative 
mass of islets, β-cells and non-β-cells was calculated by 
dividing their respective total areas by the total pancreatic 
section area; the islet, β-cell and non-β-cell mass (mg) was 
then estimated by multiplying their relative mass by the 
total pancreas mass (17).

We categorized the insulin-stained cell groups as 
EICs (<300 µm2) or small (300–1999 µm2), medium 
(2000–9999 µm2), large (10,000–49,999 µm2) or very large 
(≥50,000 µm2) islets based on a previous investigation (18). 
An example of a section stained with anti-insulin antibody 
and the respective classification of its islets according 
to their sizes are shown as supporting information 
(Supplementary Fig. 1, see section on supplementary data 
given at the end of this article).

We also assessed the percentage of ducts associated 
with islets, which is another parameter that indicates 
the formation of new pancreatic islets (19). Examples of 
islets that were considered to be associated with ducts are 
shown in representative images (Supplementary Fig. 2).

Pancreatic islet proliferation

Pancreatic islet cell proliferation was estimated as 
previously described (17). Briefly, the number of nuclei 
positive for Ki-67 was expressed as the percentage of the 
total number of nuclei per islet.

Pancreatic islet isolation and DNA fragmentation

DNA fragmentation was assessed as a parameter of 
apoptosis. In a separate set of rats, islets were isolated after 
perfusion and digestion of the pancreas with collagenase 
solution immediately after killing as previously described 
(20). DNA fragmentation was assessed as previously 
described (16). Briefly, 100 freshly isolated islets from each 
rat were dissociated in Ca2+-free Krebs buffer (138 mM 
NaCl, 5.6 mM KCl, 1.2 mM MgCl2, 5 mM Hepes, 1.2 mM 
EGTA, supplemented with 3 mM glucose and 0.1% BSA, 
pH 7.4) at 37°C for 10 min. Cells were centrifuged at 
1000 g and incubated with 200 µL of hypotonic solution 
containing 0.8% propidium iodide, 0.1% sodium citrate 
and 0.1% Triton X-100 at room temperature for 2 h. 
Fluorescence was measured with a FACSCalibur flow 
cytometer (Becton Dickinson) using the FL2 channel 
(orange/red fluorescence; 535/617 nm).

Protein extraction and immunoblotting

Pools of approximately 350 freshly isolated islets were 
processed for western blotting as previously described (16). 
The primary antibodies used were anti-TRB3 and anti-
phospho-AKT (Ser473) (Santa Cruz Biotechnology). We 
used a secondary antibody conjugated with horseradish 
peroxidase (Bio-Rad) for chemiluminescent detection of 
the bands on X-ray-sensitive films. Optical densitometry 
analysis was performed using Scion Image software (Scion 
Corporation, Frederick, MD, USA). The results were 
normalized to the total amount of protein transferred to 
the membranes as indicated by Ponceau S staining.

RNA extraction and qPCR

Total RNA was extracted from a pool of approximately 
500 freshly isolated islets using an RNeasy Plus Mini kit 
(Qiagen), and the concentration was estimated using a 
NanoDrop 2000 spectrophotometer (Thermo Scientific). 
Aliquots containing 2 μg of RNA were subjected to 
reverse transcription using a high-capacity cDNA reverse 
transcription kit (Applied Biosystems). PCR reactions 
were conducted using KAPA SYBRβ FAST qPCR Master 
Mix (Kapa Biosystems, Inc., Boston, MA, USA) in a 
StepOnePlus Real-Time PCR System (Applied Biosystems). 
The specificity of the reactions was verified with melting 
curve analysis. The primer sequences used are as follows: 
Cd163 sense 5′-ATGGAGTCACAGCGACTGCG-3′, and 
antisense 5′-GAGGAAGGCAATGAGAAGGACC′3; Lta 
sense 5′-TACAAGGACCGTGGGTACGCTC-3′, and 
antisense 5′-GTGTAAGTGGGAGATGCCGTCTG-3′; Cd206  
sense 5′-CTGGAAGACATCATACTGCAATG-3′, and 
antisense 5′-CAGTCTCGATGGAAACCAGG-3′; Tnf sense  
5′-CTCTCTGCCATCAAGAGCC-3′, and antisense 
5′-CACAGAGCAATGACTCCAAAG-3′; Rpl37a sense 
5′-CAAGAAGGTCGGGATCGTCG-3′, and antisense 
5′-ACCAGGCAAGTCTCAGGAGGTG-3′. Values of mRNA 
expression were normalized with the internal control 
gene rpl37a. Fold changes were calculated using the 2−ΔΔCt 
method.

Statistical analysis

The results are presented as the mean ± standard error of 
the mean (s.e.m.). Comparisons were made with two-way 
ANOVA considering (i) time after mating and (ii) treatment 
during pregnancy. Tukey’s multiple comparison test was 
used to indicate intragroup differences at different time 
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points, and a Sidak multiple comparison test was used 
to indicate the differences between CTL and DEX at the 
same time points (GraphPad Prism, version 6.01). P values 
<0.05 indicated significant differences.

Results

The expansion of pancreatic β-cell mass observed in 
pregnant rats was sustained until L3 in DEX rats

Pancreatic islet mass in CTL rats had a nonsignificant 
increase (72%) at P20 and remained unaltered throughout 
lactation. DEX rats exhibited an increase in pancreatic 
islet mass detected at P20 and L3 (105% and 121% greater 
than virgin rats, respectively; P < 0.05). This increase in 
pancreatic islet mass was not accompanied by an increase 
in pancreas mass (Supplementary Fig. 3). Consequently, 
maternal treatment with DEX impacted pancreatic islet 
mass and caused a 95% increase at L3 compared with the 
CTL rats at L3 (P < 0.05) (Fig. 1A).

In accordance with a previous study (15), we observed 
that the CTL rats experienced an increase in pancreatic 
β-cell mass at P20 (77% greater than virgin rats; P < 0.05), 
which was no longer detected a few days after delivery 
at L3. Although restricted to pregnancy in CTL mothers, 
an increase in pancreatic β-cell mass in DEX-treated rats 
was observed at P20 and L3 (114% and 140% greater than 
virgin rats, respectively; P < 0.05). Furthermore, pancreatic 
β-cell mass was 124% greater in DEX compared to CTL at 
L3 (P < 0.05) (Fig. 1B).

No changes in non-β-cell mass were detected at the 
late stage of pregnancy and throughout lactation in 
CTL mothers. However, lactating mothers treated with 
DEX exhibited a transitory expansion of non-β-cell mass 
at L8 (86% greater than virgin rats; P < 0.05) (Fig.  1C). 
Figure 2 shows representative images of pancreas sections 
immunostained for insulin.

Islets of DEX mothers displayed increased rates of 
cellular proliferation at P20 and attenuated 
apoptosis at L3

We assessed cellular proliferation and apoptosis in pancreatic 
islets in order to investigate growth aspects underlying the 
differential changes in pancreatic β-cell mass in pregnant and 
lactating CTL and DEX rats. We detected an increase in Ki-67-
positive cells at P20 in both CTL and DEX mothers (253% 
and 387% greater than virgin rats, respectively; P < 0.05).  
Furthermore, the number of Ki-67-positive cells at P20 
in DEX mothers was 39% greater than that for pregnant 

CTL rats (P < 0.05) (Fig. 3A). The increase in the number of 
Ki-67-positive cells was limited to pregnancy in CTL and 
DEX mothers since throughout lactation, these values are 
similar to those for virgin rats. Figure 4 shows representative 
images of pancreas sections immunostained for Ki-67.

In accordance with previous studies (15, 16), 
pancreatic islets of early lactating CTL rats had an 

Figure 1
Rats that underwent undisturbed pregnancies (CTL) or received 
dexamethasone between the 14th and 19th gestational days (DEX) were 
killed on the 20th day of pregnancy (P20) or on the 3rd (L3), 8th (L8), 14th 
(L14) and 21st (L21) days of lactation. Virgin rats were also killed. 
Pancreata were removed for immunohistochemical detection of insulin. 
Sections were used for the calculation of pancreatic islet (A), pancreatic 
β-cell (B) and non-β-cell (C) mass. Data are presented as the mean ± s.e.m. 
(N = 4). *P < 0.05 vs virgin; **P < 0.01 vs virgin; ***P < 0.001 vs virgin; 
****P < 0.0001 vs virgin; ###P < 0.001 vs CTL at the same time point; 
####P < 0.0001 vs CTL at the same time point.
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Figure 2
Representative images of pancreas sections used for 
immunohistochemical detection of insulin. Sections were 
obtained from virgin rats and rats that underwent 
undisturbed pregnancies (CTL) or received dexamethasone 
between the 14th and 19th gestational days (DEX). The rats 
were killed on the 20th day of pregnancy (P20) or on the 
3rd (L3), 8th (L8), 14th (L14) and 21st (L21) days of lactation. 
Horizontal bars = 100 µm. The images were acquired under 
a final magnification of 5×.
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increased rate of DNA fragmentation at L3 (34% greater 
than that for virgin rats; P < 0.05). However, this wave of 
DNA fragmentation was not observed in islets isolated 
from DEX rats at L3 (Fig. 3B).

According to our previous study, an increase in DNA 
fragmentation in rat pancreatic islets at L3 was correlated 
with a reduction in AKT phosphorylation and an increase 
in TRIB3 content (16). In the present study, we found 
consistent changes in AKT phosphorylation and TRIB3 
protein content in pancreatic islets of CTL rats at L3 
(43% lower and 54% greater than virgin rats, respectively; 
P < 0.05). These changes were not observed in islets of rats 
treated with DEX at L3 (Fig. 3C and D).

Pancreatic islets of DEX mothers at L3 had increased 
expression of M2 macrophages relative to M1 
macrophages and T lymphocytes

To understand the mechanism by which islets of DEX 
mothers exhibited reduced apoptosis at L3, we evaluated 
the expression of leukocyte markers that infiltrate 
pancreatic islets and affect pancreatic β-cell death.

We found that pancreatic islets of DEX mothers at L3 
demonstrated increased Cd206 expression relative to Lta 
and tumor necrosis factor-α (Tnf) (157% and 197% greater 
than virgin rats, respectively; P < 0.05). These modulations 
were not observed in islets isolated from CTL mothers at 

L3 (Fig. 5A and B, respectively). No significant changes in 
Cd163 expression relative to Lta and Tnf was observed in 
islets of CTL and DEX mothers isolated at L3 (Fig. 5C and 
D, respectively).

Parameters related to pancreatic islet neogenesis 
during lactation were absent in rats that received 
DEX during pregnancy

The percentage of EICs was increased in CTL rats at P20 
(89% greater than virgin rats; P < 0.05). Although the 
percentage of EICs returned to levels found in virgin 
rats at L3, a second increase in the percentage of EICs 
was observed at L8 (77% greater than that in virgin rats; 
P < 0.05). DEX mothers also experienced a transitory 
increase in the percentage of EICs at P20 (91% greater than 
that in virgin rats; P < 0.05) that was no longer observed 
at L3. However, a second increase in the percentage of 
EICs was not observed at L8. The percentage of EICs in 
DEX mothers exhibited a continuous decrease during 
lactation, reaching the lowest value at L14 (61% lower 
than the values of DEX at P20; P < 0.05). In addition, the 
percentage of EICs in DEX mothers at L14 was 49% lower 
than that of CTL mothers at L14 (P < 0.05) (Fig. 6A).

The percentages of small, medium, large and very 
large islets did not change at the late stage of pregnancy 

Figure 3
Rats that underwent undisturbed pregnancies 
(CTL) or received dexamethasone between the 
14th and 19th gestational days (DEX) were killed 
on the 20th day of pregnancy (P20) or on the 3rd 
(L3), 8th (L8), 14th (L14) and 21st (L21) days of 
lactation. Virgin rats were also killed. Pancreata 
were removed for immunohistochemical 
detection of Ki-67. Sections were used to calculate 
the percentage of Ki-67+ cells in pancreatic islets 
(A). Pancreatic islets from a different set of virgin, 
CTL at L3 and DEX at L3 were isolated and used 
for the measurement of DNA fragmentation (B) 
and western blot detection of phosphorylated 
AKT (p-AKT) (C) and TRIB3 (D). Detected proteins 
were normalized by Ponceau staining (E). Data are 
presented as the mean ± s.e.m. (N = 4 for 
immunohistochemical detection of Ki-67; N = 6–14 
for DNA fragmentation; N = 6–12 for p-AKT; 
N = 5–7 for TRIB3). *P < 0.05 vs virgin; **P < 0.01 vs 
virgin; *** P < 0.001 vs virgin; ****P < 0.0001 vs 
virgin; ##P < 0.01 vs CTL at L3; ###P < 0.001 vs CTL 
at the same time point.
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Figure 4
Representative images of pancreas sections used for 
immunohistochemical detection of Ki-67. Sections were 
obtained from virgin rats and rats that underwent 
undisturbed pregnancies (CTL) or received dexamethasone 
between the 14th and 19th gestational days (DEX). The rats 
were killed on the 20th day of pregnancy (P20) or on the 
3rd (L3), 8th (L8), 14th (L14) and 21st (L21) days of lactation. 
Horizontal bars = 20 µm. The images were acquired under a 
final magnification of 40×.
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and during lactation either in CTL or in DEX mothers 
(Fig. 6B, C, D and E, respectively).

Although the percentage of ducts associated with 
islets increased in CTL and DEX mothers at P20 (132% 
and 227% greater than virgin rats, respectively; P < 0.05), 
the increase was significantly greater in pregnant DEX 
rats (40% greater than pregnant CTL; P < 0.05). At L3, the 
percentage of ducts associated with islets in both CTL 
and DEX mothers decreased to values similar to those for 
virgins. In DEX mothers, these values remained similar 
to those for virgin rats throughout the entire lactation 
period. However, in CTL mothers, we observed a second 
transitory increase in the percentage of ducts associated 
with islets at L8 (190% greater than that for CTL mothers 
at L21; P < 0.05) (Fig. 6F).

Discussion

The present data support the concept that rat pancreatic 
β-cell mass, which increases during undisturbed 
pregnancies, recovers to nonpregnant mass values 3 days 
after delivery with a coinciding increase in apoptosis and 
reduction of cellular proliferation. Notably, we revealed 
that morphological features of pancreatic islet neogenesis 
sequentially and transiently appear in the maternal 
pancreas 8  days after delivery. Additionally, we showed 
that the morphological adaptation of the endocrine 
pancreas to pregnancy as well as its recovery to the 
nonpregnant state during lactation was affected by the 
exposure of pregnant rats to DEX.

Neogenesis of pancreatic β-cells in rats during the 
neonatal period has been reported to occur immediately 
following birth and during the weaning period (21). More 
recently, the formation of new pancreatic islets derived 
from small extra-islet insulin-positive cell clusters (EICs) 
has been described to occur in adult rats (22, 23).

Our data demonstrated that an increase in 
pancreatic β-cell mass at P20 correlates not only with 
an increase in cellular proliferation (evidenced by the 
number of Ki-67 positive cells) but also with pancreatic 
islet neogenesis (evidenced by the percentage of EICs 
and ducts associated with islets). An increase in cellular 
proliferation in pancreatic islets on the 20th day of 
pregnancy has been previously described (15), but no 
studies have previously investigated morphological 
parameters related to pancreatic islet neogenesis in the 
pancreata of pregnant rats.

The contribution of pancreatic islet neogenesis to an 
increase in pancreatic islet mass during pregnancy seems 
to depend on the species. In accordance with our study 
in rats, it has been previously reported that an increase 
in endocrine pancreatic mass during human pregnancy 
relies on the neogenesis of small pancreatic islets (13). 
In mice, however, the contribution of neogenesis to 
an increase in pancreatic islet mass during pregnancy 
remains controversial (24, 25). In addition to pregnancy, 
experimental conditions that cause damage to the 
pancreas of an adult rat, such as a pancreatectomy, have 
also been reported to stimulate the neogenesis of insulin-
positive cells from the ductal epithelium (26).

Morphological analysis of the pancreas throughout 
lactation allowed us to clarify how and when the changes 
that occur during pregnancy are reversed. In the present 
study, we observed an increase in cellular apoptosis (as 
assessed by DNA fragmentation) in pancreatic islets 
isolated from early lactating rats (L3). This result is 
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Figure 5
Rats that underwent undisturbed pregnancies (CTL) or received 
dexamethasone between the 14th and 19th gestational days (DEX) were 
killed on the 3rd day of lactation (L3). Virgin rats were also killed. 
Pancreatic islets were isolated and processed for qPCR detection of cd206 
relative to lta (A) or tnf (B) and cd163 relative to lta (C) or tnf (D). Data are 
presented as the mean ± s.e.m. (N = 7–5). *P < 0.05 vs virgin; **P < 0.01 vs 
virgin; #P < 0.05 vs CTL at L3.
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consistent with data previously published by us and 
others and has already been reported to be transitory 
since it was no longer observed in islets isolated from L8 
mothers (15, 16). In addition to an increase in apoptosis, 
we observed synchronized reductions in the number of 
Ki-67-positive cells and the mass of pancreatic β-cells at L3 
in the present study.

Interestingly, these alterations were followed by a 
transitory increase in morphological parameters that 
indicated pancreatic neogenesis. This result is supported 
by the observation of a second occurrence of increased 
percentages of EICs and ducts associated with islets in 
the maternal pancreas at L8. Therefore, our data show 

that pancreatic islet neogenesis in adult rats occurs 
transiently not only during pregnancy but also during 
lactation. These findings also support the unprecedented 
concept that lactation serves as a postpregnancy window 
for maternal pancreatic islet renewal during which an 
increase in apoptosis is followed by transitory neogenesis.

It noteworthy that dynamic changes in the endocrine 
pancreas may therefore play a role in the metabolic 
resetting of maternal metabolism that occurs during 
lactation. This metabolic reset hypothesis supports the 
theory that complete metabolic resetting to a nonpregnant 
state occurs during lactation and has long-term benefits to 
maternal health (27). For example, observational studies 

Figure 6
Rats that underwent undisturbed pregnancies 
(CTL) or received dexamethasone between the 
14th and 19th gestational days (DEX) were killed 
on the 20th day of pregnancy (P20) or on the 3rd 
(L3), 8th (L8), 14th (L14) and 21st (L21) days of 
lactation. Virgin rats were also killed. Pancreata 
were removed for immunohistochemical 
detection of insulin. Sections were used for 
quantification of the percentage of extra-islet 
insulin-positive cell clusters (EICs) (A) or small 
(300–1999 µm2) (B), medium (2000–9999 µm2) (C), 
large (10,000–49,999 µm2) (D) or very large 
(>50,000 µm2) (E) pancreatic islets and islets 
associated with ducts (F). Data are presented as 
the mean ± s.e.m. (N = 4). *P < 0.05 vs virgin; 
**P < 0.01 vs virgin; ****P < 0.0001 vs virgin; 
#P < 0.05 vs DEX at the same time point; $P < 0.05 
vs DEX at P20; &P < 0.05 vs CTL at L21.
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have shown that women who breastfeed for longer 
periods of time have a reduced risk for type 2 diabetes 
(28, 29). Similarly, in a previous study, rats that were 
not permitted to lactate after delivery become glucose 
intolerant later in life (30). Taking into account the 
present data, we hypothesize that absent or insufficient 
lactation may allow incomplete renewal of the maternal 
endocrine pancreas, thus increasing the long-term risk for 
glucose intolerance.

The data presented in this study also demonstrated 
that exposing rats to DEX during pregnancy affected the 
morphology of the endocrine pancreas at three critical 
stages: late pregnancy (P20), early lactation (L3) and peak 
lactation (L8).

At P20, we observed that pancreatic β-cell mass, the 
number of Ki-67-positive cells, and the percentage of EICs 
and ducts associated with islets were further increased by 
treatment with DEX. Pancreatic islets of DEX rats at P20 also 
demonstrated an increase in mass. These findings suggest 
that treatment of pregnant rats with DEX exacerbates 
the pregnancy-associated increase in the pancreatic β-cell 
mass of rats by stimulating cellular proliferation and β-cell 
neogenesis. Interestingly, the treatment of rats with DEX 
has been previously reported to stimulate an increase in 
pancreatic β-cell mass and proliferation in male rats but 
not in nonpregnant female rats (17, 31). We thus conclude 
that DEX interacts with components of the internal milieu 
associated with pregnancy to exert morphological effects 
that are described in the present study. In agreement 
with our data, DEX has also been reported to enhance 
pancreatic islet neogenesis by promoting an additional 
increase in the number of small β-cell clusters located close 
to the ductal complex in 90% pancreatectomized rats (32).

Pancreatic islets of mothers treated with DEX also 
did not exhibit an increase in apoptosis during the early 
lactation stage. Instead, the islets of rats treated with 
DEX demonstrated increases in pancreatic islet and 
β-cell mass at L3. In addition, we demonstrated that 
islets from DEX rats had increased levels of M2-polarized 
macrophages relative to either T lymphocyte or 
M1-polarized macrophage markers at L3. Lymphotoxin-α 
(LTα), produced by T lymphocytes and tumor necrosis 
factor-α (TNF-α), produced by M1-polarized macrophages 
and NK cells, are known to potentiate IFN-γ-induced 
pancreatic β-cell apoptosis during type 1 diabetes mellitus 
insulitis (33, 34). In contrast, M2-polarized macrophages, 
characterized by CD206 and CD163 expression (35), can 
infiltrate pancreatic islets and delay the development 
of autoimmune diabetes in NOD mice by promoting 
pancreatic β-cell survival (36). In accordance to our data, 

M2 polarization, which is characterized by low levels of 
inflammatory cytokines such as IL-1, TNF-α and IL-6, 
has been previously demonstrated to be induced by 
glucocorticoids (37). In the context of pancreatic islets, 
M2 infiltration promotes cell proliferation, inhibits cell 
apoptosis and delays the development of insulinopenic 
diabetes in NOD mice (36, 38, 39).

Therefore, we conclude that changes in cellular 
apoptosis and pancreatic β-cell mass observed in islets 
from early lactating DEX rats is associated with an altered 
profile of infiltrating immune cells. It was also previously 
reported that pharmacological glucocorticoid receptor 
activation in rats treated with streptozotocin changes the 
infiltration of macrophages into pancreatic islets from 
M1- toward M2-polarized macrophages and protects 
pancreatic cells (40).

Similarly, in the present study, we demonstrated that 
an increase in M2 relative to M1 markers in pancreatic 
islets of DEX rats at L3 is associated with a reduction 
in the expression of TRIB3 and restoration of AKT 
phosphorylation compared to CTL at L3. TRIB3 has been 
previously shown to act as a mediator of pancreatic β-cell 
apoptosis induced by pro-inflammatory cytokines such as 
IL-1β, IFN-γ and TNF-α (41) through a mechanism that 
relies on the inhibition of AKT phosphorylation (42, 43).

Interestingly, although morphological changes 
associated with pancreatic islet neogenesis were 
exacerbated during the late stage of pregnancy, the 
treatment of pregnant rats with DEX caused a late-term 
effect characterized by the suppression of pancreatic islet 
neogenesis at L8. Pancreatic islets from DEX rats also 
exhibited a singular increase in non-β-cell mass at this 
stage of lactation.

One limitation of our study is that we cannot assure 
that changes in M2-polarized macrophages infiltration 
actually occur in islets of rats treated with DEX during 
pregnancy. Such limitation is due to the low efficiency and 
availability of antibodies designed for flow cytometry and 
immunohistochemistry that recognize these rat antigens.

Altogether, our data demonstrate that the renewal of 
the endocrine pancreas that occurs during lactation was 
impaired by DEX treatment during pregnancy. Although 
the relative small size of the effect, we believe that the 
presently described alteration induced by antenatal 
DEX treatment may yield a long-term effect. This 
interpretation is based on our previous results showing 
that exposure to DEX during pregnancy results in glucose 
intolerance, impaired insulin secretion and increased 
expression of senescence markers in maternal pancreatic 
islets 12 months after delivery (44). Considering the data 
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described herein, we conclude that the improper renewal 
of the endocrine pancreas after delivery may exert long-
term impacts on maternal metabolism.
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This is linked to the online version of the paper at https://doi.org/10.1530/
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