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Abstract: Location-awareness is crucial and becoming increasingly important to many
applications in wireless sensor networks. This paper presents a network-based positioning
system and outlines recent work in which we have developed an efficient principled approach
to localize a mobile sensor using time of arrival (TOA) and angle of arrival (AOA)
information employing multiple seeds in the line-of-sight scenario. By receiving the periodic
broadcasts from the seeds, the mobile target sensors can obtain adequate observations and
localize themselves automatically. The proposed positioning scheme performs location
estimation in three phases: (I) AOA-aided TOA measurement, (II) Geometrical positioning
with particle filter, and (III) Adaptive fuzzy control. Based on the distance measurements and
the initial position estimate, adaptive fuzzy control scheme is applied to solve the localization
adjustment problem. The simulations show that the proposed approach provides adaptive
flexibility and robust improvement in position estimation.
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1. Introduction

One of the most needed and challenging components in a wireless sensor network is the development
of practical localization algorithms for the automatic discovery of sensor position. Robust and distributed
internal algorithms of lower cost are required for sensor positioning problems due to the low power of



Sensors 2010, 10 9743

wireless sensor network. Common ranging techniques are receiver signal strength indicator (RSSI),
time of arrival (TOA), time difference of arrival (TDOA) and angle of arrival (AOA). For TDOA,
centralized sophisticated estimation schemes may lead to computation-intensive problems [1], and in
order to suppress the estimation error, a large amount of distance estimates have to be processed for each
target node [2,3], which may not be practical in wireless sensor networks. For conventional TOA scheme,
at least three TOA measurements must be obtained from three line-of-sight (LOS) seeds (i.e., reference
nodes). In order to estimate the position of a moving target sensor in most environments, incorporating
angle information may help tackle the localization problem in addition to distance measurements. Thus,
an AOA-aided TOA localization scheme may be employed to make the position estimation possible.
In general, the localization problem can be solved by the joint AOA/TOA positioning scheme using a
single seed [4]. However, in the case of poor observations, more AOA-aided TOA measurements may
be applied to complement the measurements of the environment [5].

Due to the propagation environments, some of the propagation paths between the mobile target sensor
and the seeds may be non-line-of-sight (NLOS) paths, which have been demonstrated that the NLOS
error may degrade the estimation performance and linearly increase the mean location error [6]. Several
NLOS mitigation techniques (e.g., the maximum likelihood estimator, least squares techniques) [7–13]
have been proposed to solve the location estimation problem in the NLOS scenario such that the NLOS
seeds may be first identified and then the target sensor position can be estimated using the LOS seeds.

With the NLOS mitigation techniques described above, here we introduce an AOA/TOA
hybrid self-positioning scheme, the AOA-Aided TOA Positioning Algorithm (ATPA) and present a
network-based positioning system considering the relative movements between the multiple seeds and
the mobile sensor. The main assumptions are: (1) The clocks of the seeds and the mobile sensors
with unknown positions are synchronized; (2) The target sensor will not dramatically change its
moving direction; (3) The seeds broadcast their position information periodically. The goal of the
proposed scheme is to estimate the target position coincided with the broadcasting time stamp of the
seeds. Accordingly, the ATPA positioning scheme performs location estimation in three phases: (I)
AOA-Aided TOA Measurement, (II) Geometrical Positioning with Particle Filtering, and (III) Adaptive
Fuzzy Control.

In Phase I, since the movement of a target sensor introduces differences between arrival times of the
seeds, the aided AOA information may be used to modify the TOA measurements, which can be applied
to compute the location estimates. In Phase II, the Bayesian particle filter [14] is used to estimate the
unknown sensor position from state equations. The objective is to find feasible position to make the
error of state vector minimum. After obtaining the initial position estimate, the localization adjustment
problem can be solved by applying the operations of Phase III (adaptive fuzzy control). Here, we define
the procedures of adaptive fuzzy control in three steps: (I) Determining fuzzy controller input variables,
(II) Applying the gradient descent learning [15] and constructing adaptive fuzzy rules, and (III) doing
defuzzification.

The major contributions and key features of this paper are: (1) The operation of the proposed ATPA
can be regarded as the reverse operation of TDOA, which allows all mobile sensors to obtain adequate
observations and to perform self-localization by receiving the signals from the seeds without interfering
with each other. Therefore, compared with conventional TDOA approaches, the purpose of energy
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conservation can be achieved since the proposed method involves effective communication between the
seeds and the target sensors with less communication overhead. Moreover, a modification scheme of
distance measurement is proposed to coordinate the signals and information in a scenario with multiple
seeds; (2) One of the main advantages of particle filtering method is that the mobile sensor carries along
a complete distribution of estimates of its position. Thus, the distribution is inherently a measure of
the accuracy of the positioning system; (3) Due to the characteristics of the learning process for tuning
fuzzy rules, the proposed ATPA approach owns adaptive flexibility when dealing with uncertainty in
position estimation.

This paper is organized as follows: Section 2 reviews the literatures on hybrid TOA/AOA positioning
schemes and position refinement techniques. Section 3 formulates the position estimation problem
and derives an adaptive self-localization solution that relies on a distributed positioning protocol [16].
Section 4 presents an estimation-theoretic analysis of the proposed measurement mechanisms to
assess the achievable estimation accuracy. Two main positioning errors are considered: (1) the
distance-dependent positioning error and (2) the angle-dependent positioning error. These two
positioning errors are examined carefully to assess their impacts on the positioning accuracy. In
Section 5, with a number of sensible settings, the feasibility of the proposed schemes is examined
via simulation and numerical results. The final section makes a conclusion and shows future research
directions.

2. Literature Review

Mobile location with TOA/AOA information at a single base station is first proposed in [4]. The
authors in [17] analyze the location accuracy of an TOA/AOA hybrid algorithm with a single base
station in the LOS scenario. Deng and Fan [5] introduce an TOA/AOA location algorithm with multiple
base stations. However, the speed of the mobile station is assumed to be very low and the relative
movement between the base station and the mobile station is not considered. [18] utilizes a constrained
nonlinear optimization approach, when range measurements are available from three base stations only.
Bounds on the non-line-of-sight (NLOS) error and the relationship between the true ranges are extracted
from the geometry of the cell layout and the measured range circles to serve as constraints. [19]
introduces two hybrid TOA/AOA techniques, Enhanced Time of Arrivals (E-TOA) and Enhanced Angle
of Arrival (E-AOA), in order to optimize the location positioning estimations. [20] proposes a residual
test (RT) that can simultaneously determine the number of LOS base stations and identify them such
that localization can proceed with only those LOS base stations. Hybrid location methods by combining
time and angle measurements can reduce the number of receiving base stations and improve the coverage
of location-based service simultaneously. Comprehensive surveys of design challenges and recently
proposed hybrid positioning algorithms for wireless networks can be found in [7,21–24].

Due to the error caused by the location estimation algorithm (the estimation error) and the error
intrinsic to the problem (noisy distance measurements), location adjustment algorithms are needed in
order to improve the estimation accuracy. There are several refinement schemes that have been proposed
in the literature. Since the particle filter looses diversity in the samples, a sequential Monte Carlo
framework [25] can be used to generate new samples and provide improved estimation accuracy (e.g.,
random walk Monte Carlo methods, Metropolis-Hastings (M-H) algorithm [26]). The basic idea is to
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simulate an ergodic Markov chain such that the new samples are asymptotically distributed based on the
target probability distribution. Thus, applying the Markov chain Monte Carlo (MCMC) method on each
estimated sensor right after the location estimation allows estimation error to be reduced in a distributed
way. Based on the sequential Monte Carlo framework, the MCMC method can be applied directly to
evaluate the most expectation of target position. In Section 5, the performance of the MCMC method
is explored to provide comprehensive performance assessment of the proposed adaptive fuzzy control
approach in Phase III.

[27] attempts to find locations for the sensors which best fit the set of all range measurements made
in the network in a least-mean-squares sense. [28] demonstrates the utility of nonparametric belief
propagation (NBP) for self-localization in sensor networks. However, the computational complexity
and communication costs inherent in a distributed implementation of NBP are high. [29] presents a
localization algorithm based on a spring model (LASM) method to simulates the dynamics of physical
spring system and to estimate the positions of nodes. Simulation results show that the LASM method
reduces the computational complexity, while maintaining the localization accuracy. [30] presents
the collaborative multilateration to enable ad-hoc deployed sensor nodes to accurately estimate their
locations by using known beacon locations that are several hops away and distance measurements to
neighboring nodes. To prevent error accumulation in the network, node locations are computed by
setting up and solving a global non-linear optimization problem. [31] presents an approach called
AHLoS (Ad-Hoc Localization System) that enables sensor nodes to discover their locations using a
set distributed iterative algorithms. [32] proposes a heuristic refinement approach to improve position
estimates. [33] proposes an iterative quality-based localization (IQL) algorithm for location discovery.
The IQL algorithm first determines an initial position estimate, after which the Weighted Least-Squares
(WLS) algorithm is used iteratively to refine the position. In the WLS algorithm the Gaussian distribution
is used to determine the reliability of measurements.

Instead of applying the above refinement approaches, the position estimation problem can be solved
with fuzzy logic algorithms as well. [34] presents a swarm-based fuzzy logic control (FLC) mobile
sensor network approach for collaboratively locating the hazardous contaminants in an unknown
large-scale area, which maintains a stable communication network for collaborative exploration and
information fusion. [35] proposes a fixed fuzzy control scheme (FLAME algorithm) for minimizing
the localization error. FLAME algorithm works very well in estimating error-free locations. However,
given a poor initial estimate, the fuzzy logic controller has limited capability to improve the accuracy.
Moreover, a equalizer is needed to make further corrections to fuzzy estimate, which may lead to extra
computational cost. Since only using fixed fuzzy decision rules [35] may not be able to provide accurate
estimates, in this paper, we refer to the concept described in [15] and develop an adaptive fuzzy control
system, which tunes the fuzzy rules without changing the form of the fuzzy rule table used in fuzzy
controls and trains system parameters based on the gradient descent method to minimize the position
error under the circumstance of measurement uncertainties. The performance comparison of the FLAME
algorithm and the proposed ATPA approach are presented in Section 5.
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3. Principles of Adaptive AOA-Aided TOA Positioning

This section describes an adaptive distributed algorithm for positioning the mobile sensors.
Figure 1 shows the block diagrams for the proposed localization system. The main steps for
distributed self-positioning are LOS identification, distance measurement and modification, initial
position estimation, and estimation refinement, which are achieved by applying NLOS mitigation
techniques [7–13], AOA-aided TOA information, geometric localization using particle filter, and
adaptive fuzzy control scheme, respectively. Assuming that the LOS seeds are identified, the following
subsections detail the operations and design principles of the proposed ATPA approach.

Figure 1. Illustration of block diagram for the ATPA method.

3.1. AOA-Aided TOA Measurement

As shown in Figure 2, due to the locations of the seeds, the time stamps of the received signals from
the seeds are different. Thus, a measurement modification may be applied to coordinate the signals and
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information in a scenario with multiple seeds. Assume that the unknown sensors are aware of their
orientations before the estimation. Figure 3 depicts the concept of measurement modification. Let T0 be
the broadcasting time of the seed. Let Ti be the time stamp of the received signal from Seed i. Denote di
as the distance between Seed i and the target sensor. Denote △di as the movement of the target sensor
from time stamp T0 to time stamp Ti. Denote ϕi as the direction of the received signal from Seed i

with respect to the orientation. Denote ϕm as the moving direction of the target sensor with respect to
the orientation.

Figure 2. Differences between signal arrival time stamps.

Figure 3. The concept of measurement modification.
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Hence, based on di, △di, the AOA information, and the information of mobility model (e.g., the
moving direction), the distance measurement may be modified by

d′2i = d2i +△d2i − 2di△di cos(θi) (1)

Note that because of the locations of the seeds and the target sensor, the decision criterion of the angle
θi yields

θi =

{
π − ||ϕm| − |ϕi|| , for (ϕm · ϕi) ≥ 0

π − ||ϕm|+ |ϕi|| , otherwise
(2)

Accordingly, Figure 4 shows that given Ns seeds, the Ns modified distance measurements may be applied
to estimate the location of the target sensor at time T0.

Figure 4. AOA-Aided TOA measurements with multiple seeds.

3.2. Geometrical Positioning with Particle Filtering

Suppose that a mobile sensor does not know its position but is able to receive information from
neighboring seeds which are assumed to have accurate position information. There are many ways to
‘solve’ this location problem. This section details the Bayesian particle filter method which may be
preferred because it is robust to noisy measurements, it allows for flexible information transmission, and
it can be robust to lost or lossy data.

3.2.1. The Measurement Term

Assume the target sensor m obtains the modified distance measurements (i.e., the AOA-aided TOA
measurements) from neighboring seeds and estimates its own position using the particle filter. The
position of the target sensor is given by the discrete-time state equation

xk = Φxk−1 + Γλk (3)
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where xk is the position of the mobile sensor and λk is an uncorrelated Gaussian diffusion term describing
the uncertainty. Note that this system equation is suitable for many different systems and the only
changes will be the matrixes Φ and Γ, which depend on the system model.

The measurement term for the target sensor m is

zk =
∑
ℓ∈Hm

∣∣|xm
k − xℓ

k| − dmℓ

∣∣+ vk (4)

where the sum is over the nearby seeds with location xℓ
k, dmℓ represents the measured distance between

the estimated target sensor m and Seed ℓ and may be approximated in application by the inverse of
the signal strength or by calculated from the time delay between transmission and reception [36]; the
measurement noise is another uncorrelated zero mean Gaussian white noise process; the set Hm is the
chosen seeds for the measurement.

3.2.2. Geometrical Positioning

Particle filter is an algorithm of estimation used to estimate the unknown sensor position from state
equations. The objective is to find feasible position to make the error of state vector x minimum. The
state vector is represented as a set of random samples updated and propagated with the algorithm. One
of the main advantages of this approach is that the mobile sensor carries along a complete distribution
of estimates of its position. Therefore, the distribution is inherently a measure of the accuracy of the
positioning system—hence, if a given task requires a certain accuracy, it is possible to determine if
that level of accuracy is currently available. Moreover, [37] presents a case study of applying particle
filters to location estimation for ubiquitous computing. Therefore, our approach may be computationally
affordable by sensor nodes. The particle filter method is shown in Table 1.

3.3. Adaptive Fuzzy Control

Due to the effectiveness of the fuzzy logic controller in minimizing the estimation error [15,35], an
adaptive fuzzy control system is developed to approach the true target coordinate.

3.3.1. Inputs of the Fuzzy Control

In the proposed fuzzy control system, two scenarios are considered. For Scenario 1, as depicted in
Figure 5, the target sensor has no AOA information. Given the initial estimate of target position in Phase

II and the reference position of Seed i, the vector ⃗̂
di and angle θi (in radians) are obtained. Hence, the

projections of ⃗̂di onto x-axis and y-axis are

x̂proj
i = d̂i · cos(θi), ŷproji = d̂i · sin(θi) (5)

Instead of using the estimated target position, the modified distance measurement (i.e., d⃗i
′
) and angle θi

are applied to find the projections, which are

xproj
i = di

′ · cos(θi), yproji = di
′ · sin(θi) (6)
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Table 1. The Particle Filtering Methodology.

1. Initialization: Generate a set of random samples xk(i),
i = 1, 2, . . . , NPF from the prior density at time k = 0.
Each sample of the state vector is a ‘particle’.

2. Prediction: Each random sample is passed through the state
equation to obtain samples from the prior density at time
k + 1. Thus

x̂k+1(i) = Φxk(i) + Γλk(i)

where λk(i) is a sample drawn from the probability density
function of the system noise, Φ is related to the mobility model,
and Γ is an identity matrix.

3. Measurement Update: The weights of the likelihood function
p(zk+1|x̂k+1(i)) are updated for each sample in the random
set i = 1, 2, . . . , NPF and the normalized weights are

ξk+1(i) =
p(zk+1|x̂k+1(i))∑NPF

j=1 p(zk+1|x̂k+1(j))

for each sample.
4. Re-sampling: Take NPF samples with replacement from the

random sample set x̂k+1(i), i = 1, 2, . . . , NPF , to generate the
new sample set xk+1(i).

5. Position: The best single estimate of the position is the mean
of xk+1(i), xk.

Figure 5. Estimation adjustment without AOA information.

For Scenario 2, as shown in Figure 6, the target sensor has received AOA information. Following the
same operations above, we have

x̂proj
i = d̂i · cos(φi), ŷproji = d̂i · sin(φi) (7)
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xproj
i = di

′ · cos(Φi), yproji = di
′ · sin(Φi) (8)

Note that angle Φi is captured from the AOA information and the information of mobility model,
and angle φi is derived from the initial target position estimate and the reference position of Seed i.
Accordingly, xdiff

i = x̂proj
i −xproj

i and ydiffi = ŷproji −yproji are fed as inputs to the fuzzy control system
for the two scenarios described above.

Figure 6. Estimation adjustment with AOA information.

3.3.2. Gradient Descent Learning

The proposed fuzzy control system uses fuzzy logic and gradient descent method to adjust a suitable
answer for the target sensor position. The objective function to be minimized is defined by

E =
1

2
(u− ud)2 (9)

where ud is a desired output value for an input vector, and u is a fuzzy inference value. Here, we use

the projections onto the x-axis of ⃗̂
di and d⃗i

′
to explain the operation of the fuzzy system and minimize

the objective function E. In this case, the desired output value for input vector x = [x1, x2, . . . , xL]
T is

ud
i = xproj

i and the fuzzy inference value is ui = x̂proj
i + δ. Therefore, E can be rewritten by

E =
L∑
i=1

1

2
(ui − ud

i )
2 (10)

=
L∑
i=1

1

2
[(x̂proj

i + δ)− xproj
i ]2 (11)

=
L∑
i=1

1

2
[(xdiff

i + δ)]2 (12)
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where δ is the output of fuzzy membership

δ =

∑r
j=1 qj(x)wj∑r
j=1 qj(x)

(13)

which is calculated by center of area (COA) method [38]. Note that

qj(x) =
L∏
i=1

µAj
i
(xi), j = 1, 2, . . . , r (14)

is the defined firing strength of rule j, r is the number of fuzzy rules, µAj
i

is the membership function of
the precondition part, wj is the training parameter, and the x1, x2, . . . , xL are input variables.

Suppose µAj
i

is a Gaussian membership function for input variable xi of rule j. Thus, E is further
given by

E =
L∑
i=1

1

2

[
(xdiff

i +

∑r
j=1 qj(x)wj∑r
j=1 qj(x)

)

]2

(15)

=
L∑
i=1

1

2

[
(xdiff

i +

∑r
j=1

∏L
i=1 µAj

i
(xi)wj∑r

j=1

∏L
i=1 µAj

i

]2

(16)

with

µAj
i
= exp

[
−(xi −mj

i )
2

(σj
i )

2

]
(17)

where i = 1, 2, . . . , L, j = 1, 2, . . . , r, and mj
i and σj

i are the mean and the standard deviation of µAj
i
,

respectively.
In order to minimize the function E and find a better feasible estimate, the training parameters are

derived based on gradient descent method [15]. For mj
i , we have

mj
i (t+ 1) = mj

i (t)− η
∂E

∂mj
i

(18)

= mj
i (t)− η

L∑
i=1

[(xdiff
i + δ)] · wj − δ∑r

K=1 qK
· qj ·

2(xi −mj
i )

(σj
i )

2
(19)

where i = 1, 2, . . . , L, j = 1, 2, . . . , r, and η is the constant step size (0 < η < 1). Similarly, the training
process of σj

i is given by

σj
i (t+ 1) = σj

i (t)− η
∂E

∂σj
i

(20)

= σj
i (t)− η

L∑
i=1

[(xdiff
i + δ)] · wj − δ∑r

K=1 qK
· qj ·

2(xi −mj
i )

2

(σj
i )

3
(21)

and the training parameter wj yields

wj(t+ 1) = wj(t)− η
∂E

∂wj

(22)

= wj(t)− η

L∑
i=1

[(xdiff
i + δ)] · qj∑r

K=1 qK
. (23)
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3.3.3. Constructing Adaptive Fuzzy Rules

Based on the inputs as detailed in Section 3.3.1, the linguistic variables used for the input of the fuzzy
logic controller system are N (negative) and P (positive). Gradient descent method is used to decide
linguistic variables of N and P, which represents a measure of the difference between x̂proj

i (ŷproji ) and
xproj
i (yproji ). In Figure 7, Gaussian membership functions are developed for the linguistic states. In

this work, four fuzzy rules are developed and the training parameters (mi
j, σ

j
i , wj) are calculated by the

above gradient descent method. Table 2 expresses the fuzzy logic in terms of fuzzy IF-THEN rules,
which implements mapping of input functions into output functions.

Figure 7. Gaussian membership functions for the linguistic states.

Table 2. Representation of fuzzy rules.

R1 (Rule 1): IF xdiff
1 is N (negative) AND xdiff

2 is N (negative)
THEN distance adjustment is the value of w1.

R2 (Rule 2): IF xdiff
1 is P (positive) AND xdiff

2 is N (negative)
THEN distance adjustment is the value of w2.

R3 (Rule 3): IF xdiff
1 is N (negative) AND xdiff

2 is P (positive)
THEN distance adjustment is the value of w3.

R4 (Rule 4): IF xdiff
1 is P (positive) AND xdiff

2 is P (positive)
THEN distance adjustment is the value of w4.

3.3.4. Defuzzification Method

There are many methods available for doing defuzzification (e.g., Center of Area, Mean of
Maximum). Here, we use the Center of Area (COA) method to determine the defuzzification value
for the x-coordinate. Note that the above operations are for the refinement of the x-coordinate on the
x-axis. Similar procedures can be performed for the y-coordinate on the y-axis.
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4. Analysis of Positioning Accuracy

Referring to [39], evaluating the computation process and the significance of approximate accuracy
is an important step in deriving either exact or approximate solutions for the localization problem. This
section presents an estimation-theoretic analysis of the proposed measurement mechanisms to assess the
achievable estimation accuracy.

4.1. CRLB of TDOA

The location geometry is shown in Figure 2, where Ns seeds at locations x(s)
i = (x

(s)
i , y

(s)
i )T are use

to locate a target at position x(t) = (x, y)T through TDOA measurements. Let di be the true distance
between the target and Seed i,

di =

√
(x− x

(s)
i )2 + (y − y

(s)
i )2 (24)

ui = di+1 − d1 (25)

where i = 1, 2, . . . , Ns − 1. Assume that

r[i] = di + ni (26)

where ni is the TOA noise that is assumed to be zero-mean Gaussian with variance σ2. Thus, the
distribution of r[i] is

f(r[i];x, y) =
1

(2πσ2)Ns/2
exp(−

∑Ns

i=1(r[i]− ui)
2

2σ2
) (27)

where i = 1, 2, . . . , Ns and −∞ ≤ r[i] ≤ ∞.
The CRLB is the lowest possible variance that an unbiased linear estimator can achieve. It is given

by the inverse of the Fisher information matrix I(x(t)) defined as

I(x(t)) =

[
I1,1 I1,2

I2,1 I2,2

]
(28)

where

I1,1 =
∂DT

∂x
Σ−1∂D

∂x
(29)

I1,2 =
∂DT

∂x
Σ−1∂D

∂y
(30)

I2,1 =
∂DT

∂y
Σ−1∂D

∂x
(31)

I2,2 =
∂DT

∂y
Σ−1∂D

∂y
(32)
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with

∂D

∂x
=

[
∂u1(x, y)

∂x

∂u2(x, y)

∂x
· · · ∂uNs−1(x, y)

∂x

]T
=

[
x− x

(s)
2

d2
− x− x

(s)
1

d1
· · ·

x− x
(s)
Ns

dNs

− x− x
(s)
1

d1

]T

∂D

∂y
=

[
∂u1(x, y)

∂y

∂u2(x, y)

∂y
· · · ∂uNs−1(x, y)

∂y

]T
=

[
y − y

(s)
2

d2
− y − y

(s)
1

d1
· · ·

y − y
(s)
Ns

dNs

− y − y
(s)
1

d1

]T

Σ−1 =
1

σ2

 1 · · · 0
... . . . ...
0 · · · 1

 . (33)

Therefore, the Cramer-Rao bound can then be written as

V ar(x(t)) ≥ I−1(x(t)) =

[
I

′
1,1 I

′
1,2

I
′
2,1 I

′
2,2

]
(34)

Then
V ar(x̃) ≥ I

′

1,1, V ar(ỹ) ≥ I
′

2,2 (35)

where I
′
1,1 is the CRLB of x and I

′
2,2 is the CRLB of y, and the trace of CRLB is the minimum possible

target location MSE that any linear unbiased estimator can achieve.

4.2. CRLB of TOA

Given the condition probability density function from (27), explicit expressions for the elements of
the Fisher information matrix (FIM) can be derived, which yields [20]

I(x(t)) =
1

σ2

[ ∑Ns

i=1
(x−xi)

2

d2i

∑Ns

i=1
(x−xi)(y−yi)

d2i∑Ns

i=1
(x−xi)(y−yi)

d2i

∑Ns

i=1
(y−yi)

2

d2i

]
(36)

and the Cramer-Rao lower bound can then be written as

V ar(x(t)) ≥ I−1(x(t)) =

[
I

′
1,1 I

′
1,2

I
′
2,1 I

′
2,2

]
(37)

Note that I
′
1,1 and I

′
2,2 are CRLBs of x̂ and ŷ, which are diagonal elements of the inverse of the

FIM matrix.
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4.3. CRLB of Joint TOA/AOA

The measurements at the targeted sensor can be modeled as

τ̂ = τ + δτ (38)

ϕ̂ = ϕ+ δϕ (39)

where τ is the true propagation time and ϕ is the true angle information. Note that δτ and δϕ are
uncorrelated Gaussian noises with the distributions δτ ∼ N (0, σ2

τ ) and δϕ ∼ N (0, σ2
ϕ). Assuming

that the direct path exists between the seed and the target sensor, the estimated position is given by

x̂ = xs + vτ̂ cos(ϕ̂) = xs + r̂ cos(ϕ̂) (40)

ŷ = ys + vτ̂ sin(ϕ̂) = ys + r̂ sin(ϕ̂) (41)

where r̂ is the distance measurement (i.e., r̂ = vτ̂ = r+ vδτ ), (xs, ys) is the true position of the seed and
v is the speed of signal. Assuming δτ and δϕ are sufficiently small, the variance of the position estimation
p̂ is approximated by

σ2
p ≈ v2σ2

τ + d2σ2
ϕ = σ2

r + d2σ2
ϕ (42)

Given the above assumptions [17], the CRLBs with single seed and multiple seeds are derived as
follows, respectively.

4.3.1. Single Seed

The probability density function of g = [r̂, ϕ̂] is

f(g;x, y) =
1√
2πσ2

r

· exp
[
− 1

2σ2
r

(r̂ − d)2
]

· 1√
2πσ2

ϕ

· exp

[
− 1

2σ2
ϕ

(
ϕ̂− arctan

(
y − ys
x− xs

))2
]

(43)

Thus, the Fisher information matrix yields

I(x(t)) =

 cos2(ϕ)
σ2
r

+ sin2(ϕ)

d2σ2
ϕ

sin(2ϕ)
2

[
1
σ2
r
− 1

d2σ2
ϕ

]
sin(2ϕ)

2

[
1
σ2
r
− 1

d2σ2
ϕ

]
sin2(ϕ)

σ2
r

+ cos2(ϕ)

d2σ2
ϕ

 (44)

and the Cramer-Rao bound can then be written as

V ar(x(t)) ≥ I−1(x(t)) =

[
I

′
1,1 I

′
1,2

I
′
2,1 I

′
2,2

]
(45)

Thus,
V ar(x̃) ≥ I

′

1,1, V ar(ỹ) ≥ I
′

2,2 (46)
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4.3.2. Multiple Seeds

Referring to the concept of measurement modification as shown in Figure 3 and normal
approximation [40], the modified distance estimate d̂′i in (1) may be approximated by

d̂′i ∼ N∫ (µd′i
, σ2

d′i
) (47)

with
µd′i

= d′i =
√
d2i +△d2i − 2di△di cos(θi) (48)

σ2
d′i
≈ (1 + 4 cos2(θi)△d2i )σ

2
pi
+ (1 + 4 cos2(θi)d

2
i )σ

2
△pi

+ 4 sin2(θi)d
2
i△d2iσ

2
θi

(49)

where
σ2
pi
≈ σ2

di
+ d2iσ

2
ϕi

(50)

σ2
△pi

≈ σ2
△di

+△d2iσ
2
ϕm

(51)

σ2
θi
≈ σ2

ϕi
+ σ2

ϕm
(52)

Note that di, △di, θi, ϕi, and ϕm are the estimated parameters with respect to Seed i assumed to be
Gaussian distributions centered at their true values. Therefore, the distribution of r[i] is

f(r[i];x, y) =
1

(2πσ2
i )

Ns/2
exp(−

∑Ns

i=1(r[i]− d′i)
2

2σ2
i

) (53)

where i = 1, 2, . . . , Ns and −∞ ≤ r[i] ≤ ∞. Similarly, following the definitions (28) ∼ (32) in
Section 4.1 with

∂D

∂x
=

[
∂d′1(x, y)

∂x

∂d′2(x, y)

∂x
· · ·

∂d′Ns
(x, y)

∂x

]T
=

[
x− x

(s)
1

d′1

x− x
(s)
2

d′2
· · ·

x− x
(s)
Ns

d′Ns

]T

∂D

∂y
=

[
∂d′1(x, y)

∂y

∂d′2(x, y)

∂y
· · ·

∂d′Ns
(x, y)

∂y

]T
=

[
y − y

(s)
1

d′1

y − y
(s)
2

d′2
· · ·

y − y
(s)
Ns

d′Ns

]T

and σi = σd′i
, we obtain

V ar(x̃) ≥ I
′

1,1, V ar(ỹ) ≥ I
′

2,2 (54)
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5. Simulation Results

With a number of sensible settings, the feasibility of the proposed schemes is examined via simulation
and numerical results. Section 5.1 presents the results of initial position estimation considering the
effects of mobility, uncertainty of angle estimation, measurement noise of distance estimation, and
number of seeds. Given the initial position estimate and the measurement information, the performance
comparisons of three position refinement schemes, the MCMC-based scheme [26], the FLAME method
(a fixed fuzzy control algorithm) [35], and the proposed adaptive fuzzy control method, are demonstrated
in Sections 5.2 and 5.3.

5.1. Initial Position Estimation

To evaluate the performance of the proposed approach, we use a custom simulator implemented in
Matlab. In the simulation, the TOA and AOA errors are assumed to be Gaussian distributed. Suppose the
speed of the signal is 345.6 m/s and the number of samples for particle filtering is 3000. Assume three
seeds are with locations x(s)

1 = [10, 25], x(s)
2 = [80, 25], and x

(s)
3 = [50, 80], the target mobile sensor is

located in a square with side length l = 100 m, moving from [30, 30] to [60, 60] (as depicted in Figure 8),
and the broadcast interval of the seeds is 1 second. For geometrical positioning with particle filtering, a
proper prior density for generating initial samples can be provided by using the idea in [41] and proper
convergence can be achieved with five times of iteration.

Figure 8. The mobility model of the target sensor.

0 10 20 30 40 50 60 70 80 90 100
0

10

20

30

40

50

60

70

80

90

100

X

Y

 

 

Seed 2Seed 1

Seed 3

Target Sensor

Four sets of experiments are conducted to evaluate the effects of the variations of critical parameters
on position estimation, such as the effect of mobility, the effect of uncertainty of angle estimation, the
effect of measurement noise of distance estimation, and the effect of number of seeds. The results
consider the difference between the real position and the estimated position of the target mobile sensors.
For comparison, the position estimation using the TDOA technique, the position estimation using
the conventional TOA technique, and the estimation accuracy using the proposed hybrid TOA/AOA
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technique are depicted and the CRLBs with perfect AOA information (i.e., σ2
ϕ = 0) are provided for

assessing the performance of the proposed approach.

5.1.1 The Effect of Mobility

For the first set of experiments, we consider the mobility of the target sensor ranging from 1 to 10
m/s. Assuming that the variance of the distance measurement is σ2

d = 10−3, Figure 9 shows the position
estimation accuracy against the target mobility, which implies that the performance of the TDOA and
the proposed TOA/AOA method remain approximately stable regardless of the node moving speed. On
the contrary, the estimation error of the conventional TOA method increases with the increasing target
speed. Therefore, Figure 9 suggests that ATPA may be suitable for geometrical positioning in situations
involving modest mobility.

Figure 9. The effect of mobility on position estimation.
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5.1.2. The Effect of Uncertainty of Angle Estimation

Given the target speed 5 m/s and the variance of angle estimation (angle measurement in degree), the
second set of experiments investigates the effect of uncertainty of angle estimation on position estimation
accuracy with varying the variance of distance measurement ranging from σ2

d = 10−4 ∼ 1. As expected,
Figure 10 illustrates that the proposed scheme achieves better performance with a lower variance of
angle estimation. Observe that with a small variance of distance measurement, the angle information
dominates the accuracy of position estimation. However, with a larger variance of distance measurement,
the localization accuracy is determined by the ranging error.
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Figure 10. The effect of uncertainty of angle estimation on position estimation accuracy.
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5.1.3. The Effect of Measurement Noise of Distance Estimation

As shown in Figure 11, given the target speed 5 m/s and the variance of angle estimation σ2
ϕ =

0.1, the the position estimation error increases with the increasing variance of distance measurement
(ranging from σ2

d = 10−4 ∼ 1). Notice that the CRLB, the performance of the TDOA method,
and the performance of the proposed method merge together with a measurement noise σd ≥ 1.
Therefore, a fundamental problem when locating mobile sensors in a network is to estimate the distance
between the seed and the target sensor, since accurate location estimates highly rely on precise distance
measurements.

Figure 11. The effect of measurement noise of distance estimation on position estimation.
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5.1.4. The Effect of Number of Seeds

With the target speed 5 m/s and variance σ2
d = 10−3, we vary the number of seeds in the network

from 3 to 10. The estimation of position is shown in Figure 12, which shows the accuracy of the position
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estimate. The performance improves along with the number of seeds. However, like the TDOA approach,
the improvement is not significant (especially when number of seeds is greater than 5). This suggests
that even a low number of seeds can also achieve good estimation accuracy.

Compared with Figure 9, given 3 seeds with random locations and the speed at 5 m/s, the estimation
accuracy of Figure 12 is much lower than the one in Figure 9. This is due to the quality of the TOA
measurements. Therefore, the number of TOA measurements for position estimation (i.e., the number
of seeds chosen for the measurement) should be dynamically adjusted based on the estimated distance
between the target mobile sensor and the seeds in order to reduce location error.

Figure 12. The effect of number of seeds on estimation accuracy.
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5.2. Refinement Schemes: MCMC vs. Adaptive Fuzzy Control

Because the particle filter looses diversity in the samples, the Metropolis-Hastings (M-H)
algorithm [26] may be used to generate new samples and provide improved estimation accuracy.
The basic idea of the M-H algorithm is to simulate an ergodic Markov chain whose samples are
asymptotically distributed according to the target probability distribution π(·) and use a candidate
proposal distribution ζ(xk(i), ·) to select the candidate of the current state independently with the
acceptance probability given by

α(xk(i), x
′

k(i)) = min
{
1,

π(x
′

k(i))ζ(x
′

k(i), xk(i))

π(xk(i))ζ(xk(i), x
′
k(i))

}
(55)

Therefore, instead of using a centralized accumulator host to adjust sensor locations, applying the
Markov chain Monte Carlo (MCMC) method on each estimated sensor right after the location estimation
allows estimation error to be reduced in a distributed way. Here we summarize the M-H algorithm (a
MCMC-based scheme) with the initial value x0(i) in Table 3. In our simulations, the proposal density
ζ(xk(i), ·) is composed of the added noise and the current samples generated from particle filtering. The
distribution of the noise is N (0, σε2) with σ2

ε = 0.1. From the work in [42], it recommends that if the
proposal density is normal, then the acceptance rate should be around 0.45 for the random walk chain.
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Thus, we adjust the parameters to achieve an acceptance rate of 0.4 to 0.5. The performance of location
adjustment by applying a few MCMC steps is reported in the following subsections.

Table 3. The Metropolis-Hastings Algorithm.

1. Set k = 0 and repeat for xk(i), i = 1, 2, . . . , NPF .
NPF is the number of samples for particle filtering.

2. Draw x
′

k(i) from the proposal density ζ(xk(i), ·).
3. Set u to a draw from a U(0, 1) distribution.
4. Acceptance probability:

α(xk(i), x
′

k(i)) = min
{
1,

π(x
′
k(i))ζ(x

′
k(i),xk(i))

π(xk(i))ζ(xk(i),x
′
k(i))

}
,

where π(·) is the target density from which samples
are desired.

5. If (u ≤ Acceptance Probability)
accept proposal and set xk+1(i) = x

′

k(i).
else

reject proposal and set xk+1(i) = xk(i).
end

6. Return the values {xk+1(1), xk+1(2), . . . , xk+1(NPF )}
and set k = k + 1.

Two sets of experiments are applied to evaluate the performance of adaptive fuzzy control and the
performance of MCMC technique when using TOA/AOA information, and those only using TOA
information to adjust position estimation, respectively. In the simulation, the measurement errors are
assumed to be Gaussian random variables. As shown in Figure 13, the reference positions of the three
seeds are located with symbols ‘•’ and the true positions of the seven unknown target sensors are located
with symbols ‘◦’. Incorporating the error analysis in [20,35], the average estimation error Perr can be
calculated as follows:

Perr =

∑n
i=1

√
(x̂i − xi)2 + (ŷi − yi)2

n
(56)

where n is the number of unknown target sensors, (x̂i, ŷi) and (xi, yi) are the estimated position and the
actual position of sensor i, respectively. Note that in the experimental illustration, the line with the label
“Particle Filter” represents the initial position estimate in Phase II. The “N” in the legend denotes the
iteration number of fuzzy control. The performance comparisons of these two refinement schemes are
depicted in the following subsections.
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Figure 13. The locations of seeds and unknown target sensors.
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5.2.1. MCMC vs. Adaptive Fuzzy Control (Using TOA Information)

Given variance of distance estimation σ2
d = 0.01 and the number of samples of particle filter (ranging

from 25 ∼ 750 samples/area), Figure 14 shows the location adjustment of the target sensor using TOA
information. Referring to the line with label - Particle Filter (TOA), it suggests that a better initial
position estimate in Phase II may be obtained with a larger sample size. Based on the initial estimation,
Figure 14 further shows the improvement of positioning performance when applying the refinement
schemes. Observe that the performance of the adaptive fuzzy control with an increase in the number
of iterative training may be superior to that of the MCMC method with a smaller sample size. This
is attributed to the fact that the number of MCMC samples may have an influence on the particle set’s
quality [43]. For the proposed fuzzy control method, the fitting for training data is good.

Figure 14. Performances of the MCMC scheme and the adaptive fuzzy control (using TOA
information) with varying the number of iterative training.
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5.2.2. MCMC vs. Adaptive Fuzzy Control (Using AOA/TOA Information)

Suppose that the target sensor receives AOA and TOA information to estimate its own coordinate.
The AOA measurement noise is assumed to be a Gaussian random variable and AOA is measured
with degree information. Similar to the results described in Figure 14, Figure 15 show that, given the
variance of distance σ2

d = 0.01 and variance of angle σ2
ϕ = 0, the position estimation error is suppressed

with increasing the number of samples (ranging from 25 ∼ 750 samples/area). Notice that compared
with the MCMC method, the adaptive fuzzy control using AOA and TOA information has less position
estimation error. Moreover, compared with Figure 14, Figure 15 shows that incorporating accurate angle
information may help tackle the localization problem in addition to distance measurements. Hence,
one possible way to approach network localization is to include other measurements such as angle
information and heading information [39] in order to suppress the computational complexity.

In Figure 16, given the variance of distance σ2
d = 0.01 and σ2

d = 0.5, we explore the estimation
performance with varying the variance of angle information. Notice that as shown in Figure 16 (left), the
proposed adaptive fuzzy control with moderate noisy angle information may dominate the localization
performance under the circumstances of good distance estimation. However, as shown in Figure 16
(right), even with the moderate noisy angle information, the noisy distance information may have the
predominant influence and degrade the estimation performance due to the performance loss caused by
measurement uncertainties and propagation environments. Therefore, the MCMC and the proposed
adaptive fuzzy control have roughly the same estimation performance in this scenario.

Figure 15. Performance comparison with varying the number of iterative for adaptive fuzzy
control (using AOA/TOA information).
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Figure 16. The estimation performance with varying the variance of angle information; σ2
d

= 0.01 (left) and σ2
d = 0.5 (right).
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5.3. Refinement Schemes: Adaptive Fuzzy Control vs. Fixed Fuzzy Control

This set of experiment compares the estimation performance of the ATPA with an adaptive fuzzy
control scheme and the FLAME with a fixed fuzzy control method [35]. Simulation study is conducted
to show that the performance of the FLAME approach is superior to those in [29,44,45]. Thus, the
FLAME heuristic may provide a good way to benchmark the performance of ATPA scheme. Here we
examine the estimation performance with two sets of fuzzy controller parameters. In Figure 17 (left),
appropriate initial settings of controller parameters with fixed fuzzy rules may sensibly improve the
estimation accuracy. Observe that the performance gap between these two methods is small. In contrast,
as shown in Figure 17 (right), inappropriate initial parameter settings with fixed fuzzy design rules
may make the estimation performance even worse since the parameter settings may vary from different
scenarios. Thus, because of the lack of learning process, the estimation accuracy with a fixed fuzzy
control method may highly depend on the parameter settings and fuzzy logic. On the other hand, even
with inappropriate initial settings, the proposed adaptive fuzzy control scheme may still converge the
estimation behavior and suppress the estimation error. Therefore, the ATPA approach owns adaptive
flexibility when dealing with uncertainty in position estimation.

5.4. The Effect of Mobility on the ATPA

Given the mobility model of the target sensor as described in Figure 8 with speed 5 m/s, Figure 18
shows the position error of x-axis and y-axis with varying the variance of distance when using TOA
information. We compare the estimation performances using the proposed positioning method with
fuzzy control and that with MCMC. Note that the MCMC position accuracy is better than that of the
fuzzy control with low distance variance in this example, but the fuzzy control scheme is computational
cheap compared with the MCMC algorithm. With a larger distance variance, the positioning accuracy
of the fuzzy control is better than that of the MCMC. In Figure 19, with the AOA and TOA information
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and the variance of AOA estimation σ2
ϕ = 0.1, the proposed position system effectively reduces the

position error. Compared with the positioning performances with only TOA information (described in
Figure 18), the MCMC scheme and the fuzzy control method have superior positioning performances
with TOA and AOA information (described in Figure 19), which suggests that the AOA information may
help to suppress the estimation error due to the noisy measurements (ranging from –10 ∼ 0 dB).

Figure 17. Performance comparison of the ATPA and the FLAME algorithms.
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Figure 18. The effect of mobility on position estimation (using TOA information); position
error of the x-coordinate (left) and position error of the y-coordinate (right).
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Figure 19. The effect of mobility on position estimation (using AOA/TOA information);
position error of x (left) and position error of y-axis (right).
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6. Conclusions

This paper describes a distributed AOA-aided TOA positioning algorithm in mobile wireless sensor
networks. The algorithm exploits the information flow while coping with distributed signal processing
and the requirements of network scalability. Once the estimation procedure and communication protocol
are performed, all mobile sensors obtain adequate observations and localize themselves automatically by
receiving the periodic broadcasts from the seeds. For the accuracy of initial estimation, the simulations
show that the proposed ATPA approach is comparable with the TDOA technique. For the accuracy of
refinement, compared with the MCMC scheme and the FLAME algorithm, the proposed ATPA approach
provides adaptive flexibility and robust improvement in estimation with moderate noisy measurements.
The comparison with the MCMC and the fuzzy control method shows that trade-offs are found between
model complexity, estimation accuracy, and sensible model description in real systems. Future plans
will involve generalizing the methods to perform actual measurements to evaluate the performance of
the proposed positioning system in ubiquitous computing environments.
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