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Abstract
CleavPredict (http://cleavpredict.sanfordburnham.org) is a Web server for substrate cleav-

age prediction for matrix metalloproteinases (MMPs). It is intended as a computational plat-

form aiding the scientific community in reasoning about proteolytic events. CleavPredict

offers in silico prediction of cleavage sites specific for 11 human MMPs. The prediction

method employs the MMP specific position weight matrices (PWMs) derived from statistical

analysis of high-throughput phage display experimental results. To augment the substrate

cleavage prediction process, CleavPredict provides information about the structural fea-

tures of potential cleavage sites that influence proteolysis. These include: secondary struc-

ture, disordered regions, transmembrane domains, and solvent accessibility. The server

also provides information about subcellular location, co-localization, and co-expression of

proteinase and potential substrates, along with experimentally determined positions of sin-

gle nucleotide polymorphism (SNP), and posttranslational modification (PTM) sites in sub-

strates. All this information will provide the user with perspectives in reasoning about

proteolytic events. CleavPredict is freely accessible, and there is no login required.

Introduction
Proteolysis is an important posttranslational modification that involves irreversible hydrolysis
of peptide bonds by proteinases. Proteolytic processing has a regulatory role in almost all bio-
logical pathways, including cell proliferation, cell death, and blood coagulation [1]. Proteinases
identify their substrates with a high degree of specificity. Accurate identification of candidate
substrates for proteinases has important implication for understanding the roles of these en-
zymes in physiological and pathological processes as well as for designing pharmacological in-
tervention approaches. Identification of proteolytic substrates depends on a number of factors.
One important factor is the primary substrate specificity, which is defined by a specific amino
acid sequence in a substrate that is recognized by the active site of a given proteinase. The effi-
ciency of a cleavage event is also related to the structural properties of the cleavage site. The
cleavage site needs to be accessible at the protein surface. Recently, it has been shown that this
property as measured by an absolute solvent accessibility index is essential for a proteolytic
event to occur [2]. However, cleavage sites that are hidden in native proteins can become
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accessible as a result of unfolding, allosteric effects, and other proteolytic activity. The efficiency
of a cleavage event is also related to the secondary structure of a cleaved amino acid sequence.
However, recent statistical analysis of CutDB, the proteolytic event database [3], demonstrated
that proteolytic events were uniformly distributed among three types of secondary structures,
although with some enrichment in loops. Cleavages in α-helices were found to be relatively
abundant in regions apparently prone to unfolding, while cleavages in β-structures tended to
be located at the periphery of β-sheets [2]. Other obvious prerequisites for cleavage to occur are
co-localization and co-expression. A proteolytic event is not possible if both substrate and pro-
teinase are not in the same compartment of the cell and if they enter the same cell compart-
ment at different times.

The majority of human proteinases have multiple (hundreds of) protein targets. For more
than 550 known human proteinases, the potential range of normal and pathological proteolytic
events is vast. Proteinases participate in a multitude of biological functions including cell cycle
progression [4], cell differentiation [5], cell migration [6], tissue remodelling [7], cholesterol
metabolism [8], blood coagulation [9] and apoptosis [10]. Given such widespread importance,
it is not surprising that proteinases represent a significant fraction of all druggable targets [11],
and that they are driving factors in diseases like emphysema [11], thrombosis [12], arthritis
[13], Alzheimer’s [14] metastatic cancer [15], as well as those mediated by viral and bacterial
pathogens [16–18].

Among all proteinases, extracellular proteinases matrix metalloproteinases, play a key role
in degrading extracellular proteins that help the cell to communicate with its surroundings
and function normally. They are important from the physiological, pathological, and pharma-
ceutical points of view [7, 19, 20]. Vertebrate MMPs have distinct but often overlapping sub-
strate specificities. They can cleave essential extracellular matrix proteins, and, as such, they
are highly regulated. The 23 human MMPs can be segregated into three groups; secreted pro-
teinases, proteinases with a transmembrane domain, and proteinases anchored to the mem-
brane with a GPI-linkage. Thus, every MMP is poised to modify interactions between cells,
and between cells and the extracellular matrix. So, it is not surprising that MMPs are involved
in tumor biology, synaptic plasticity, pulmonary disease, arthritis, atherosclerosis, and sepsis,
along with many others [5, 21–27]. In pathological conditions MMPs can play a destructive
role, e.g. in rheumatoid and osteoarthritis [28] by degrading key constituents of the extracel-
lular matrix [29–33].

However, even in cases where considerable effort has been devoted to the study of an
MMP, our understanding of the fundamental principles that determine their substrates and
biological roles remains unclear. For example, MMPs are critical for angiogenesis [22]. Ex-
perimentally induced corneal angiogenesis is lacking in MMP-14 deficient mice [34] and is
significantly diminished in the MMP-2 knockouts [35]. In a mouse model of retinal regenera-
tion after injury, neovascularization is diminished in both MMP-2 and MMP-9 deficient
mice, while it is almost absent in the double MMP-2/MMP-9 knockouts [36]. Inhibition of
MMPs using synthetic and endogenous inhibitors has also been shown to down regulate
tumor angiogenesis, which is indispensable for tumor development [37–42]. But what are the
substrates for these proteinases in angiogenesis? Is a single substrate responsible for the ef-
fects of each MMP, or do they cleave distinct substrates?

Similarly, MMPs have a role at every stage of progression of atherosclerosis [43, 44]. MMPs
promote matrix invasion by macrophages [45–47] and angiogenesis into vulnerable plaques
[48]. These actions contribute to plaque formation and destabilization. On the other hand,
MMP-2, 9, and 14 contribute to vascular smooth muscle cell migration and proliferation, thus
stabilizing the plaques by increasing its thickness [49].
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Recently, it was determined that MMPs (e.g. MMP 2, 3, 9, 14, 26) could be shuttled between
cellular compartments. These “moonlighting” enzymes can target not only extracellular but
also wide range of intracellular proteins [50, 51].

Understanding howMMP enzymes work and what their proteolytic networks are is of great
importance to biologists. However, identification of their individual substrates is a more chal-
lenging task because of overlapping specificities of MMPs. Experimental discovery of protein-
ase targets is time- and resource- consuming. To facilitate this process, we have implemented
an in silicomethod for predicting substrates for 11 out of the total 25 human MMPs. This
method is available on-line via the publicly accessible CleavPredict Web server (http://
cleavpredict.sanfordburnham.org). On this server, we used the enzyme-specific PWMs as a pri-
mary way to predict positions of scissile bonds in protein substrates. The PWMs have been de-
rived based on the cleavage preferences determined from a high-throughput phage display
experiment [52, 53]. An efficient and reliable tool for substrate prediction should take into ac-
count a number of factors that, if only considered together, define proper conditions for match-
ing substrates with proteinases. We expect that screening the prediction hits using multiple
lines of independent qualifiers for proteolytic events is less likely to return a false positive. To
augment the predictive ability of the PWMs to recognize positions of scissile bonds, the server
provides additional information and evidences (“yes” or “no” filters) for accepting the potential
substrate candidate. These include secondary structural elements [54, 55], solvent exposure,
presence of signal peptide, and co-expression and co-localization of the proteinase and the po-
tential substrate. Likelihood of the proteolytic event is low if a proteinase and a substrate enter
the same subcellular compartment at different times of the cell life cycle. The data on protein-
ase temporal behaviour can be assessed using the data of gene co-expression. If both proteinase
and its substrate are localized in the same subcellular compartment, the substrate can be classi-
fied as a potential strong candidate for further experimental verification. In addition, the server
reports the presence of SNPs, with available disease annotation, and PTMs in the substrate that
could interfere with the proteolysis process. The analysis of SNPs is helpful in determining
whether a new cleavage site was created in the disease protein or the existing (in norm) cleav-
age site was removed by mutation. Similarly, the presence of PTMs may fundamentally alter
the function of the protein including availability of the cleavage site to proteolysis. The Cleav-
Predict server also offers a comparison of our predictions with information contained in
CutDB database [3], provides virtual mass spectrum based on predicted cleavage pattern, and
finally displays predicted cleavage positions, together with SNPs and PTMs sites on the sub-
strate’s structure, if it is only available in the PDB [56].

In summary, the CleavPredict is a useful platform for reasoning about proteolytic events. It
can be used as a discovery tool for formulating hypotheses that could be subsequently tested ex-
perimentally and conversely, it can be used for interpreting experimental findings, as has been al-
ready done in several projects [57–61]. Currently, CleavPredict is devoted to recognition of
cleavage sites for MMPs, but it will be extended to other proteinases in the future. To our knowl-
edge, none of the existing prediction methods incorporates all factors described here into the pro-
cess of proteolytic substrate prediction for MMPs. The PROSPER webserver is another available
prediction tool, which was developed by Pike et al. [62]. It offers the recognition of cleavage sites
only for four MMPs (e.g. MMP-2, -9, -3, -7) and the batch mode functionality is not available.

Materials and Methods

Derivation of PWMs for predicting cleavage sites
The CleavPredict uses PWMs as a primary mechanism for cleavage prediction. We determined
PWMs for the following enzymes: MMP-2, -3, -8, -9, -10, -14, -15, -16, -24, -17, and -25. We
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selected MMPs representing four main groups of enzymes according to the phylogenetic tree
that was already published in our [52, 53] paper. Namely, we selected MMPs belonging to: a) a
group containing simple hemopexin domain (MMP-3, MMP-8, MMP-10), b) gelatin binding
MMPs (MMP-2, MMP-9), c) transmembrane MMPs (MMP-14, MMP-15, MMP-16, MMP-
24), and d) GPI-linked MMPs (MMP-17, MMP-25). The PWMs were derived based on statis-
tical analysis of enzyme specific substrates selected from phage display libraries. We used about
300 substrates for each MMP (S1 Table). Phage substrates are peptides containing constant
flanking sequences (small letter) and variable six amino acid sequences (capital letters):
~ggsgPSA-LDAtasgaet~ (dash denominates the cleavage position) [53, 59].

The primary cleavage recognition method, derived for each individual MMP, has been ob-
tained as follows. First, a set of phage substrates specific for a given MMP was selected. Then,
the sequences of these substrates were aligned along the cleavage site and the frequencies (P
(iAA, j)) of occurrence of each amino acid type, iAA, in each of the j-th position, ranging from
P3 to P2’, were calculated. We use Schechter and Berger annotation for amino acid positions in
substrates [63]. In Ref. [53] we demonstrated that the amino acids located at P3-P2’ positions
are the most important in recognition of the substrates by MMP enzymes. Next, these frequen-
cies at each position and amino acid were normalized by the distribution of amino acids in the
set of background sequences. The background sequences comprised 766 peptides randomly se-
lected from phage display library (S2 Table). Thus, the final PWM values for each amino acid
iAA at the j-th position are calculated as:

PWMðiAA; jÞ ¼
PðiAA; jÞ

PbckgrðiAA; jÞ
ð1Þ

We used log2 values of appropriate PWM(iAA,j) elements, log likelihood ratios, which allows
for calculating scores by adding rather than multiplying the relevant values at each position in
the PWM. The primary scoring function for substrate prediction is defined in Eqs 2 and 3 as a
sum of log2 of PWMmatrix elements for iAA amino acid type at the j-th position. Summation
runs over P3-P2’ amino acid positions in the substrate:

Score ¼
XP20
j¼P3

SjðiAAÞ ð2Þ

where

SjðiAAÞ ¼
log2

PðiAA; jÞ
PbckgrðiAA; jÞ

 !

offset; if PðiAA; jÞ ¼ 0

ð3Þ

8>><
>>:

If any element of the PWM is equal to zero, e.g. an amino acid type iAA was not observed at
the j-th position in phage substrates, then the offset value is used instead. From numerical point
of view this is done in order to avoid calculation of infinite value of log2(0) and yet add the suf-
ficient penalty to the scoring function when an amino acid type iAA at j-th position is not ob-
served in our learning set. The peptide bond is considered a cleavage site when the value of the
score is above the threshold value. Both offset and threshold values are MMP specific and were
derived using statistical analysis. This primary scoring function can be used to screen every
peptide bond in test protein. The peptide bonds that have their score values above the threshold
are considered to be potential cleavage sites.

The magnitudes of offset in Eq 3, and threshold are optimizable parameters of the method
and are enzyme dependent. In order to establish their specific values for each MMP, we
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performed a series of 10-fold cross-validation calculations for a large set of offset and threshold
values defined on two-dimensional grid. The optimal values of offset and threshold are those
corresponding to the maximum value of F1-score. The F1 score is harmonic mean of precision
and sensitivity in the machine learning theory. Our additional 10-fold cross-validation calcula-
tions demonstrated that extending the range of amino acid summation in Eq 2 beyond P3-P2’
positions does not change significantly the statistical evaluation metrics (results not shown).

We performed 10-fold cross validation calculations for each set of MMP specific substrates
in two stages. In the first stage, each set was divided into two groups in approximately 2:1 ratio.
The larger group of substrates was used for cross validation, e.g. involving training and valida-
tion, while the smaller set was used for independent testing of the performance of optimized
scoring parameters. This smaller set is termed an “internal” test.

Next, we developed the final predictive model, in which for each MMP all available specific
substrates were combined into the final training and validation sets, which were used for deriv-
ing the optimized values of thresholds and offsets parameters in 10-fold cross-validation. These
are the values used for prediction cleavages in unknown targets incorporated in our web server.
Combining all available data is a standard approach used to create the final prediction model
for any “external” tests, as is described in Ref. [64]. The resultant log2 values of the MMP spe-
cific PWMmatrices are provided in S3 Table. These PWMs have been applied to “external”
test cases, such as evaluation of the set of substrates collected in CutDB (cutdb.burnham.org),
and peptides determined as MMPs substrates by Overall et al. [65, 66].

Virtual Mass Spectroscopy
We implemented an automated script for calculating mass spectrum based on a predicted set
of cleavage sites. All possible mass fragments are calculated with a monoisotopic set of masses
for amino acids and displayed on a separate Web page after selecting the VMS (Virtual Mass
Spectroscopy) button on the result page. The intensities of the mass fragments are defined as:

IntensityðfragmentÞ ¼ 100:0� ws1� ws2 ð4Þ
where the ws1 and ws2 characterize the cleavage efficiency of the cleavage at the N- and C-ter-
minal sides of the molecular fragment, respectively. The ws1 and ws2 are normalized to [0–1]
range values of their respective PWM scores defined by Eq 2. For example, Eq 5 defines nor-
malization of the ws1 value:

ws1 ¼ Score� Scoremin value

Scoremax value � Scoremin value

ð5Þ

where Scoremin_value and Scoremax_value are the minimum and maximum value of the score that
can be obtained for a given PWMmatrix. The first (N-terminal) and last (C-terminal) residues
in the entire protein sequence have the ws1 and ws2 values assigned to 1.0.

External programs and databases used by CleavPredict Web server
There are two main types of query inputs for testing protein substrates in the CleavPredict
server: an amino acid sequence or a structure in the PDB format. In the case when an amino
acid sequence is an input, the server provides information about predicted secondary structure
and disorder regions for a substrate calculated by Jnet (http://www.compbio.dundee.ac.uk/
www-jpred/legacy/jnet/) [67] and Disopred (http://bioinf.cs.ucl.ac.uk/psipred/) [68] programs,
respectively. If a query input is a PDB structure then the secondary structure elements and sol-
vent accessibility is calculated with the DSSP program (http://swift.cmbi.ru.nl/gv/dssp/) [69,
70]. The SignalP v.4.0 program (http://www.cbs.dtu.dk/services/SignalP/) [71] is used to
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predict the presence or absence of a signal peptide. The TMHMM (http://www.cbs.dtu.dk/
services/TMHMM/) [72] program is applied to predict the transmembrane domains.

In the CleavPredict server, we implemented a link to COXPRESdb (http://coxpresdb.jp)
[73] to determine the co-expression of a proteinase and a substrate. The average rank of this
event is calculated based on the correlation score and average co-expression score. The average
correlation score between the substrate and the proteinase in a gene expression pattern is re-
trieved and presented. We linked the Mentha (http://mentha.uniroma2.it/about.php) [74] da-
tabase to our Web server. It is used to determine whether the interaction between a proteinase
and a substrate is reported in literature. Each interaction is assigned a reliability score (Mentha
Score) that takes into account all the supporting evidence. The information about subcellular
location and positions of SNPs is retrieved from the Uniprot resource portal and from the
Humsavar database (http://www.uniprot.org/docs/humsavar) [75, 76]. The experimentally
known posttranslational modifications of a substrate are determined based on information
available from the curated dbPTM (http://dbptm.mbc.nctu.edu.tw) [77] database.

CleavPredict Web server implementation
The CleavPredict Web server has been implemented using Python under the web2py (http://
web2py.com/book) framework and running on an Apache server on a Linux machine. The
cleavage-site predictions by PWM have been automated by implementing in-house Fortran
programs, integrated with Python scripts for processing. Javascript and html were used to pres-
ent the final results on the user interface. The server offers two options for querying the Web
server: a single substrate query, e.g., Uniprot id, Fasta sequence, PDB id, or PDB file; and a
batch mode, where multiple Fasta sequences or multiple PDB files can be submitted. When a
PDB structure or a Fasta sequence is submitted, the server uses standalone BLASTp against
Uniprot and PDB to determine the corresponding Uniprot id. This Uniprot id is used to re-
trieve appropriate information about co-expression, co-localization, SNPs, PTMs, and struc-
ture of the substrate. The PDB structures are displayed at the end of user interface using
GLmol (http://webglmol.sourceforge.jp). In order to display the PDB structure with all P1 posi-
tions of predicted cleavage sites and amino acids modified by the presence of SNPs and PTMs
the Uniprot and PDB structure sequence numbering were mapped using the PDBSWS server
(http://www.bioinf.org.uk/pdbsws/) [78].

CleavPredict is currently configured on Apache/2.2.15 (CentOS) and Python2.6.6. The
scripts are written in Python and Fortran, and the server uses a web2py framework. The
web2py framework allows us to separate the components of our system into the model, the
view, and the controller (MVC). The model represents the data of the application, the view
specifies the user interface, and the controller handles the communication among all elements
of the application. Computational time required for the cleavage site prediction depends on the
size of a protein substrate but usually takes less then 30 seconds for a single case input.

Results

Validation of the prediction method
Phage display substrates—internal test. We performed 10-fold cross validation calcula-

tions for each set of MMP specific substrates. Each set was divided into two groups in approxi-
mately 2:1 ratio. The larger group of substrates, which was further divided into training and
validating sets, was used for 10-fold cross validation for establishing the optimal values of offset
and threshold for that set. The smaller sets, not seen by 10-fold cross validation, were used for
independent testing of the performance of optimized scoring parameters. The results of these
internal tests for all MMPs are summarized in Table 1, while the results for 10-fold cross-
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validation for larger set of substrates are presented in S4 Table. The accuracy of the method ex-
ceeds 85%, true positive rate is in the vicinity of 90% and false positive rate ranges from 2.9%,
for MMP-16, to 12.7% for MMP-8.

Finally all substrates specific for each MMP have been combined. Each set was divided into
10 subsets and ten training and validating cycles were performed on them to generate the final
model that is used for predicting cleavages in unknown targets. The results of this training are
summarized in Table 2, where last column provides the optimized values of offset and threshold
for each MMP. The corresponding log2 of PWMmatrices are presented in S3 Table. For these
optimal parameters, the cross-validation achieves high accuracy (>90%) with a true-positive
rate above 78% and, in almost all cases, a false-positive rate less than 10% for phage substrates
(Table 2).

Table 1. Recognition of MMPs cleavage positions in the subset of phage display peptides.

Enzyme Number of substrates Sensitivity(TPR)(%) Specificity (%) Accuracy (%) Precision(%) MCC FPR (%) F1

10F-CV set Internal test (% of total)

MMP-2 161 71 (31%) 81.9 96.2 93.4 84.0 0.79 3.8 0.83

MMP-9 164 98 (37%) 84.4 96.7 94.4 85.2 0.81 3.3 0.85

MMP-14 169 81 (32%) 90.7 94.9 94.0 81.5 0.82 5.1 0.86

MMP-15 159 71 (31%) 80.8 94.2 91.1 80.8 0.75 5.8 0.81

MMP-16 198 93 (32%) 88.0 97.1 95.3 88.0 0.85 2.9 0.88

MMP-24 177 97 (35%) 93.6 95.1 94.8 81.7 0.84 4.9 0.87

MMP-17 211 133 (39%) 92.4 91.4 91.6 76.3 0.79 8.6 0.84

MMP25 159 71 (31%) 84.7 92.6 90.9 76.9 0.75 7.4 0.81

MMP-3 304 87 (22%) 91.1 93.2 92.7 78.5 0.80 6.8 0.84

MMP-8 203 85 (30%) 84.7 87.3 86.9 57.1 0.62 12.7 0.68

MMP-10 170 42 (20%) 97.8 91.7 92.9 72.6 0.80 8.3 0.83

Results for the internal statistical test of the scoring function obtained for the subset of substrates not seen by 10-fold cross-validation. TPR—true positive

rate, MCC—Matthews correlation coefficient, FPR—false positive rate, F1 score—harmonic mean of precision and sensitivity.

doi:10.1371/journal.pone.0127877.t001

Table 2. Average values for sensitivity, specificity, accuracy, precision, Matthews correlation coefficients, false positive rate, true positive rate
and optimal values for threshold and offset from the 10-fold cross-validation using the entire sets of available substrates for every MMP.

Sensitivity (TPR)(%) Specificity (%) Accuracy (%) Precision (%) MCC FPR(%) F1 threshold/ offset

MMP2 90.2±8.3 94.7±2.8 93.7±1.7 81.8±8.3 0.82±0.05 5.3±2.8 0.85±0.04 0.3 / -5.0

MMP9 87.7±4.9 97.4±1.1 95.5±1.5 89.3±4.3 0.86±0.05 2.6±1.1 0.88±0.04 1.5 / -4.0

MMP14 89.8±5.3 97.1±1.0 95.5±1.2 90.0±3.2 0.87±0.03 2.9±1.0 0.90±0.03 0.5 / -5.5

MMP15 78.2±7.9 96.5±1.4 92.1±2.8 87.3±4.7 0.78±0.08 3.5±1.4 0.82±0.06 1.3 / -2.5

MMP16 93.4±3.7 95.4±1.3 95.0±1.4 83.2±3.9 0.85±0.04 4.6±1.3 0.88±0.03 0.3 / -5.0

MMP24 91.9±6.1 95.6±1.9 94.8±1.8 83.8±6.2 0.85±0.05 4.4±1.9 0.88±0.04 0.6 / -5.5

MMP17 94.2±3.0 90.5±2.4 91.4±2.0 75.7±5.5 0.79±0.05 9.5±2.4 0.84±0.04 0.6 / -5.5

MMP25 85.7±3.5 95.2±2.9 92.9±2.7 85.3±7.7 0.81±0.07 4.8±2.9 0.85±0.05 -0.3 / -6.0

MMP3 97.8±3.8 93.5±1.4 94.2±1.4 75.2±4.0 0.83±0.04 6.5±1.4 0.85±0.03 1.5 / -5.0

MMP8 80.1±10.8 90.8±2.8 89.0±3.4 63.8±8.7 0.65±0.11 9.2±2.8 0.71±0.09 1.2 / -3.0

MMP10 93.7±4.4 89.3±1.9 90.1±1.7 64.0±4.2 0.72±0.04 10.7±1.9 0.76±0.04 1.5 / -5.0

The calculations have been performed to establish the optimal values for threshold and offset parameters that are implemented in the CleavPredict web

server for predicting cleavage sites in proteins. For each average value the sample standard deviations is provided. For abbreviations see Table 1.

doi:10.1371/journal.pone.0127877.t002
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The worst results in the above tests, e.g. characterized by the lowest F1 score, have been ob-
tained for MMP-8 enzyme. According to our analysis the MMP-8 is characterized by the wid-
est specificity. In S1 Fig, in Supporting Material we present the sequence logos for the substrate
recognition motifs for all 11 MMPs obtained from the analysis of phage display substrates. Ac-
cording to the frequency of occurrence, S1 Fig, almost none of the positions in MMP-8 sub-
strates, contributes significantly to substrate specificity contrary to what was observed for other
MMPs. This makes the development of statistically robust prediction model a difficult task.

Analysis of proteome samples—external test. As for the first external we choose two sets
of peptide substrates identified by Overall et al. in proteome samples for MMP-2 and MMP-9
enzymes [65, 66]. The first set of 1775 substrates for MMP-2 [66] reported in 2008, has been

Fig 1. Distribution of PWM scores for peptide substrates of MMP-2 from Schilling et al. [66]. Red line—distribution of PWM score values for
experimentally identified cleaved peptide bonds, black line—distribution of scores for all other peptide bonds. Red—dashed line represents distribution of
scores for set of cleaved peptide bonds corrected by replacing poorly scored peptide bonds by those that have their scores above the threshold and were
located in the vicinity of experimentally predicted positions. The separation between the cleavage site scores and the scores for other peptide bonds was
subject to Kolmogorov-Smirnov test yielding D = 0.60 and D = 0.66 for red and red-dashed distributions, respectively, when tested against the black one.

doi:10.1371/journal.pone.0127877.g001

Fig 2. Distribution of PWM scores for peptide substrates of MMP-2 and MMP-9 from Prudova et al.
[65]. Red and black lines are distributions of PWM score values for experimentally identified cleaved peptide
bonds and for all other peptide bonds, respectively. For both MMP-2 and MMP-9 the Kolmogorov-Smirnov
test yields D = 0.60.

doi:10.1371/journal.pone.0127877.g002
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obtained by the proteomic identification of proteinases cleavage sites (PICS) method combined
with liquid chromatography-tandem mass spectrometry (LC-MS/MS). This approach when
combined with bioinformatical analysis allows for identification of the prime side sequences of
the cleaved peptides. The separate bioinformatical analysis is used to establish the non-prime
sequences and then to deduct the position of the cleavage sites. The duration of the enzymatic
reaction was chosen to vary between 1–16 h. In 2010 Prudova and Overall [65] proposed more
advanced technique called iTRAQ-TAILS, that involves isotopic labelling of substrates. This
technique was applied to study specificity of several enzymes, including MMP-2 and MMP-9,
for which the authors identified 201 and 19 substrates, respectively. The sensitivity of the meth-
od depends on the statistically defined reporter ion ratio cutoff for MS/MS fragmentation in
samples with and without the enzyme treatment. This cutoff was uniformly established using
GluC enzyme, because its specificity is well known, and cutoff ratio can be validated. Thus,
both methods produced the most comprehensive to date set of well-defined peptide substrates.

We applied our prediction method to all reported peptides. The experimentally identified
cleavage sites were considered to be a positive set while all other peptides bonds were negative
set. We used CleavPredict to evaluate all peptide bonds in substrates and calculated the distri-
bution of PWM score values for the positive and negative sets. The results are presented in Figs
1 and 2. In each case the separation between the scores for negative and positive sets is signifi-
cant. In the two-sample Kolmogorov-Smirnov (KS) test the value of D statistic is equal to 0.6.

Experimental identification of cleavage positions in Ref. [66] depends on the accuracy of
mass spectroscopy method and there is some level of ambiguity introduced by two separate
bioinformatical procedures used for analysis of prime and non-prime product sequences. We
hypothesize that the actual cleavage sites could be found within 1 to 4 peptides bonds next to
the reported ones. Analysis of our prediction data showed it may be the case. We only include
those peptide bonds that scored above the method threshold. We found 184 cleaved peptides
bonds in the vicinity of experimentally identified ones that have PWM scores higher than the
threshold and better match sequence patterns observed in our phage display experiment.
When taking into account those new cleavage positions the discrimination between non-
cleaved and cleaved peptide bonds becomes more pronounced (D value in KS test is 0.66), see
Fig 1 (“corrected” curve) and Table 3. This result, of course, does not preclude the biases in our
approach. Understanding them would lead to the improvement of our algorithm. Nevertheless,
our results demonstrate that identification of the proper cleavage position in some substrates
reported by Overall et al. could be revisited.

CutDB—external test. Further on we validated our PWM—based scoring method in an-
other “external” test performed on substrates collected in CutDB [3]. We selected only those
MMPs for which sufficient number of cleavage events and protein substrates is available. Thus,
we applied our prediction algorithm to calculate scores for cleavage sites in substrates of five
MMPs including: MMP-9 (334 cleavages in 88 unique substrates), MMP-2 (135 cleavages in 50

Table 3. Results for the external statistical test of the scoring function for the MMP-2 and MMP-9 cleavages in peptide substrates identified by
Overall et al.

Exper. cleavage
sites

Predicted cleavage
sites

TPR
(%)

FPR
(%)

Precision
(%)

Accuracy
(%)

Specificity
(%)

1775 864 49.0 4.0 42.3 93.0 96.0 MMP2 Schilling, Overall, 2008 [66]

1775 1048 59.0 4.0 51.3 94.0 96.0 MMP2 Schilling, Overall, 2008 [66]
(corrected)

201 120 60.0 3.0 57.1 94.0 97.0 MMP2 Prudova, Overall, 2010 [65]

19 13 68.0 2.0 72.2 96.0 98.0 MMP9 Prudova, Overall, 2010 [65]

doi:10.1371/journal.pone.0127877.t003
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substrates), MMP-14 (89 cleavages in 38 substrates), MMP-3 (186 cleavages in 67 proteins)
and MMP-8 (85 cleavages in 26 proteins). In these calculations, the positive set constitutes the
cleavage sites reported in the literature (CutDB) for appropriate protein substrates for each
MMP, while for the negative set we choose peptide bonds randomly selected from the same
protein substrates that are not cleaved by MMP. The ratio of positive to negative cases is 1:100.
The results of our prediction calculations are collected in Table 4. It demonstrates that for ex-
perimental protein substrates the PWM approach yields the accuracy reaching the level of 70%
for most MMPs, while the false-positive rate is in the range of 30%, with the exception of
MMP-8 and MMP-9 for which false-positive rate is 61 and 47%, respectively. The appropriate
ROC curves are presented in Fig 3. Area under the curve (AUC) (Table 4), in most cases is well
above 0.8, which demonstrate a good ability of our method to discriminate between cleavable
and non-cleavable peptide bonds for MMP hydrolysis. The high level of false-positive rate is
not satisfactory here and substantially higher than for uniformly identified substrates by Over-
all et al., as discussed above. However, we are aware that the reported cleavage sites come from
highly heterogeneous sources and may not all be entirely accurate, either because denatured
proteins were used as substrates, or because when the study was performed the methods for de-
termining the position of the cleavage sites, including mass spectroscopy, were not as robust as
methods available today. What is more important, the conditions used for studying cleavage
events reported in the literature could differ substantially from those used in our phage display
experiment. The conditions used in our high throughput phage display experiment allow mea-
suring important cleavage events with observed kcat/KM values above 3000 sec-1M-1 [53]. Thus,
if our predictive algorithm is sufficiently accurate, we may be able to identify the reported
cleavage sites that are “suspect.”

Description of an input and output for CleavPredict server
Workflow of the CleavPredict web server is presented in Fig 4.

User input. The user can submit either a single protein query in the interactive mode or a
multi-protein query in the batch mode. In a single-protein-query mode, the input for a poten-
tial protein substrate can be provided in the form of a Uniprot accession number, a Fasta se-
quence, an uploaded PDB file, or a PDB id (Fig 4: Query Type). In the batch mode, the server
accepts either a file containing multiple Fasta sequences, a list of multiple PDB ids (with a sin-
gle space between each id), or multiple PDB files uploaded from a local computer. Once the
input protein substrate(s) is/are defined, the user selects the MMP type from the list for which
cleavage predictions will be calculated. The “Submit” button submits the input query for cleav-
age prediction calculations.

Outputs. The two sections/tiers of the output data are summarized in Fig 4. All the results
are shown in tabular form (see example in Fig 5). The form of the first section of the output de-
pends on the type of input query. When a query input is in the form of a protein sequence,
then the first table contains a list of predicted P1 cleavage positions, 10 amino acid sequences

Table 4. Results for the external statistical test of the scoring function for the MMPs protein substrates collected in CutDB database.

Enzyme Cleavage sites in CutDB Predicted cleavage sites TPR(%) FPR (%) Accuracy(%) Area Under theCurve (AUC)

MMP-2 135 115 85.2 29.4 70.7 0.862

MMP-9 344 296 88.6 46.6 53.6 0.836

MMP-14 89 61 68.5 29.0 71.0 0.760

MMP-3 186 155 83.3 28.2 71.8 0.849

MMP-8 85 83 97.6 61.0 39.0 0.890

doi:10.1371/journal.pone.0127877.t004
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around the cleavage site, a PWM score, the predicted secondary structure (alphahelix; ‘H’,
beta-sheet; ‘E’. loop; ‘_’) and the predicted disorder (order: ‘.’; disorder ‘�’) characterizing this
region of 10 amino acids. In addition, for each of these 10 amino acid positions, the server re-
ports confidence scores of prediction in the range of 0–9, calculated by the Jnet and the Dis-
opred programs. The confidence score is computed for every amino acid position, as a separate
number. Thus, for ten amino acids fragment the server reports ten numbers in the form of a
chain of consecutive values. The table also provides information about the presence of trans-
membrane domain for 10 amino acids region around the cleavage site, as predicted by the
TMHMM program; and N-terminal and C-terminal mass fragments resultant from each cleav-
age event (Fig 5, label: A).

When the PDB structure is a query input, the above-described table is partially modified. In
this case, the server provides information about solvent accessibility of the cleavage site and ac-
tual secondary structure assignment, instead of predicted parameters. These properties are cal-
culated by the DSSP program and provided in the CleavPredict result page for the region of 10
amino acids around the predicted cleavage sites.

When the Uniprot id is not provided explicitly in the input query, the BLASTp is run inter-
nally against the Swissprot database to determine the Uniprot accession number. This number
is necessary to retrieve other information about the query substrate, such as co-expression, co-
localization, SNPs and PTMs from appropriate databases. In the case when the PDB id is pro-
vided as an input, PDB—Uniprot id mapping is used instead of BLASTp.

The second section of the result page (Fig 5) contains information about: B) the distribution
of masses after the cleavage via link to virtual mass spectroscopy results (VMS button. See Sup-
porting Material Figure A in S1 File for example of an output from VMS); C) the presence of a
signal peptide in the substrate, indicating whether it belongs to the set of secreted proteins; D)

Fig 3. ROC curves for prediction cleavage sites in proteins collected in CutDB for MMP-2, MMP-3, MMP-8, MMP-9 andMMP-14.

doi:10.1371/journal.pone.0127877.g003
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the subcellular localization of the substrate and the proteinase; E) the co-expression of the sub-
strate and the proteinase retrieved from COXPRESSdb; F) the physical interaction between the
substrate and the enzyme retrieved from the Mentha database; G) known cleavages in the
query substrate retrieved from CutDB, that can be used for making comparison with CleavPre-
dict predictions, and H) known SNPs, with disease annotation, when available, and PTMs in
the substrate. Additionally, for user convenience, the server displays sequences of the query
substrate in the Fasta format and color-code the predicted cleavages, SNPs, and PTMs (Sup-
porting Material Figure B in S1 File). This information is also displayed in the PDB structure, if
it is available, using the GLmol viewer.

In the batch mode, results of the calculations can be downloaded from the server or may be
sent to the user’s e-mail address that is optionally provided at the time of query input.

Fig 4. Workflow of the CleavPredict Web server. Top: the types of input queries; middle: the first tier of the
output data; bottom: the second tier of the results obtained using a Uniprot id as for the input protein
substrate. Blast program and mapping is used for determining the Uniprot id.

doi:10.1371/journal.pone.0127877.g004
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Fig 5. Snapshots of the result pages. As an example the prediction of the cleavage positions in Q15848 protein for MMP2 enzyme is demonstrated. This
section contains information about signal peptide prediction, subcellular location, co-expression and co-localization information, known cleavages in CutDB,
data on experimentally identified SNPs and PTMs, congregated into tables.

doi:10.1371/journal.pone.0127877.g005
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Conclusions and Future Developments
We will continue to integrate more proteinases into our CleavPredict Web server. This includes
thrombin, furin, caspases, and others for which large set of substrates could be extracted from
the literature, from the MEROPS database [79], or from our own effort aimed at high-through-
put profiling of proteinases [53, 80–82]. We will work toward integrating PWMs with structur-
al elements information into a single unified scoring function that will be used for
discrimination between cleaved and non-cleaved peptide bonds. Initial work toward this goal
has been already published recently [2, 54]. For many proteins, the 3D structure is not avail-
able. Instead of relying on prediction of secondary structure elements, we will incorporate a
mechanism that can be used to build a homology model for the potential substrate. Homology
modelling will be performed using the FFAS server (ffas.burnham.org). Our computational
platform can be further extended by connecting predicted cleavage events to the chain of other
events using a library of pathways and networks. The combined knowledge of the position of
cleavage sites, SNPs and PTMs in the vicinity of cleavage sites, as well as knowledge of path-
ways and networks could be used to discover relationships between aberrant proteolytic events
and potential disease or syndromes. The main problem with most, if not all, prediction meth-
ods is over-prediction of the substrates. In the case of MMPs—this problem is partially related
to their broad and overlapping specificity.

We believe that CleavPredict can become a versatile hypothesis generator guiding future ex-
periments in basic and transitional medical research. The CleavPredict has been already suc-
cessfully applied to several practical scientific projects related to discovery of new MMPs
substrates and helped in interpreting experimental findings [57–61].

Supporting Information
S1 Fig. Sequence logos for the substrate recognition motifs for each MMP tested in this
study. Left column—frequency logos, right column—information content logos. The logos
have been created using WebLogo on-line web server: weblogo.berkeley.edu [83].
(JPEG)

S1 File. (A) Snapshot of the web page demonstrating the top of the scrollable table containing
virtual mass spectrum data displayed after selecting the VMS button on the first result page.
(B) Graphical display of the cleavage P1 positions (red), SNPs (green), and PTMs (blue).
(DOC)

S1 Table. List of peptide substrates from phage display used for derivation of individual
PWMmatrices.
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S2 Table. List of background phage display peptides.
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S3 Table. Resultant log2 values of the PWMmatrices used for substrate recognition. The
header of each matrix contains the values of offset and threshold. The offset values are already
incorporated into the log2 PWMmatrices in appropriate positions where given amino acid is
not observed in phage display substrates.
(DOC)

S4 Table. Average values for sensitivity, specificity, accuracy, precision, Matthews correla-
tion coefficients, false positive rate, true positive rate and optimal values for threshold and
offset from the 10-fold cross-validation using approximately two-third of the entire sets
(internal test) of available substrates for every MMP. The calculations have been performed
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