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Dissecting the roleof thehumanmicrobiome
in COVID-19 via metagenome-assembled
genomes

Shanlin Ke 1, Scott T. Weiss1 & Yang-Yu Liu 1

Coronavirus disease 2019 (COVID-19), primarily a respiratory disease caused by
infection with Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-
2), is often accompaniedbygastrointestinal symptoms.However, little is known
about the relation between the human microbiome and COVID-19, largely due
to the fact thatmost previous studies fail to provide high taxonomic resolution
to identify microbes that likely interact with SARS-CoV-2 infection. Here we
usedwhole-metagenome shotgun sequencing data togetherwith assembly and
binning strategies to reconstruct metagenome-assembled genomes (MAGs)
from 514 COVID-19 related nasopharyngeal and fecal samples in six indepen-
dent cohorts. We reconstructed a total of 11,584 medium-and high-quality
microbialMAGs andobtained 5403non-redundantMAGs (nrMAGs)with strain-
level resolution.We found that there is a significant reduction of strain richness
for many species in the gut microbiome of COVID-19 patients. The gut micro-
biome signatures can accurately distinguish COVID-19 cases from healthy
controls andpredict the progression of COVID-19.Moreover, we identified a set
of nrMAGswith a putative causal role in the clinical manifestations of COVID-19
and revealed their functional pathways that potentially interact with SARS-CoV-
2 infection. Finally, we demonstrated that themain findings of our study can be
largely validated in three independent cohorts. The presented results highlight
the importance of incorporating the human gut microbiome in our under-
standing of SARS-CoV-2 infection and disease progression.

The ongoing pandemic of coronavirus disease 2019 (COVID-19), a
respiratory disease caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), has infected billions of people world-
wide. A broad range of clinical manifestations of COVID-19 has been
reported, including asymptomatic or mild disease with cough and
fever to severe pneumonia with multiple organ failure and acute
respiratory distress syndrome (ARDS) leading to death1. Existing
studies found that a large proportion of COVID-19 patients had at
least one gastrointestinal (GI) symptom2–5, such as diarrhea,
vomiting, or belly pain. Moreover, it has been reported that, among
73 SARS-CoV-2-infected hospitalized patients in China, 53.4% of

patients tested positive for SARS-CoV-2 in their stool samples
ranging from day 1 to 12 post infection6. Importantly, in more than
20% of infected patients, their fecal samples remained positive for
the virus even after the respiratory and/or sputum samples exhib-
ited no detectable virus6. In some cases, the viral load in feces is
even higher than that in pharyngeal swabs3. All these results sug-
gest that the GI tract might be an important extra-pulmonary site
for SARS-CoV-2 infection. Currently, the role of angiotensin-
converting enzyme 2 (ACE2) in the invasion of host cells by SARS-
CoV-2 via its spike protein is well-established7, and ACE2 is also
highly expressed in the small intestine and colon4,8. Therefore, the
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prolonged presence of large amounts of fecal SARS-CoV-2 RNA
virus is unlikely to be explained by the swallowing of virus particles
replicated in the throat but rather suggests enteric infection with
SARS-CoV-2.

The human GI tract is the largest immune organ in the body and
plays a critical role in the immune response to pathogenic infection
or commensal intrusion9. Trillions ofmicrobes live inside theGI tract.
Thosemicrobes and their genes, collectively known as the human gut
microbiome, modulate host immunity10. To date, several studies,
based on 16 S rRNA gene sequencing, have demonstrated that the
human upper respiratory and gut microbiome are broadly altered in
patients with COVID-1911–16. Although 16 S rRNA gene sequencing
provides valuable insights into the general characteristics of the
human microbiota, it does not offer the taxonomic resolution nee-
ded to capture sufficient sequence variation to discriminate between
closely related taxa17. Other studies, based on whole-metagenome
shotgun (WMS) sequencing, explored the links between the human
microbiome and SARS-CoV-2 infection by mapping short metage-
nomic reads to reference genomedatabases18–23. Despite the fact that
the analysis of WMS sequencing data provides more information
than 16 S rRNA gene sequencing data analysis, existing studies based
on reference genome databases are subject to the limitations and
biases of those databases and unable to characterize microbes that
do not have closely related culture representatives. In fact, an esti-
mated 40–50% of human gut species lack a reference genome24,25.
This may result in a strong null bias in characterizing the gut
microbial community.

An alternative strategy to analyze WMS sequencing data is to
reconstruct metagenome-assembled genomes (MAGs) through de
novo assembly and binning26. One key advantage of this strategy is
that it allows recovery of genomes for microorganisms that have yet
to be isolated and cultured and hence are absent from the current
reference genome databases. This strategy has been adopted in
several studies to provide genomic insights into microbial popula-
tions that are critical to human health and disease27,28. In this study,
we applied state-of-the-art metagenome assembly and binning stra-
tegies to reconstruct microbial population genomes directly from
microbiome samples of COVID-19 patients and controls (Fig. 1). Our
major goals were to construct a COVID-19 related metagenomic
genome catalog to identify novel taxa and strain-level differences
that are likely related to the clinical manifestations of SARS-COV-2
infection. Our results demonstrate the association of the human
microbiome and SARS-COV-2 infection at an unprecedentedly high
level of taxonomic resolution. More importantly, our study provides
a unique resource to directly investigate the genomic content of
COVID-19 relevantmicrobial strains and sheds light onmore targeted
follow-up studies.

Results
COVID-19 related metagenomic datasets
To examine the relation between the human microbiome and COVID-
19 via MAGs, we first gatheredWMS sequencing data from the COVID-
19 related human microbiome studies (publicly available as of August
2021) as the discovery cohorts. We collected the rawWMS sequencing
data of 514microbiome samples (n = 359 individuals) from six publicly
available datasets (Fig. 1a and Table 1) with different technical settings
(e.g., sequencing platform and sequencing depth), including naso-
pharyngeal (n = 96) and fecal microbiome (n = 418) samples. Among
these samples in the discovery cohorts, we have 404 (78.60%) and 110
(21.40%) samples from COVID-19 patients and Non-COVID-19 controls
(Fig. 2a), respectively.

To validate our key findings in the discovery cohorts, we collected
the raw WMS sequencing data of 341 fecal microbiome samples
(n = 278 individuals) from three publicly available datasets (Table S1,
publicly available as of April 2022). In the validation cohorts, 62.46%

and 37.54% microbiome samples from COVID-19 patients and Non-
COVID-19 controls, respectively.

A high-quality microbial genome catalog of COVID-19 con-
structed from the discovery cohorts
After quality control, we performed metagenomic assembly and bin-
ning on those microbiome samples from the discovery cohorts and
recovered 12,195 MAGs in total (Fig. 1b). To standardize the genome
quality across all datasets, we used thresholds of ≥50% genome com-
pleteness and ≤5% contamination29,30, resulting in 11,584 MAGs [mean
completeness = 87.55%; mean contamination =0.99%; mean genome
size = 2.6megabases (Mb);meanN50 = 61.8 kilobases (kb), Figs. S1, S2].
Here N50 is the sequence length of the shortest contig at 50% of the
total genome length. To obtain the viewof themicrobial community at
the species level, we first organized 11,584 MAGs into species-level
genome bins (SGBs) at an ANI (average nucleotide identity) threshold
of 95%, resulting in a total of 872 SGBs, of which 160 (18.35%) SGBs
represented species without any available genomes from the Genome
Taxonomy Database (GTDB)31 and were defined as unknown SGBs
(uSGB, Fig. S3). To evaluate the highest quality representative gen-
omes, we dereplicated the 11,584 MAGs at an ANI threshold of 99%,
resulting in a final set of 5403 non-redundant MAGs (nrMAGs) with
strain-level resolution [mean completeness = 86.87%; mean con-
tamination = 0.99%; mean genome size = 2.4 megabases (Mb); mean
N50 = 63.2 kilobases (kb), Fig. 2d, e and Fig. S2]. We found that each
Non-COVID-19 microbiome sample contributed relatively higher rates
of total MAGs and nrMAGs than COVID-19 microbiome samples as
21.40% Non-COVID-19 microbiome samples contributed to 31.32% of
total MAGs and 38.94% of nrMAGs (Fig. 2a–c and Fig. S4).

Among those 5403 strain-level nrMAGs, 2,190 (40.53%) nrMAGs
satisfied the medium-quality criteria (50% ≤ completeness < 90% and
≤5% contamination), and 3,213 (59.47%) nrMAGs showed high-quality
(≥90% completeness and ≤5% contamination) (Fig. 1)29,30. Using the
Genome Taxonomy Database31, 5,397 (99.89%) and 6 (0.11%) nrMAGs
were assigned to bacterial and archaeal domains, respectively (Fig. S5).
The phyla information of nrMAGs was summarized in Fig. 2d.

Alterations of the human microbiome in COVID-19 patients
Previous studies demonstrated that SARS-CoV-2 infection is associated
with the alpha diversity of the humangut12,32,33 and oral34,35 microbiome
at the genus- or species-level. We first investigated in our discovery
cohorts whether SARS-CoV-2 infection is associated with alpha diver-
sity of the humanmicrobiome at the nrMAG-level. The alpha diversity
measures (i.e., Richness and Shannon index) from COVID-19 patients
and Non-COVID-19 controls were compared (Fig. 3a and Fig. S6). In
accordance with previous studies11,32, we found that the Richness and
Shannon index of the gut microbiome in COVID-19 patients were sig-
nificantly lower than that in Non-COVID-19 controls in two datasets
(Zuo et al.18 and Yeoh et al.19, Fig. 3a and Fig. S6a, d). Interestingly, no
significant results were found between patients with COVID-19 and
Non-COVID-19 Pneumonia controls (Fig. 3a and Fig. S6a). Consistent
with a previous study36, we found no significant differences between
COVID-19 patients and Non-COVID-19 controls in the nasopharyngeal
microbiome samples (Fig. 3a and Fig. S6e, f). This may be due to the
small sample size and the fact that Non-COVID-19 controls are not
health controls in one of the nasopharyngealmicrobiomedatasets (Liu
et al.36). Moreover, in the other nasopharyngeal microbiome dataset
(PRJNA74398137), we only identified a small number of nrMAGs, as a
large portion of sequencing reads from this dataset were contamina-
tion from the human genome. In accordance with the two discovery
cohorts (i.e., Zuo et al.18 and Yeoh et al.19), we found that the alpha
diversity of the gutmicrobiome inCOVID-19 patients was overall lower
than that in Non-COVID-19 controls in the validation cohorts (Fig. S7).

In line with previous studies11,38, PCoA (principal coordinates
analysis) combined with PERMANOVA (permutational multivariate
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analysis of variance) revealed that the two discovery datasets (from
Zuo et al.18 and Yeoh et al.19) had a significant difference in the gut
microbial community structure between the patients with COVID-19
and Non-COVID-19 controls at the nrMAG-level (Fig. 3c, d and Fig. S8).
Similar results were also found in the validation cohorts (Fig. S9a-c).
Moreover, the patients with COVID-19 in these two discovery datasets

showed significant higher within-group variation than that in the Non-
COVID-19 controls (Fig. 3b). And this pattern was confirmed in two
validation cohorts (Xu et al.39 and Li et al.22, Fig. S9e, f).

In thedataset fromYeoh et al.19, the gutmicrobiome samples from
those patients with COVID-19 were collected before and after their
nasopharyngeal aspirates or swabs tested negative for SARS-CoV-2 via

Public sequences database

(NCBI, ENA, GSA)

SASR-COV-2

Fig. 1 | Conceptual framework of study. a To understand the relation between
human microbiome and COVID-19 via metagenome-assembled genomes (MAGs),
we collected a total of 514 (6 cohorts) and 341 (3 cohorts) shotgun metagenomic
sequencing data on the discovery and validation cohorts, respectively. These
microbiome sample including fecal and nasopharyngeal samples from COVID-19
and non-COVID-19 controls. b A total of 11,584MAGs (≥50% completeness and ≤5%
contamination) were constructed from metagenomic sequencing data from the
discovery cohorts. The reconstructed MAGs were first clustered to 872 species-
level genome bins (SGBs) at 95% of the ANI (average nucleotide identity). SGBs
containing at least one reference genome (or metagenome-assembled genome) in
the Genome Taxonomy Database (GTDB) were considered as known SGBs. Other-
wise, they were considered as unknown SGBs. The reconstructed MAGs were then

dereplicated to 5403 non-redundant MAGs (nrMAGs, strain level) based on 99% of
ANI. The 5403 nrMAGs were divided into medium-quality MAGs (50%≤ complete-
ness < 90% and ≤5% contamination) and high-quality MAGs (≥90% completeness
and ≤5% contamination). c The phylogenetic tree of nrMAGswas constructed using
PhyloPhlAn. We employed Random Forest machine learning models together with
nrMAGs to diagnose COVID-19 and predict the progression of COVID-19 (date of
negative RT-qPCR results). The permissive and protective nrMAGs of COVID-19
were identified by GMPT pipeline. And the genomes of permissive and protective
nrMAGs were functionally annotated using Prokka and MicrobeAnnotator. The
main findings from the discovery cohorts were then validated using the data from
three independent cohorts.
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RT-qPCR. Furthermore, patients with COVID-19 were classified into
four severity groups (i.e.,mild,moderate, severe, and critical) basedon
symptoms as reported in the previous study40. We found that patients
with COVID-19 who had milder disease severity showed significant
higher Shannon diversity in their gut microbiome (Fig. 3e). Interest-
ingly, the composition of nrMAGs in patients with COVID-19 after
recovery (negative for SARS-CoV-2 via RT-qPCR) were significantly
different fromNon-COVID-19 controls than from patients with COVID-
19 before recovery (positive for SARS-CoV-2 via RT-qPCR, Fig. 3f). In
line with a previous study at the metabolic capacity level41, these
results indicate that the gutmicrobiome of patients with COVID-19 did
not return to a relatively healthy status right after their recovery from
SARS-CoV-2 infection. We then observed that disease severity of
COVID-19 was significantly positively associated with the gut micro-
biome dissimilarity between COVID-19 patients and Non-COVID-19
controls (Fig. 3g). To understand the relation between disease severity
and short-term variation in the gut microbiome of patients with
COVID-19, we traced the changes in the microbiome within each
individual associated with disease severity. Interestingly, patients with
COVID-19 who had milder disease severity showed lower temporal
variation in the gut microbiome (quantified by the Bray-Curtis
dissimilarity of longitudinal microbiome samples, Fig. 3h). The
lower temporal variation of gut microbiome samples in milder
disease severity groups is partly due to the higher fraction of common
nrMAGs across the longitudinal microbiome samples in those
groups (Fig. 3i).

COVID-19 patients lost many strains of multiple microbial
species
To explorewhether the strain-level diversity within the same species is
related to COVID-19, we analyzed data from the two discovery cohorts
(Zuo et al.18 and Yeoh et al.19) as well as the three validation cohorts
(Zhang et al.41, Xu et al.39, and Li et al.22). We first grouped all the
nrMAGs to the species level based on GTDB taxonomy information.
For each species, we computed its strain richness (i.e., the number of
its nrMAGs) for all microbiome samples. Those nrMAGs without the
species annotation and species containing only one nrMAGs were
excluded. Interestingly, the top-30 microbial species with the highest
strain richness were highly overlapped between the discovery and
validation cohorts (Fig. 4a, b, Figs. S10a-c, S11). Notably, we found that
COVID-19 patients lost many strains of many microbial species when
compared to Non-COVID-19 controls for both the discovery (Fig. 4c, d)
and the validation cohorts (Fig. S10d-f). Moreover, those species with
significant strain loss arehighly overlappedbetweendiscovery cohorts
(Fig. S12a), including Bariatricus comes, Blautia_A obeum, Blautia_A

wexlerae, Dorea formicigenerans, Faecalibacterium prausnitzii_D, Fae-
calibacterium sp900539945, and Fusicatenibacter saccharivorans.
Importantly, these results arehighly consistentwith the alpha diversity
analysis at the nrMAG-level that COVID-19 patients had significantly
lower number of nrMAGs identified than that of Non-COVID-19 con-
trols on discovery cohorts (i.e., Zuo et al. and Yeoh et al.). We found
that some of microbial species (9 of 30) with high COVID-19 related
strain loss in the discovery cohorts were also identified in the valida-
tion cohorts (Fig. S12c). For the Xu et al.39 cohort, several species from
COVID-19 patients showed significantly higher number of strains than
that of Non-COVID-19 controls. This may be due to the fact that
microbiome samples of COVID-19 patients (collected in 2020) and
Non-COVID-19 controls (collected in 2016) were not collected and
sequenced at the same time.

We next investigated the disease severity in relation to the strain
diversity using data from Yeoh et al.19. We found seven species whose
strain richness were positively associated with disease severity
(Spearman correlation coefficients ≥0.9, Supplementary Data 1),
including Enterocloster bolteae, Fournierella sp900543285, Hungatella
effluvii, Lacticaseibacillus rhamnosus, Ligilactobacillus ruminis, and
Ligilactobacillus salivarius. Moreover, a total of 222 microbial species’
strain richness were negatively correlated with disease severity
(Spearman correlation coefficients ≤ −0.9, Supplementary Data 1),
such as Blautia_A obeum, Bariatricus comes, Blautia_A wexlerae, and
Faecalibacterium prausnitzii_D.

nrMAGs accurately classifies COVID-19 patients andNon-COVID-
19 controls
Previous studies have demonstrated the diagnostic potential of the
microbiome-based classification for SARS-CoV-2 infection using
genus- or species-level taxonomic profiles12,22,42. To test whether the
gut microbial composition at the nrMAG-level can distinguish COVID-
19 patients from Non-COVID-19 controls, we built random forest
classifiers on two datasets (Zuo et al.18: 50 patients with COVID-19 and
15 Non-COVID-19 controls; and Yeoh et al.19: 196 patients with COVID-
19 and 78 Non-COVID-19 controls), separately. Importantly, this ana-
lysis was performed with 5-fold cross-validation and the data were
randomly split into training and test sets 50 times. Since we had
unbalanced classes, we applied two metrics to quantify the classifica-
tion performance: AUROC (Area Under the Receiver Operating Char-
acteristic curve) and AUPRC (Area Under the Precision-Recall Curve).
Consistent with the PCoA analysis (Fig. 3c), using the data from Zuo
et al.18, we found that nrMAGs can accurately detect COVID-19
with the mean AUROC and AUPRC values of 0.981 and 0.971, respec-
tively (Fig. S13a). The top COVID-19 related features included

Table 1 | The discovery cohorts of human metagenome datasets analyzed in this study

Dataset Zuo et al.18 Britton et al.53 Cao et al.54 Yeoh et al.19 Liu et al.36 PRJNA74398137 Total

COVID-19 positive
samples

50 36 37 196 6 79 404

COVID-19 negative
samples

21 0 0 78 3 8 110

Total subjects 36 36 13 178 9 87 359

Total samples 71 36 37 274 9 87 514

Longitudinal Yes No Yes Yes No No −

Source Fecal Fecal Fecal Fecal Nasopharyngeal Nasopharyngeal −

Geography CHINA USA CHINA CHINA CHINA − −

Year 2020 2021 2021 2021 2021 2021 −

Sequencing platform Illumina
Novaseq 6000

Illumina Hiseq HiSeq XTen (PE250) or
NovaSeq (PE150)

Illumina
Novaseq 6000

Illumina
Novaseq 6000

Illumina
Novaseq 6000

−

Total sequences (mean) 17,245,724.18 4,636,385.22 19,666,057.43 23,717,063.99 40,593,115.44 28,683,197.33 −

Accession number PRJNA624223 PRJNA660883 PRJCA003532 PRJNA650244 PRJNA656660 PRJNA743981 −

#COVID-19 negative samples are healthy controls or Non-COVID-19 patients who tested negative for SARS-CoV-2 infection.
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multiple nrMAGs from Blautia_A sp003480185, Blautia_A wexlerae,
Agathobacter faecis, Eisenbergiella sp900066775, Faecalibacterium
prausnitzii_G, and Lachnospira rogosae (Fig. S13b). Consistent with the
first dataset (Zuo et al.18) and the PCoA analysis (Fig. 3d), the random
forest classifier on the larger cohort (Yeoh et al.19) also showed
high classification performance (AUROC∼0.920; AUPRC∼0.884;
Fig. S13c). The key discriminatory nrMAGs of COVID-19 in this cohort
belonged to Adlercreutzia equolifaciens, Blautia_A sp003471165,
Eisenbergiella sp900066775, Eubacterium I, Gemmiger sp900539695,
and Romboutsia timonensis (Fig. S13d). Moreover, three specific
nrMAGs were identified (from Mediterraneibacter_A butyricigenes and
Eisenbergiella sp900066775) as common features between the two
datasets.

To further evaluate the generality of COVID-19 microbiome fea-
tures in machine learning models, we first performed cross-validation
between the two discovery cohorts of Zuo et al.18 and Yeoh et al.19.
Briefly, we trained our machine learning model with samples from the
cohort of Zuo et al. (or Yeoh et al.) and then test the model with

samples from the cohort of Yeoh et al. (or Zuo et al.), respectively. The
machine learning model trained with the data of Zuo et al. achieved
an overall classification performance of AUROC∼0.798 and
AUPRC∼0.607 when tested with samples from Yeoh et al. (Fig. S14a).
Notably, we found the classifications trained with samples from Yeoh
et al. can almost perfectly distinguish COVID-19 patients from Non-
CONID-19 controls in the study of Zuo et al. (AUROC∼0.9994;
AUPRC∼0.9991, Fig. S14b). To better understand those results, we also
outputted the top-30 most important features ranked based on the
mean decrease accuracy (MDA). Here, the MDA of a feature means its
average accuracy loss after excluding this feature from the model. We
found that the most important nrMAGs identified from the study of
Zuo et al. have quite distinct abundance distributions between cases
and controls in the study of Zuo et al. but not in the study of Yeoh et al
(Fig. S15a, b). This explains the lower performance of the model
(trained with data from Zuo et al.) in testing data from Yeoh et al.
Moreover, the most important nrMAGs identified from the study of
Yeoh et al. showeddistinct abundance distributions between cases and
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controls in the study Zuo et al. (Fig. S15c, d). This explains the almost
perfect performance of the model (trained with data from Yeoh et al.)
in testing data from Zuo et al.

We further tested the generalization of COVID-19 related micro-
biome features on the three validation cohorts (i.e., Zhang et al.41, Xu
et al.39, and Li et al.22). We found that the classification models trained
with the data of Yeoh et al.19 achieved an overall reasonable classifi-
cation performance on those validation cohorts (Fig. S16).

nrMAGs accurately predict the progression of COVID-19
We next investigated the association between nrMAGs and the
progression of COVID-19. To explore this association, we employed

a random forest regression model to predict the date of negative
RT-qPCR result using the data from Yeoh et al.19 (with 196 micro-
biome samples from 100 COVID-19 patients, Fig. S17). The regres-
sion tasks were performed with 5-fold cross-validation and we then
randomly split the data 50 times. Remarkably, this approach
demonstrated that the dates of negative RT-qPCR result were well
predicted by nrMAGs (Pearson correlation 0.425, P-value = 1e − 45,
Fig. 5a). Among the top-30 (based on the percentage increase in
mean squared error)most important nrMAGs (Fig. 5b), we identified
multiple species such as Citrobacter freundii, Enterocloster
sp900543885, Citrobacter portucalensis, Parabacteroides distasonis
and Veillonella parvula. Notably, we also found some nrMAGs
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from well-known opportunistic pathogens including MAG02074
(Klebsiella quasivariicola43), MAG03769 (Klebsiella pneumoniae44),
and MAG02080 (Escherichia coli_D45).

Identification of putative permissive and protective nrMAGs for
COVID-19 severity
To further characterize the relation between the human gut micro-
biome and COVID-19, we applied the generalized microbe-phenotype
triangulation (GMPT) method to move beyond the standard associa-
tion analysis46 (Fig. 6a). Due to the availability of disease severity data,
we first categorizedparticipants from the study of Yeoh et al.19 into five
different disease severity groups (i.e., Non-COVID-19 healthy controls,
mild, moderate, severe, and critical). The differentially abundant

nrMAGs were then calculated using ANCOM47 (with each patient’s
identifier adjusted as a random effect) in the ten pair-wise compar-
isons. Using this approach, all pairwise differential abundance analyses
yielded a total of 644 differentially abundant nrMAGs present in at
least two pairwise comparisons. To understand the potential rela-
tionship between those candidate nrMAGs and COVID-19, we then
calculated the Spearman correlation coefficients between the average
relative abundances of nrMAGs andCOVID-19 severity score (e.g., Non-
COVID-19 healthy controls: 0; mild: 1; moderate: 2; severe: 3; and cri-
tical: 4) in different phenotype groups. Those differentially abundant
nrMAGs with positive (or negative) Spearman correlation coefficients
are potential permissive (protective) nrMAGs of COVID-19. Based
on the frequency (≥6) of all pairwise comparisons (n = 10), we
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Fig. 4 | COVID-19 related changes in strain richness of microbial species in the
two discovery cohorts. a, b The top-30 species with the highest strain-richness
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summarized the results from GMPT in Fig. 6b and Supplementary
Data 2. This analysis identified a total of 74 nrMAGs that were asso-
ciated with SARS-CoV-2 infection, including 8 permissive (Spearman
correlation >0) nrMAGs, 63 protective (Spearman correlation <0)
nrMAGs, and 3 neutral nrMAGs (Spearman correlation = 0).

We identifiedmultiple species with highly similar genomes from
those permissive nrMAGs (Fig. 6b), including Enterocloster bolteae (3
nrMAGs), Anaeroglobus micronuciformis, Hungatella effluvii (3
nrMAGs), and Enterococcus_B faecium. Consistent with previous
reports that the gut microbiome of COVID-19 patients showed sig-
nificant higher abundance of Enterococcus faecium compared to
health controls48. Moreover, we found that the strain richness
(number of nrMAGs) of two permissive species (i.e., Enterocloster
bolteae and Hungatella effluvii) positively associated with disease
severity (Supplementary Data 1). Among the 63 protective nrMAGs,
the dominant species were Blautia_A obeum (13 nrMAGs), Bariatricus
comes (9 nrMAGs), Faecalibacterium prausnitzii_D (6 nrMAGs),
Blautia_A wexlerae (6 nrMAGs), Faecalibacterium sp900539945 (4
nrMAGs),Dorea longicatena_B (3 nrMAGs), Blautia_A sp003480185 (3
nrMAGs), Blautia_A sp003471165 (3 nrMAGs), Dorea formicigenerans
(2 nrMAGs), Fusicatenibacter saccharivorans (2 nrMAGs), and GCA-
900066135 sp900543575 (2 nrMAGs). Importantly, we found that
some of these species were previously reported (including in the
original study Yeoh et al.) to be decreased in patients with COVID-19
such as Blautia obeum11,19, Faecalibacterium prausnitzii18,19,41,49, and
Dorea formicigenerans18,19. Notably, multiple protective species (e.g.,
Bariatricus comes, Blautia_A obeum, Blautia_A wexlerae, Dorea for-
micigenerans, Faecalibacterium prausnitzii_D, Faecalibacterium
sp900539945, and Fusicatenibacter saccharivorans) lost many strains
in COVID-19 patients when compared to Non-COVID-19 controls
(Fig. 4c, d). And the strain richness of most protective microbial
species (17/21) negatively correlated with disease severity (Supple-
mentary Data 1). Interestingly, those protective nrMAGs also showed
a similar abundance distribution between patients with COVID-19
and Non-COVID-19 controls in the study of Zuo et al.18 (Fig. S18). This
finding provides strain level evidence that gut microbial taxa may
interact with SARS-COV-2 infection and play a potential role in dis-
ease onset and progression in COVID-19.

Genome annotation reveals functional differentiation between
permissive and protective nrMAGs of COVID-19
Tounderstandhow thosepermissive andprotectivenrMAGs identified
from the study of Yeoh et al.19 may interact with SARS-CoV-2 infection,
wenext investigatedwhether the functional capacity of permissive and
protective nrMAGs differ. To achieve that goal, we first annotated
the genomes of permissive and protective nrMAGs using Prokka50.
Then we processed the translated coding sequences using
MicrobeAnnotator51 for the functional annotation and calculated the
KEGG module completeness (see Methods). Here, KEGG modules are
functional gene units, which are linked to higher metabolic cap-
abilities, structural complexes, andphenotypic characteristics51. A total
of 231 and 254 KEGG modules were covered by at least one genome
from permissive and protective nrMAGs, respectively. Principal com-
ponent analysis revealed quite different metabolic potentials between
permissive and protective nrMAGs (Fig. 7a, PERMANOVA: P-value =
0.0001). The main KEGG modules (with at least 50% module com-
pleteness) of each nrMAG are summarized in Fig. S19. Notably, we
identified a set of KEGG modules that differed significantly in their
module completeness between permissive and protective nrMAGs
(Fig. 7b). For example, permissive nrMAGs showed significantly higher
completeness level at the pentose phosphate pathway (e.g., M0004
and M0006) compared to protective nrMAGs. Moreover, we found
multiple microbial genomes have the potential to use this pathway
(Figs. S20, 21).

To further validate the association between the pentose phos-
phate pathway and COVID-19, we performed functional profiling for
the metagenomics sequencing samples from the two discovery
cohorts with case-control experimental settings (i.e., Zuo et al.18 and
Yeoh et al.19) as well as the three validation cohorts (i.e., Zhang et al.41,
Xu et al.39, and Li et al.22) at the community level using HUMAnN352.
Notably, we found that the abundance of pentose phosphate pathway
(PENTOSE-P-PWY) in COVID-19 patients was significantly higher than
that in the Non-COVID-19 controls of the two discovery cohorts: Zuo
et al. (Fig. S22a) andYeohet al. (Fig. S22b). This result is consistentwith
the result that the permissive nrMAGs showed significantly higher
completeness level at the pentose phosphate pathway compared to
protective nrMAGs. Moreover, we found that the pentose phosphate
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pathway also showed higher abundance in COVID-19 patients from
Zhang et al. (p-value = 0.39, Fig. S22c) and Xu et al. (p-value = 0.013,
Fig. S22d) in validation cohorts.

Discussion
Here, we leveraged hundreds publicly available WMS sequenced
samples frommultiple SARS-COV-2datasets and generated for thefirst
time a high-quality COVID-19 related genome catalog of the human
microbiome.We recovereda large genomecatalog representing 11,584

MAGs and 5403 nrMAGs of the human microbiome. Through the
construction of this microbial genome catalog, we were able to pro-
vide the strain-level perspective to understanding the human micro-
biome and COVID-19.

By interrogating the WMS sequencing data with different techni-
cal settings, we gained a more comprehensive view of the microbial
community associated with COVID-19. Due to the inherent differences
(e.g., age, diet, and genetic background) across the different datasets,
our goal was not targeted comparisons across datasets. Importantly,
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our study mainly focused on two discovery cohorts (Zuo et al.18 and
Yeoh et al.19) and three validation cohorts (Zhang et al.41, Xu et al.39, and
Li et al.22) with well-defined case and control subjects. Although two
nasopharyngeal microbiome datasets contained both patients with
COVID-19 andNon-COVID-19 controls, the statistical powerwas limited
by the small sample size (Liu et al.36) and a large portion of sequencing
reads from another dataset (PRJNA74398137) were from the human
host. Our analysis did not exclude these nasopharyngeal microbiome
samples as they did contribute unique high-quality MAGs to our
nrMAGs collection. Furthermore, two gut microbiome datasets (Brit-
ton et al.53 and Cao et al.54) without Non-COVID-19 controls served as
key resources of our MAGs collections.

Previous efforts have linked human microbiome diversity and
COVID-1911,14,34. Coherently, the human gut microbiome of patients
with COVID-19 in our study exhibited overall decreased alpha diversity
at the nrMAGs level compared to the Non-COVID-19 healthy controls.
Specifically, the Richness (number of nrMAGs) of the gut microbiome
showed a relatively more consistent difference between COVID-19 and
Non-COVID-19 samples in both discovery and validation cohorts.
Notably, we found for the first time that COVID-19 patients lost many
strains (nrMAGs) for certainmicrobial species when compared to Non-
COVID-19 controls in both the discovery and validation cohorts. These
findings suggest that SARS-CoV-2 infection is associated with a
decrease in total strains that may be contributed by specific species.
Moreover, some species lost multiple strains were also identified as
protective microbial species by the GMPT pipeline. Interestingly, our
analysis identified that patients with COVID-19 after recovery (negative
for SARS-CoV-2 via RT-qPCR) differed more from Non-COVID-19 con-
trols compared to patients with COVID-19 before recovery. This find-
ing supports the possibility that the gut microbiome of patients with
COVID-19 may not return to a relatively healthy status right after their
recovery from COVID-1955. Given the fact that many patients recover-
ing from SARS-CoV-2 infection have experienced prolonged COVID-19
symptoms56, we hypothesize that long-lasting disease symptoms may
be associated with changes in the gutmicrobiome but this needs to be
explored further.

Using machine learning models, we demonstrated that the gut
microbiome signatures at the nrMAG-level can accurately detected

COVID-19 from healthy controls. The high diagnostic accuracy of our
microbiome-derived signature suggests that key microbial strains
within the signaturemight play important roles in the pathogenesis of
COVID-19. For example, some of nrMAGs at higher taxonomic levels
(e.g., genus and species) have been reported to be correlated with
COVID-19, such as Blautia11,15,19, Faecalibacterium prausnitzii18,19,49, and
Adlercreutzia equolifaciens19,22. We also demonstrated that the gut
microbiome signature identified from a specific discovery cohort can
diagnose COVID-19 across separated cohorts, independent of the
effects of host genetics and environmental factors on the gut micro-
biome. The universal nature of our microbiome-derived signature
suggests that some key microbial species might play very important
roles in the pathophysiology of SARS-CoV-2 infection. Notably, this
study sheds important light on the ability of nrMAGs to predict the
date of negative RT-qPCR result of patients with COVID-19. This ana-
lysis linked several microbial species from our important nrMAGs to
the progression of COVID-19 such as Citrobacter freundii, Veillonella
parvula, and Parabacteroides distasonis. Indeed, these species have
been previous reported involved in COVID-19. For example, Citro-
bacter freundii was found to be significantly enriched in COVID-19
patients with fever57. Veillonella parvula19,42,54 and Parabacteroides
distasonis19,58 were also shown to be a shared signature of COVID-19 in
multiple studies. Importantly, we observed some opportunistic
pathogens were associated with the progression of COVID-19, includ-
ing nrMAGs from Klebsiella quasivariicola43, Klebsiella pneumoniae44,
and Escherichia coli45. Related toourfindings,multiple studies revealed
highprevalenceof bacterial pathogens inpatientswithCOVID-1918,59–62,
further supporting the possibility that secondary infections by
opportunistic pathogens may affect the progression of COVID-19.
However, further studies are needed to validate these findings and
determine how thosemicrobes influence the progression of COVID-19.

In particular, host gutmicrobiota provides colonization resistance
against pathogens, for example, a previous study reported that mice
treated with neomycin antibiotics were more susceptible than control
mice to influenza viruses63. And it turned out that neomycin-sensitive
bacteria naturally present in the mice’s bodies provided a trigger that
led to the production of T cells and antibodies that could fight an
influenza infection in the lungs. Notably, our study identified a set of
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Fig. 7 | Genome annotation of permissive and protective nrMAGs of COVID-19.
a Principal Component Analysis (PCA) plot of KEGGmodule completeness from all
genomes of permissive (n = 8) and protective (n = 63) nrMAGs. PERMANOVA test
was performedwith 9999 permutations, two-sided. b The top 20 differential KEGG
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significant, *P <0.05; **P <0.01, ***P <0.001).
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COVID-19 related nrMAGs and their determinants (i.e., permissive and
protective) potentially involved in disease pathogenesis. It is impor-
tant to note that these protective bacteria have also been reported to
be related to SARS-CoV-2 infection. For example, B. obeum (a bacterial
symbiont beneficial to the host immunity) was identified to be deple-
ted in patients with COVID-19 in multiple studies11,18. F. prausnitzii, an
anti-inflammatory and butyric acid-producing commensal bacterium,
was found to be underrepresented in patients with COVID-1918,19,64.
Moreover, our analysis enables the direct microbial genome compar-
ison between permissive and protective nrMAGs. Consistent with
previous reports of a relationship of the pentose phosphate pathway
and SARS-CoV-2 infection65–67, our findings support that over-
representation of permissive nrMAGs and underrepresentation of
protective nrMAGsmay upregulate the pentose phosphate pathway as
their genome are shown to be highly intact in those relevant modules.
In addition to the genome annotation of permissive and protective
nrMAGs, we also found that the overall abundance of pentose phos-
phate pathway in COVID-19 patients was higher than that in the Non-
COVID-19 controls in two discovery cohorts and two validation
cohorts. The pentose phosphate pathway is an important physiologi-
cal process that can occur in 2 phases: oxidative and nonoxidative.
Reactions of the pentose phosphate pathway, occur virtually ubiqui-
tously, and maintain a central metabolic role in providing the RNA
backbone precursors ribose 5-phosphate and erythrose 4-phosphate
as precursors for aromatic amino acids68. The aromatic amino acids in
the juxtamembrane domain of the SARS-CoV S glycoprotein play cri-
tical roles in receptor-dependent virus-cell and cell-cell fusion69. A
previous study reported that theUKmutation (N501Y: amutation from
asparagine to tyrosine conferring one more aromatic amino acid to
receptor binding domain) interacts closely with Y41 (ACE2) in the
receptor therefore producing aromatic-aromatic interactions that
provide for stronger binding between receptor and spike70. Indeed, the
levels of aromatic amino acids (e.g., tyrosine, phenylalanine, and
tryptophan) were increased significantly in COVID-19 patients com-
pared with controls using targeted metabolic analysis71.

Importantly, a previous study reported a significant increase in
the levels of some intermediates of the glycolytic and pentose phos-
phate pathways in sera of COVID-19 positive patients65. Moreover, an
earlier study (86 COVID-19 patients and 57 healthy controls, United
Arab Emirates) reported that the pentose phosphate pathway was
significantly upregulated on COVID-19 patient microbiome samples
using 16 S rRNA gene sequencing together with a phylogenetic inves-
tigation of communities by reconstructing unobserved state
(PICRUSt)72. In addition, SARS-CoV-2 infection was found to be asso-
ciated with changes in the regulation of the pentose phosphate path-
way in both in vivo (Caco-2 cells)66 and in vitro (ferretmodel)67 studies.
Together, these results suggest that specific microbes (permissive
nrMAGs, such as strains from Hungatella effluvii and Enterocloster
bolteae) may play a role in mediating SRAS-CoV-2 entry into host cells
through pentose phosphate pathway and aromatic amino acids.
However, further mechanistic studies are warranted to test the exact
role of our candidate permissive and protective nrMAGs in SARS-CoV-
2 infection.

The current study has several limitations. First, although we
included a largenumber of shotgunmetagenomic sequencing samples
from the COVID-19 related human microbiome study (publicly avail-
able as of August 2021 and April 2022 on the discovery and validation
cohorts, respectively), most of the microbiome samples came from
China. This limitation could be addressed by following this work with
collection of more human microbiome samples from different popu-
lations and body sites to construct a more comprehensive genome
catalog to reveal the full landscape of the human microbiome in
COVID-19. Second, even though we adjusted for potential confounder
in our statistical models, we were unable to assess some covariates

suchas:medication, diet, andpsychological stress that arenot publicly
available. Third, consistent with multiple MAG-related WMS
studies27,73,74, we only recovered MAGs from bacteria and archaea.
Given the fact that denovodiscovery of non-bacterial genomes isquite
challenging75, future study targets for other domains, including fungi
and viruses, will give a more comprehensive view in the context of
host-specific microbiotas and COVID-19. Although the majority of
MAGs we reconstructed in this study have high quality, future inves-
tigations aiming for recovering the complete genome of microbes will
further enhance our understanding of the interaction between human
microbiome and SARS-CoV-2 infection76,77. Finally, additional experi-
ments are needed to assess the casual role of candidate permissive and
protective nrMAGs in COVID-19 progression. Nevertheless, given the
large uncultured diversity still remaining in the human gut micro-
biome and deficiency of both annotated genes and reference gen-
omes, having ahigh-quality genomecatalog substantially enhances the
resolution and accuracy of metagenome-based COVID-19 studies.
Therefore, the presented genomecatalog represents a key step toward
mechanistic understanding the role of the human gut microbiome in
SARS-CoV-2 infection.

In summary, we present here the first construction of the genome
catalog using assembly and reference free binning of metagenome in
patients with COVID-19 and Non-COVID-19 controls. Our findings
support the close connection between SARS-CoV-2 infection and the
human gutmicrobiome, and we demonstrate that themain findings of
this study can be largely validated in independent cohorts. These
insights into metagenomic strain-level aspects of relation in human
microbiome and COVID-19 and genome context will form the basis of
future studies.

Methods
Data collection
We identified COVID-19 metagenomic sequencing studies from key-
word searches in PubMed and online repositories (i.e., NCBI, ENA, and
GSA) and by following references in meta-analyses and related
microbiome studies. We included samples with publicly available raw
shotgun metagenomic sequencing data (paired fastq files) and meta-
data indicating patients with COVID-19 or Non-COVID-19 control sta-
tus. All the sequencing datawere downloaded fromonline repositories
or links provided in the original publications, but some metadata
were acquired after personal communication with the authors. We
did not include any studies which required additional ethics commit-
tee approvals or authorizations for access. A total of 514 and
341 microbiome samples from six discovery cohorts and three vali-
dation cohorts were analyzed in this study, respectively (Table 1 and
Table S1).

Metagenome assembly and binning
Genome reconstruction of human microbiome with metagenomic
sequencing data was performed with the function modules of meta-
WRAP (v1.3.2)78, which is a pipeline that includes numerous modules
for constructing metagenomic bins. First, the metaWRAP-Read_qc
module was applied to trims the raw sequence reads and removes
human contamination for each of the sequenced samples. Then the
clean reads from the sequencing samples were assembled with the
metaWRAP-Assembly module using metaSPAdes (v3.13.0)79. There-
after, MaxBin2 (v2.2.6)80, metaBAT2 (v2.12.1)81, and CONCOCT
(v1.0.0)82 were used to bin the assemblies. The default of theminimum
length of contigs used for constructing bins with MaxBin2 and CON-
COCT were 1000bp, and metaBAT2 was defaulted to 1500 bp78.
Refinement of MAGs was performed by the bin_refinement module of
metaWRAP78, and CheckM (v1.0.12)83 was used to estimate the com-
pleteness and contamination of the bins, and the minimum comple-
tion and maximum contamination were 50% and 10%, respectively.
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Species-level clustering and dereplication and of MAGs
All 11,584 MAGs were clustered into species-level genome bins (SGBs)
at the threshold of 95% ANI using the ‘cluster’ program in dRep
(v3.0.0)84. All MAGs were taxonomically annotated using GTDB-Tk
(v.1.4.1)85 based on the Genome Taxonomy Database (http://gtdb.
ecogenomic.org/)31, which produced standardized taxonomic labels
that were used for the analysis in this study. SGBs containing at least
one reference genome (or MAG) in the Genome Taxonomy Database
were considered as knownSGBs.AndSGBswithout reference genomes
were considered as unknown SGBs (uSGBs)75. dRep (v3.0.0)84 was then
used for dereplication of all 11,584MAGs (≥50% genome completeness
and ≤5% contamination) by two-steps. First, MAGs were divided into
primary clusters using Mash86 at a 90% Mash ANI. Then, each primary
cluster was used to form secondary clusters at the threshold of 99%
ANI with at least 30% overlap between genomes. According to the
criteria of quality evaluation by CheckM (v1.0.12)83, 5403 nrMAGs were
divided into medium-quality MAGs (50% ≤ completeness < 90% and
≤5% contamination) and high-quality MAGs (≥90% completeness and
≤5% contamination).

Abundances estimation and phylogenetic analysis of nrMAGs
The metaWRAP-Quant_bins module integrated with Salmon87 (v0.13.1)
was used to estimate the abundance of each nrMAGs in each of the
metagenomic samples (both the discovery and validation cohorts).
The phylogenetic tree of the nrMAGs was built using PhyloPhlAn
(v3.0.58)88. The tree was visualized using iTOL (https://itol.embl.de/)89.

Genome annotation of nrMAGs
The genome annotation of MAGs was first performed with Prokka
(v1.13)50 using the annotate_bins module of metaWRAP78. The anno-
tated genomes were then processed with MicrobeAnnotator (v2.0.5)51

for the functional annotation and to calculate KEGG module com-
pleteness. All proteins are searched against the curated KEGG Ortho-
log (KO) database using Kofamscan90; best matches are selected
according to Kofamscan’s adaptive score threshold. Proteins without
KO identifiers (or matches) are extracted and searched against other
databases (e.g., Swissprot, curated RefSeq database or non-curated
trEMBL database)51. The KO identifiers associated with all proteins in
each genome (or set of proteins) are extracted, and KEGG module
completeness is calculated based on the total steps in a module, the
proteins (KOs) required for each step, and the KOs present in each
genome. Finally, the results were compiled in a single matrix-like
module completeness table for all genomes.

Functional profiling of metagenomic sequencing data
Functional profiling was performed using HUMANN3(v3.0.1)52. Briefly,
for each microbiome sample, taxonomic profiling is used to identify
detectable organisms. Reads are recruited to sample-specific pan-
genomes including all gene families in any detected microorganisms
using Bowtie2 (v2.4.5). Unmapped reads are aligned against UniRef90
(v201901b) using DIAMOND (v2.0.15) translated search.

Statistical analysis
Microbial alpha and beta diversity measures were calculated at the
nrMAGs level using vegan package (v2.5.7) in R. Principal coordi-
nates analysis (PCoA) plots were generated with Bray–Curtis dis-
similarity. Differences in microbiome compositions across different
groups were tested by the permutational multivariate analysis of
variance (PERMANOVA) using the “adonis” function in R’s vegan
package. All PERMANOVA tests were performed with 9999 permu-
tations based on Bray–Curtis dissimilarity. Differences between
groups were analyzed using a Wilcoxon–Mann–Whitney test. For
differential abundance analysis in GMPT (Generalized Microbe
Phenotype Triangulation) pipeline46, we used ANCOM (analysis of
composition of microbiomes)47, with a Benjamini–Hochberg

correction at 5% level of significance, and adjusted each patient’s
identifier as a random effect. Only the nrMAGs that were presented
in at least 5% of samples were included. The phylogenetic tree of the
permissive, neutral, and protective nrMAGs was built using Phy-
loPhlAn (v3.0.58)88 and then visualized using iTOL (https://itol.
embl.de/)89.

To develop a model capable of distinguishing patients with
COVID-19 versus Non-COVID-19 controls, we implemented Random
Forest using R’ random Forest package. A custom machine learning
process was conducted using features of nrMAGs with 5-fold cross
validation. The data was split into a training set and a test set, with 80%
of the data forming the training data and the remaining 20% forming
the test set. And then we randomly split the data 50 times. The per-
formance of the classificationmodel was evaluated using AUROC (area
under the receiver operating characteristic curve) and AUPRC (area
under the precision-recall curve) on the test set. The importance of
each feature was quantified by the Mean Decrease in Accuracy (MDA)
of the classifier due to the exclusion (or permutation) of this feature.
The more the accuracy of the classifier decreases due to the exclusion
(or permutation) of a single feature, themore important that feature is
deemed for classification of the data. We then built Random Forest
regressionmodel with 5-fold cross-validation to predict the exact date
of microbiome sample collected before or after negative RT-qPCR
result. We randomly split the data 50 times. The importance of each
feature in the regression was quantified by percent increase in mean
square error. Pearson correlation coefficient between the true and
predicted date of negative RT-qPCR result was used to evaluate the
performance. All statistical analysis was performed with R (ver-
sion 3.6.3).

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
All data used in this article come from publicly available sources.
The metagenomic data from the discovery cohorts are available in
the NCBI or Genome Sequence Archive Bioproject database under
accession code PRJNA624223, PRJNA656660, PRJNA660883,
PRJNA743981, PRJCA003532 (https://ngdc.cncb.ac.cn/gsa/browse/
CRA003271), and PRJNA650244. The metagenomic data from the
validation cohorts are available in the NCBI Bioproject or SRA
database under accession code PRJNA689961, SRP118759,
PRJNA792726, PRJEB43555. Metagenome-assembled genomes for
all samples are available on Figshare (https://figshare.com/s/
a426a12b463758ed6a54). HUMANN3 databases for metagenomic
functional profiling were accessed from http://huttenhower.sph.
harvard.edu/humann_data/.

Code availability
The codes for construction of theMAGscatalog and statistical analyses
and visualization are available in the GitHub repository (https://github.
com/Owenke247/COVID-19) or the Zenodo database (https://doi.org/
10.5281/zenodo.6824864).
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