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Physics of transportation: Towards 
optimal capacity using the 
multilayer network framework
Wen-Bo Du1, Xing-Lian Zhou1, Marko Jusup2 & Zhen Wang3

Because of the critical role of transportation in modern times, one of the most successful application 
areas of statistical physics of complex networks is the study of traffic dynamics. However, the vast 
majority of works treat transportation networks as an isolated system, which is inconsistent with the 
fact that many complex networks are interrelated in a nontrivial way. To mimic a realistic scenario, 
we use the framework of multilayer networks to construct a two-layered traffic model, whereby the 
upper layer provides higher transport speed than the lower layer. Moreover, passengers are guided to 
travel along the path of minimal travelling time and with the additional cost they can transfer from one 
layer to another to avoid congestion and/or reach the final destination faster. By means of numerical 
simulations, we show that a degree distribution-based strategy, although facilitating the cooperation 
between both layers, can be further improved by enhancing the critical generating rate of passengers 
using a particle swarm optimisation (PSO) algorithm. If initialised with the prior knowledge from 
the degree distribution-based strategy, the PSO algorithm converges considerably faster. Our work 
exemplifies how statistical physics of complex networks can positively affect daily life.

Statistical physics of complex networks1, due to broad applicability, has served as the analytical foundation for 
the analysis of many problems related to the modern infrastructure2–6. Physics of transportation in particular 
received a lot of attention7–13, which may not come as a surprise given the increasingly severe traffic congestion 
around the world. For achieving a higher capacity, it was shown that both the network structure and the rout-
ing strategy are of major importance when designing vital transportation infrastructure14–19. Accordingly, the 
number of routing algorithms based on physical methods has swelled over the years, where some of the better 
known examples include global dynamic routing16, degree-driven delivering strategy17, betweenness related edge 
deletion18, traffic-awareness strategy20,21, adaptive routing strategy22, and the optimal local routing strategy23, to 
name a few.

Despite all the interest in physics of transportation, a prevailing assumption has been that the nodes of a net-
work have a single degree distribution and therefore interact in a manner described by a single network layer. In 
reality, however, most transportation systems are composed of many interconnected networks, thus representing 
a typical problem for which statistical physicists devised the multilayer network framework24–31. Within such a 
framework, many interesting dynamical phenomena may arise. One of the best known examples is a cascading 
failure of interdependent networks, whereby seemingly irrelevant alterations in one network have unexpected 
and catastrophic consequences for the other24. Thereafter, physicists in collaboration with scientists from related 
disciplines examined the multilayer network structure in the context of (i) assortativity and the robustness against 
attacks32, (ii) inter-similarity and cascading failure33, (iii) diffusion34, (iv) disease spreading and prevention35,  
(v) evolutionary games36,37, (vi) voting38, and (vii) synchronisation39. In some instances, physics of transportation 
either motivated or was the direct target of research based on multilayer networks40,41. A particularly nice example 
are interrelated networks of airports and seaports such that, in a given city, the functioning of the city’s airport is 
dependent upon resources coming from the seaport and vice versa42.

The multilayer framework, as it appeared in statistical physics of complex networks, promises to describe 
traffic dynamics beyond what is possible using more traditional isolated networks. By representing physical 
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infrastructure as one network layer and traffic flows as another, ref. 31 found some fundamental differences 
between the load estimators and the real load. Furthermore, a model of layered transportation in ref. 27 led to 
the introduction of the cooperation strength as an order parameter and revealed a phase transition at the onset 
of cooperation. The order parameter changed from zero to positive at the transition point. Finally, the results of 
ref. 28 indicated that coupled spatial systems may cause behaviour dependent on the interplay between the cou-
pling and the source-sink distribution. Inspired by these discoveries, we use a two-layered network model to opti-
mise the capacity of a predetermined infrastructure, where a central role is played by transfer costs incurred when 
passengers switch between the coupled networks. We show that an optimised allocation of transfer costs is achiev-
able using a particle swarm optimisation (PSO) algorithm to increase the total capacity of the infrastructure.

Results
We start the analysis of the model described in the Methods section from the simplest possible case—a constant 
transfer cost, β, at all coupled nodes (i.e. βp =  β, where p indexes a unique node). Let us denote by R the number 
of new passengers that enter the system at each time step t. Source and destination locations of passengers are 
assigned randomly. Furthermore, nodes are assumed to have the capacity to deliver C passengers in a single time 
step. One of the most important properties of a transportation system is the balance between passenger handling 
and delivering capacities, which is appropriately captured by the critical generating rate, Rc, at which a continuous 
phase transition takes place from a free-flow to a congested state. To describe such a critical phenomenon, we 
consider an order parameter, η14,43, defined as

η =
∆
∆
, ( )→∞

C
R

w
t

lim 1t

where ∆ = ( + ∆ ) − ( )w w t t w t , with w(t) being the total number of passengers in the system at time step t, and 
⋅  the averaging operator over time windows of width Δ t. In a free-flow state (i.e. R <  Rc), the balance between 

generated and removed traffic guarantees η =  0. By contrast, a congested state (i.e. R >  Rc) occurs if the number of 
accumulated passengers increases with time, thus causing η >  0. Figure 1(a) shows order parameter η as a func-
tion of R at different values of the transfer cost, β. We see that η =  0 when R is small irrespective of the value of β, 
but begins to increase monotonously when R reaches the critical point, Rc. Moreover, because the transition hap-
pens at different critical points, the network capacity varies with β. An interesting question thus poses itself; what 
value of the transfer cost, β, maximises the system’s capacity?

The simulation results in Fig. 1(b) show that β =  14 maximises the critical threshold Rc. If the transfer cost 
is low (e.g. β =  1), passengers prefer to travel in the upper layer due to its high speed, but can easily return to 
the lower layer to reach their final destinations—a form of cooperation establishes itself between the two layers. 
However, as passengers enter the system at a higher and higher rate, the upper layer reaches a congestion state, 
which in turn causes a system-wide traffic jam. The system’s capacity is thus close to the capacity of the upper 
layer. By contrast, if the transfer cost is excessive (e.g. β =  29), most passengers choose to stay only in one layer—it 
becomes more difficult to establish the same form of cooperation as before. Because the lower layer has a greater 
capacity, the total system’s capacity approaches that of the lower layer. Between these extremes (e.g. β =  14), high 
speed and extra transfer costs are well-balanced to produce the optimal capacity of the system.

Figure 1.  System’s performance under an even transfer-cost allocation. (a) Order parameter η as a function 
of generating rate R at several values of transfer cost β. (b) Critical generating rate Rc as a function of β. 
Maximum Rc corresponds to β =  14 marked by the dashed line. The results are averaged over 30 independent 
realisations.
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To better understand how the optimal capacity arises, we investigate the dependence of the travel behaviour 
of passengers on the transfer cost. Specifically, the traffic flow is subdivided into three types: the flow in the upper 
layer, PU, the flow in the lower layer, PD, and the flow of passengers transferring from one layer to another, PT. As 
shown in Fig. 2(a), PT decreases, while PU and PD increase with β, thus indicating that passengers are more bound 
to a layer where they entered the system when the cost is high. This result is further confirmed by the average 
number of transfers n , which monotonously decreases with β as shown in Fig. 2(b). A higher transfer cost, 
therefore, suppresses the cooperation between the two layers. Suppressed cooperation diminishes the opportuni-
ties for exploiting more direct routes in the upper layer and hence passengers have to endure stopping at more 
stations, which is indicated in Fig. 2(c) by the average number of hops along the way, H . When the system is 
functioning at the maximum capacity (i.e. β =  14), we have ≈ .n 0 223 and ≈ .H 17 1, suggesting more reliance 
on the lower layer with only a limited number of passengers transferring between layers to alleviate congestion.

Thus far, we explored the simplest assumption of an even distribution of the transfer cost (i.e. βp =  β for all p), 
whereas in reality the transfer cost may have different values in each coupled node. Inspired by the knowledge 
that the optimal capacity is often related with degree centrality or betweenness centrality14,17, we introduce a new 
transfer cost as:

β =
∑
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where kp is the degree of coupled node p in the upper layer, S =  β * NU is the total cost of transfers  NU is the num-
ber of nodes in the upper layer, and μ is an adjustable parameter. If μ =  0, we recover the above-studied case of an 
even transfer-cost allocation (hereafter “EFA”); otherwise the allocation is biased (“BFA”).

In analysing the BFA, we first explore if there exists a particular value of μ that maximises the system’s capacity 
at fixed β. In Fig. 3, the critical point, RC, is shown as a function of μ, where S =  2800 to maintain β =  14 from 
Fig. 1(b). The maximum value of Rc, and hence the optimal capacity, is indeed reached at μ =  − 0.2. Yet, when 
β changes, Fig. 4 indicates that reaching the maximum capacity requires μ to change as well. The failure to find 

Figure 2.  How the optimal capacity arises? (a) Traffic flows PU, PD, and PT, (b) the average number of 
transfers, n , and (c) the average number of hops, H , all presented as the functions of transfer cost β.

Figure 3.  Optimising the system’s capacity under a biased transfer-cost allocation. Critical generating rate 
Rc as a function of parameter μ at S =  2800 (corresponding to β =  14).
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a single best value of μ seems to be pointing to the conclusion that the allocation of transfer costs according to 
degree centrality may not be the best strategy.

If degree centrality is not the best strategy, can we find a better transfer-cost allocation that would make the 
system’s capacity higher? The problem can formally be written as

β
β

β( ) . .
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g S is the inequality constraint, with β
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 being a short-hand notation for a vector comprised of com-
ponents β , = ,…,p N1p U . We set β β( ) = ∑

��
g p p to define an upper limit, S, for the total transfer cost. The 

critical generating rate of passengers, β( )
��

RC , is in the context of optimisation called the objective function. Vector 
β
��

 that maximises the objective function and satisfies the above-defined inequality constraint and variable bounds 
is called a feasible solution; otherwise the solution is infeasible.

Because the objective function, β( )
��

RC , is nonlinear and without an analytical expression in the case of coupled 
networks, we resort to intelligent computing to solve the optimisation problem at hand. Specifically, we employ 
the particle swarm optimisation (PSO) algorithm44, a technique inspired by the social behaviour of swarms45 and 
widely used to solve a number of optimisation problems46–50. The PSO algorithm with constraint handling used 
herein searches for a solution while obeying the following rules:

(1)	 The objective function is redefined and separated into two parts: the fitness function, β( )
��

F , and the constraint 
violation function, β( )

��
V , where β β( ) = ( )

�� ��
F RC  and β( ) =

��
V 0 if β( ) ≤

��
g S; otherwise β β( ) = ( ) −

�� ��
V g S.

(2)	 A pair-wise comparison of candidate solutions is performed in such a way that:

(a)	 when two feasible solutions are compared, the one with higher fitness is chosen;
(b)	 when two infeasible solutions are compared, the one with lower constraint violation is chosen;
(c)	� when a feasible and an infeasible solutions are compared, the infeasible solution is chosen only if it has higher 

fitness and the constraint violation is less than ε >  0; otherwise the feasible solution is chosen.

As a result of these rules, the PSO algorithm may choose an infeasible solution as the optimum, but such a 
solution is guaranteed to be near the boundary of the set of feasible solutions.

Next, we examine the performance of our toy-model transportation system after optimisation with the PSO 
algorithm. Figure 5 displays the order parameter, η, as a function of the passenger generating rate, R, under dif-
ferent transfer-cost allocation methods. The PSO algorithm considerably increases the critical point, Rc, relative 
to EFA and BFA methods, thus clearly outperforming them. A drawback of the PSO algorithm is a lengthy com-
putation time, especially if the algorithm is initialised randomly. From Fig. 3, we known that the maximum Rc 
is obtained for β =  14 and μ =  − 0.2, so it seems reasonable to use such prior knowledge during initialisation to 
decrease the computation time. Figure 6 compares the performance of the PSO algorithm under the two initiali-
sation options. If the prior knowledge is used, the PSO algorithm converges faster and is able to find a better solu-
tion (i.e. higher Rc) within the preset number of iterations. We, therefore, discuss the properties of the optimised 
transportation system only in the case of initialisation with the prior knowledge.

A closer look at the performance of the PSO algorithm as a function of the (Euclidean) distance, D , between 
departure and destination nodes reveals several interesting outcomes. Here, as in refs 51,52, the variance of the 
travelling time, δT, is used as an intuitive reliability indicator because it is highly undesirable for some passengers 
to be stuck, while others progress smoothly through the system. Figure 7(a) shows that the PSO algorithm con-
trols δT much better than EFA or BFA methods, indicating that the optimised system functions more reliably. 

Figure 4.  Comparing the two transfer-cost allocations (EFA and BFA). Critical generating rate Rc as a 
function of transfer cost β. The optimal value of parameter μ changes with β.
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Furthermore, in Fig. 7(b) the average cost of traversed paths, L , is lower if the system is optimised using the PSO 
algorithm instead of EFA or BFA methods. The last result, to be precise, holds only if D  is higher than 15, but 
mid- to long-distance journeys are the ones where cutting costs makes the most economic and ecological sense 
(e.g. by considerably reducing the fuel consumption). Finally, Fig. 7(c) shows that in the interval ∈ ,D [20 35] 
the PSO algorithm generates the highest average number of transfers, n , of the three methods. Optimised sys-
tems, therefore, are more reliant on transferring passengers who travel mid to long distances in order to alleviate 
congestion.

Conclusion
Using ideas and concepts from statistical physics of complex networks, particularly the multilayer network frame-
work, we built a two-layered idealised transportation system and examined the implied dynamics. Each layer 
had a different topology and supported different travelling speed—characteristics that qualitatively correspond 
to real-life transportation systems. Seeking to minimise the travelling time of passengers, we allowed transfers 
between the two layers at an extra cost with the purpose of (i) taking the advantage of high speed offered by the 
upper layer or (ii) reaching a final destination served only by the, in relative terms slow, lower layer.

Our main concern was the influence of transfer costs on the transportation system’s capacity. We found that 
an even transfer-cost allocation (EFA) maximises the system’s capacity by fine-tuning the trade-off between high 
speed and extra transfer costs. Somewhat at odds with the general consensus reached by examining traffic dynam-
ics in isolated networks, a degree centrality-based strategy (BFA) was not overly helpful in enhancing the perfor-
mance of the system. However, starting from such a strategy and reassigning transfer costs using a particle swarm 
optimisation (PSO) algorithm improved the capacity and several other properties of the system at a reasonable 
computational cost. Our work exemplifies how statistical physics of complex networks can positively affect daily 
life.

Figure 5.  Particle swarm optimisation increases the system’s capacity. Order parameter η as a function of 
generating rate R under the three transfer-cost allocations (EFA, BFA, and PSO).

Figure 6.  Improving the performance of the PSO algorithm. Critical generating rate Rc as a function of the 
number of iterations under the two initialisation methods (random and prior knowledge).
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Finally, a word of caution regarding the optimality of the solution is in order. When considering real-world 
optimisation problems, it is often hard, if not impossible, to obtain a theoretical optimal solution. Therefore, it 
is quite common to rely on heuristic optimisation—such as the genetic algorithm, differential evolution, and 
PSO—although none of these methods guarantees an optimal solution. What heuristic optimisation usually does 
is improving upon a solution suggested by experts. Herein, for example, we combine the commonly used and 
well-documented PSO algorithm with a strategy suggested by the system’s topology in order to allocate transfer 
costs “optimally”. The main contribution thus is precisely the fact that we can find an optimisation-based strategy 
that is better than the topology-based (i.e. “expert”) strategy. We stayed clear of comparing the current best solu-
tion with the best solutions that other algorithms may have generated, the reason being that such a comparison 
is perhaps more interesting to the readers of journals specialised in intelligent computing. Nevertheless, it is an 
interesting topic for future research.

Methods
Here, we consider a toy model that exhibits the same main characteristics as many modern transportation sys-
tems composed of, for example, a train and an aeroplane network. The model employs a two-layer architecture: 
the lower layer is a von Neumann-neighbourhood lattice containing ND ×  ND nodes53, whereas the upper layer, 
constructed using the scale-free algorithm54, has NU nodes with the average degree =k 12. The transport speed 
in each network is different. Without any loss of generality, we work in units in which the speed of the lower layer 
is VD =  1 and the speed of the upper layer is VU =  α ×  VD, where we fix α =  3 as the realistic speed ratio between 
aeroplane and high-speed railway networks. To make transfers between the two layers possible, each node in the 
upper layer is connected to one randomly selected counterpart from the lower layer (i.e. there are NU coupled 
nodes). For the purpose of calculating distances, nodes in the upper layer are assigned the same coordinates as 
their counterparts from the lower layer. Furthermore, the taxicab metric is used in the lower layer, where the 
length of an edge connecting two neighbours is Dij =  1. In the upper layer, by contrast, the distance between two 
neighbours is given by the Euclidean metric, = ( − ) + ( − )U x x y yij i j i j

2 2 , where (xi, yi) are the coordinates of 
node i. For simplicity, we mainly focus on two layers with ND =  200 and NU =  35. Enlarging both networks by the 
same factor guarantees the same quantitative observations.

After defining the underlying infrastructure, the transport process is carried out as follows. At each time step, 
t, a number of new passengers, R, with random sources and destinations are assigned to the system of networks. 
Each node has the capacity to deliver C passengers in one time step (we set C =  1 in simulations), complemented 
with an infinite queue buffer to handle the congestion. Passengers in the system are navigated in the way that 
minimises their travelling time. The primary purpose of transfers is to reduce the total time of travel, which 
comes at an economic cost. Generally, a passenger is willing to pay a certain number of monetary units for  
a given time reduction, thus allowing us to express the transfer cost, βp, at coupled node p in units of time. With 
these definitions, passengers between any two nodes i  and j are delivered along such a path, 

= ≡ , , , , ≡→ −P i X X X X j{ }i j n n0 1 1 , that minimises the quantity

( ) ∑ ∑β=
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where the first term in brackets is the total time of travel, given here as the sum of individual travelling times 
( , )+t X Xm m 1  between the two successive nodes, Xm and Xm+1, along path Pi→j calculated as the ratio of speed to 

distance. The second term, β∑ p p, represents the total transfer cost. When a passenger reaches the destination, it 
is removed from the system. Note that quantity L can be interpreted as the total cost in units of time associated 
with path Pi→j.

The PSO algorithm is usually specified by three parameters. We denote these parameters with c1, c2, and η. The 
values are c1 =  c2 =  2.05 and η =  0.7298. The number of particles is 20 and the number of iterations 300.

Figure 7.  Performance of the optimised system. (a) The variance of the travelling time, δT, (b) the average cost 
of traversed paths, L , and (c) the average number of transfers, n , as functions of average distance D  between 
departure and destination nodes. The generating rate is R =  60.
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