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Diseases that spread to humans from animals, zoonoses, pose major threats to
human health. Identifying animal reservoirs of zoonoses and predicting future
outbreaks are increasingly important to human health and well-being and
economic stability, particularly where research and resources are limited.
Here, we integrate complex networks and machine learning approaches to
develop a new approach to identifying reservoirs. An exhaustive dataset of
mammal–pathogen interactions was transformed into networks where hosts
are linked via their shared pathogens. We present a methodology for identify-
ing important and influential hosts in these networks. Ensemble models
linking network characteristics with phylogeny and life-history traits are
then employed to predict those key hosts and quantify the roles they undertake
in pathogen transmission. Our models reveal drivers explaining host impor-
tance and demonstrate how these drivers vary by pathogen taxa. Host
importance is further integrated into ensemble models to predict reservoirs
of zoonoses of various pathogen taxa and quantify the extent of pathogen
sharing between humans and mammals. We establish predictors of reservoirs
of zoonoses, showcasing host influence to be a key factor in determining
these reservoirs. Finally, we provide new insight into the determinants of
zoonosis-sharing, and contrast these determinants acrossmajor pathogen taxa.
1. Introduction
Recent years have seen significant outbreaks of several emerging zoonotic diseases,
ranging from the well known (e.g. Ebola), to the previously little known (Zika), to
the novel (Middle East respiratory syndrome, MERS). It is well established that
most communicable human diseases have animal origins [1,2], and over two-
thirds of emerging human pathogens originate from mammals [3,4]. In addition,
endemic zoonoses continue to pose major threats to human health, well-being
[5] and economic security [6]. Despite the importance of cross-species spillover
transmission of zoonotic pathogens [7], there has been relatively little attention
paid tohow thesepathogens are sharedbetweenhumansandnon-humananimals.
Indeed, in many cases, the animal sources of major human outbreaks have only
been identified after the outbreaks have occurred. There is a pressing need to
increase our understanding of how pathogens are shared between humans and
animals, so that we can anticipate possible outbreaks in advance [8,9].

Efforts have been made to address this issue by attempting to find patterns
in the distribution of pathogens among mammals, or incorporating various
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analytical techniques to explain sharing of these pathogens
with humans. Many of these studies have focused on factors
promoting pathogen sharing within specific taxonomic host
groups (notably primates [9,10], bats [11,12], carnivores [13]
and rodents [11,12,14]), non-taxonomic groups (e.g. domestic
animals [15]) or have limited their scope to certain pathogens,
or taxa of pathogens, particularly viruses [16]. Here, we pre-
sent a comprehensive species-level analysis of pathogen
sharing between all known non-human mammalian hosts
and humans, contrasting the factors promoting sharing of
various taxa of pathogens (e.g. bacteria versus viruses).

Networks of shared pathogens have been gaining popu-
larity as useful tools to investigate pathogen sharing and
transmission [9,12,15,17,18]. Here, we integrate networks of
shared pathogens with predictive machine learning to
answer three key questions in relation to the link between
sharing of pathogens between mammals and mammalian
reservoirs of zoonoses. Can we identify important host
species and quantify their roles in sharing and transmitting
different pathogen taxa? Can these roles be integrated with
mammalian traits to predict reservoirs of zoonoses? And
which host traits and roles best explain the number of
pathogens shared between mammalian hosts and humans?
2. Data and methods
(a) Host–pathogen species interactions and network

formulation
We extracted interactions between non-human mammals and
their pathogens from the enhanced infectious diseases data-
base (EID2) [19]. These interactions formed a bipartite
network with nodes represented hosts and pathogens, and
links indicated whether pathogens have been found in
hosts. We further checked these interactions to ascertain
whether the putative pathogens caused a disease or an
opportunistic infection in at least one species of mammal
(including humans). This resulted in 16 548 species-level
host–pathogen interactions between 3986 pathogen species
(bacteria = 885, fungi = 251, helminth = 1000, protozoa = 404
and virus = 1446) and 1560 non-human mammalian species.

We projected this bipartite network into a unipartite net-
work where nodes represented host species and edges
quantified shared pathogens. The motivation behind this pro-
jection is twofold: (i) it enabled us to investigate dynamics of
pathogen sharing via ecological network analysis tools [9,11],
and (ii) it facilitated identification of important non-human
mammalian species via centrality measures. In addition to
the network encompassing all pathogen taxa (including
fungi), we generated eight additional networks: bacteria
(including Gram variable), Gram+ bacteria, Gram− bacteria,
helminths, protozoa, viruses (including retro-transcribing),
DNA viruses and RNA viruses. Prions were not included in
this study (electronic supplementary material, note S1 lists
further information).

We computed various network statistics to contrast key
aspects of pathogen sharing across our selected taxa
(table 1). These included: transitivity (if two nodes are con-
nected, the probability that their neighbours are also
connected); density (the proportion of potential connections
in a network that are actual connections); and modularity
(the number of edges falling within groups minus the
expected number in an equivalent network with edges
placed at random [20]). We also calculated network-level E–I
index based on species orders. Given a categorical node attri-
bute describing mutually exclusive groups (in our case,
order), the E–I index represents a ratio of external (with
other orders) to internal (within order) edges. A positive net-
work-level E–I index indicates a tendency of hosts to share
pathogens with species outside their order (i.e. extrovert),
whereas a negative E–I index indicates a tendency to share
pathogens within orders (i.e. introvert).

(b) Centrality measures in networks of shared
pathogens

Various metrics of node centrality have been explored as
proxies to host importance in networks of shared pathogens
[9,12,17,21]. Each of these metrics reflects distinct character-
istics of the roles host species play in shared-pathogen
networks and tends to fall into wider categories including:
degree and eigenvalue-derived measures, capturing direct
sharing of pathogens among hosts; and distance-based
measures, relating to indirect sharing of pathogens. However,
due to the large number of available metrics in each category,
determining which ones are best suited for identifying impor-
tant hosts in networks is not straightforward. To address this,
we use principal component analysis (PCA) to determine the
efficacy of a wide range of well-established centrality
measures and subsequently select the ones best suited to
our networks [22].

To achieve this, we computed seven degree- [23–25] and
eigenvalue-derived [28–30] centrality measures, and six dis-
tance-based measures [24,29,30] in each of our networks.
Electronic supplementary material, note S2 lists details and
definitions of selected measures. We then performed PCA
analyses using the R package FactoMineR [31] to determine
the influence of our selected measures within each network.
We calculated the contributions of each centrality measure
to the first and second principal components (explained
89.6% of variance on average; first = 76.3%, second = 13.3%)
to determine those which explained most of the variation in
these components.

Following this, Opsahl degree centrality (ODC) (mean
contribution to first = 8.86% and second = 0.34%) and
Opsahl betweenness centrality (OBC) (3.14%, 24.18%)
emerged as the two measures with the greatest contribution
on average to the first and second component, respectively,
across our networks, and were therefore selected in our ana-
lyses. ODC can be thought of as a quantifier of the host
reachability within the network, whereas OBC reflects the
ability of the host to bridge various communities. Hosts
with high OBC receive/transmit different types of pathogens
from these communities without necessarily communicating
these pathogens across communities. Electronic supplemen-
tary material, note S2 provides details of included measures
and the PCA analyses.

(c) Novel metric of node influence: indirect influence
Unipartite projection of host–pathogen bipartite networks
results in inevitable loss of information [32]. Let us assume,
for instance, that we have three mammalian species: A, B
and C, and that A and B share 10 protozoan agents, whereas
B and C share 5 protozoan agents. Here, we have two
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extreme scenarios, as follows. (i) The protozoans are all differ-
ent; A and C do not share any protozoan pathogens, which in
turn means that there is no flow of protozoan pathogens from
A to C despite a path existing between the two (via B). (ii)
The five protozoans shared by B and C are among the 10
shared by A and B and, therefore, half of A’s protozoans
are shared with C, and all of C’s are shared with A. Both
scenarios have implications on the traditional centralities ana-
lysed in the previous subsection. To address these issues, we
developed a novel entropy-based metric, which we term
indirect influence (II). II captures the influence each host
species exercises within the unipartite network by measuring
the number and frequency of pathogens this host spreads
indirectly through its neighbouring species if it were to inter-
act with each of them in isolation to the remainder of the
network. Entropy enables us to capture uncertainties in the
destination of pathogens as a function of the original host
[33] at three levels: (i) a species which shares a few pathogens
with many neighbours: entropy captures uncertainty in
which neighbour it could influence indirectly; (ii) a species
which shares many pathogens with few neighbours: entropy
allows us to capture uncertainty in pathogens shared; and
(iii) a species which shares many pathogens with many
neighbours will have high centrality due to uncertainties in
both pathogens shared and neighbours influenced. In
addition, using entropy allows us to avoid assessing the
many paths connecting all node pairs and instead, focus on
the potential of the node (i.e. the host species) to diversify
pathogen propagation [33,34].

II uses the above while taking into account the fact that in
shared-pathogen networks, nodes share pathogens with their
immediate neighbours only, which means that the distance
between two not-directly connected nodes equals infinity
regardless of whether a path exists between the two nodes
or not. Formally, for each node i∈N, connected to ni neigh-
bours with cardinality|ni|, indirect influence of node i (IIi)
is as follows:

IIi ¼ IIdi þ IIpi þ IIfi , ð2:1Þ

where IIdi , II
p
i and IIfi are the node’s indirect degree influence,

indirect pathogen influence and indirect frequency influence,
respectively (equations (2.2)–(2.4)).

IIdi ¼ �
X

j[N

jnijj
jnij � log

jnijj
jnij , ð2:2Þ

where nij is the neighbours of i reachable through j, nij, |nij| is
the cardinality of nij.

IIpi ¼ �
X

j[N

jpijj
jpij � log

jpijj
jpij , ð2:3Þ

where pij ¼ pi > pj; pi,p j is the pathogens nodes i, j share with
their neighbours.

IIfi ¼ �
X

j[N

fij
fij
� log

fij
fij
, ð2:4Þ

where fij is the frequency of sharing from i through j, and fi is
the frequency by which i shares pathogens with all its
neighbours.

Measuring II of a host is essential to capturing the intrica-
cies of pathogen sharing not covered by the conventional
measures analysed above, namely the range and speed by
which host species propagate their pathogens to their neigh-
bours. In this, our measure is similar to other entropy-based
measures [34], as well as to established influence measures
such as Katz centrality [28,29], but it focuses on the species
influence in its neighbour space rather than across the
whole network. To further assess the relationship between
II and established centrality metrics, we performed a corre-
lation analysis of centrality measures in our networks
which revealed that II correlated (on average across all net-
works) with closeness [29] (0.88) and Opsahl closeness [24]
(0.82) centralities, and showed least correlation with OBC
(0.16). Further details are listed in electronic supplementary
material, note S2.

(d) Predictors
(i) Predictors of centrality and influence in networks of shared

pathogens
We compiled a set of predictors of importance of host species
and roles they play in networks of shared pathogens as
quantified by the centrality and influence measures discussed
above as follows.

Host orders and domestication status: we extracted host
orders from EID2 [19]. Orders have been found to affect shar-
ing of pathogens among species [16] and therefore their
position in our networks. We classified hosts into three
non-taxonomic groups: domesticated, semi-domesticated
and wild (electronic supplementary material, note S1
expands these definitions).

Research effort:we quantified research effort for each mam-
malian species to be the total count of the host (and any of its
subspecies) genetic sequences and publications as indexed by
EID2 [19]. This enabled us to control for research effort by
including it as an independent variable in our models.

Pathogen diversity: we used two metrics of pathogen taxo-
nomic specificity, namely: (i) taxonomic distinctness
specificity index STD [35,36] and (ii) variance in taxonomic
distinctiveness specificity index VarSTD [35]. We calculated
these metrics based on NCBI taxonomy as used by EID2
[19]. A higher value of STD indicated that on average the
host has been exposed to pathogens that are not closely
related. VarSTD captured higher-level asymmetries that
might have been missed by the former metric.

Species traits: we compiled species traits from online data-
bases and literature [16,37–40]. We included body mass and
body length as they have been shown to affect the number
of pathogens harboured by a host, or shared with other
hosts, as well as acting as proxies, together with maximum
longevity, indicative of host metabolism and adaptation to
environment. We included reproductive traits (litters per
year, litter size, weaning age, gestation period and age at
sexual maturity) which could be viewed as proxies to
within-host–pathogen dynamics and therefore may influence
the pathogens harboured by the host and the host position
within the network. We also calculated the proportional use
of 10 diet categories as presented in EltonTraits [39]. We
used these categories as independent variables to assess the
effect of variations in each category on the position of hosts
in our networks.

Geography and habitat: we included species geographical
area range [40] (in km2) as we assumed that hosts with
wider range might come into contact with larger number of
host species, than those confined to smaller areas, and may
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therefore have higher centrality values. We incorporated
habitat usage [40] as multiple binary indicators of whether
a species uses one or more of 14 natural and artificial habitats.
We hypothesized that habitat usage affects both the patho-
gens and hosts with which mammals come into contact
and therefore influences centrality measures.

Phylogeny:we calculated pairwise phylogenetic distances
between mammalian host species in each network using a
recent mammalian supertree [41]. We used these distances
to compute two hybrid network-phylogeny measures for
each host: neighbours distinctness specificity index (SND)
and variance in neighbours distinctiveness specificity
index (VarSND). We based those measures on STD [34–36]
and VarSTD [35,37]. Higher values of these measures
indicated the hosts share pathogens with distant or varied
mammalian species, whereas lower values indicated that
sharing of pathogens is more localised, to genus or
family level. Formally, we defined our measures as
follows. For each host node in the network i with a set of
neighbours ni,

SND i ¼ 2� SSi,j v jk

jnij(jnij � 1)
, ð2:5Þ

j, k ∈ ni ; ωij is the phylogenetic distance between j and k,

VarSNDh ¼
SSi,j (vij � �v)2

jnij(jnij � 1)
, �v ¼ SNDh: ð2:6Þ

In addition, we calculated the evolutionary distinctive-
ness of each host species in our tree using fair proportions
[42], as implemented in the R package picante [43].
(ii) Predictors of reservoir of zoonoses and number of zoonoses
shared with mammalian hosts

We incorporated taxonomic orders, domestication status and
geographical range of species described above in our models
to predict reservoirs of zoonoses and predict the number of
zoonoses shared with mammalian hosts. To account for
research biases in zoonotic pathogens (which tend to be
more studied in general), we supplemented host research
effort by computing Shannon entropy of research effort
(sum of publications and sequences) of pathogens of each
host. Shannon entropy accounted for the proportion of
research on each pathogen species. Larger values of Shannon
entropy indicate larger research effort and a more even distri-
bution of this effort among different pathogen species in the
mammalian hosts.

Position in network: we included the centrality measures
discussed above: ODC, OBC and II as predictors in our zoo-
noses analyses. Each of these measures reflects a unique
characteristic of the role hosts play in the network and there-
fore a different aspect of sharing of pathogens among
mammals.

Relation to human: In addition to their domestication
status, we categorized the nature of each mammal interaction
with humans into four binary indicators [40]: food source,
companion/pet, other usages (e.g. clothes, transportation)
and hunted (for sport or food).

Distance to human:We used the mammalian supertree [41]
from the previous subsection to compute the phylogenetic
distance between each host species and humans. In addition,
we quantified three separate ecological distances between
these hosts and humans: (i) life traits distance (using all life
traits listed above), (ii) habitat distance (including habitat
binary indicators from the previous section), and (iii) diet dis-
tance (including the 10 proportional categories used above).
We based these three distances on a generalized form of
Gower’s distance matrices [21,44,45].

(e) Ensembles construction
We developed ensembles to investigate if our chosen central-
ity measures can be explained by life traits of hosts, their
phylogeny and relation to their neighbours in networks.
Each of our ensembles comprised six learners: stochastic gra-
dient boosting/boosted regression trees (gbm), support
vector machines, elastic generalized linear models, nearest
neighbours, decision trees and random forests. We tuned
and trained these learners using the R packages Caret
[31,32] and caretEnsemble [33] for nine categories of patho-
gens corresponding to the nine networks we constructed
above. We constructed our ensembles from these learners
using linear greedy optimization (as implemented in care-
tEnsemble [33]) to minimize root mean square error
(RMSE). We validated our ensembles and their constituents
using 10-fold cross-validation. We repeated this process
100 times, to attend to uncertainties in the cross-validation
processes, and to generate empirical confidence intervals.
Predictions were generated using the median values of
these repeats.

The relative contribution (importance) of predictors
included in our ensembles (as discussed above) was com-
puted by averaging the predictive power of variables across
the base models with weights equal to the contribution of
these models to the ensemble (as implemented in the R pack-
age caretEnsemble [33]). This enabled us to assign a value
between 0 and 100 to each predictor, with larger values
indicating a larger relative influence on the ensemble.

Using similar methodology to the one outlined above, we
constructed ensemble models to answer two questions: (i)
which mammals are more likely to harbour zoonotic patho-
gens? (ii) Can the number of zoonoses be explained by
centrality and/or host traits? Our ensembles to answer the
first question (a classification problem) were optimized to
maximize the area under the ROC curve (AUC). Our ensem-
bles to answer the second question (regression problem) were
constructed, tuned and assessed similarly to the above
subsection.

We assessed the performance of our ensembles and their
constituent learners via a comprehensive set of performance
metrics (as detailed in electronic supplementary material,
note S3).
3. Results
(a) Description of networks
Network statistics varied across the pathogen taxa studied, as
illustrated in table 1. Viruses (all, DNA and RNA) and hel-
minth networks were less dense than bacteria and protozoa
networks (electronic supplementary material, figure S1).
The protozoa network exhibited the highest level of transitiv-
ity, indicating higher probability that if two host species
shared protozoan pathogens, their neighbours were also con-
nected. Network-level order E–I index revealed that hosts of
helminth and DNA viruses (and to lesser extent all viruses
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and RNA viruses) tended to share pathogens in these taxa
with members of their orders (table 1).
(b) Ensemble models to explain centrality and influence
in networks of shared pathogens

(i) Predictors of centrality
We calculated the relative contribution (importance) of each
variable to the ensembles by averaging its predictive power
of base learners with weights equal to their contribution to
the greedy ensemble. The influence of predictors varied per
centrality measure and pathogen type, as illustrated in
figure 1 (and further explored in electronic supplementary
material, note S4).

Neighbours’ phylogenetic specificity (SND) was the top
predictor overall of II (median = 26.4%; 95% CIs [9.24%,
51.1%]) and ODC (16.7%; [5.89%, 41.0%]). However, there
were variations across networks (figure 1). ODC in the
network of DNA viruses was best explained by species
order, particularly, Carnivora (median = 11.3%; 95% CIs
[10.5%, 12.7%]). ODC in networks of bacterial agents was
best explained by pathogen diversity VarSTD as follows:
all bacteria (median = 18.4%; 95% CIs [17.3%, 19.7%]),
Gram+ (21.7%; [20.7%, 23.1%]), Gram− (20.2%; 95% CIs
[18.9%, 21.4%]).

Research effort was the top predictor of OBC (median =
30.2%; 95% CIs [20.5%, 69.1%]), followed by domestication
status (median = 22.4%; 95% CIs [2.96%, 47.1%]) and geo-
graphical range (median = 11.1%; 95% CIs [5.09%, 21.9%]).
The influence of taxonomic orders, traits, habitat and diet
predictors varied per taxa of pathogen, and centrality
measure studied as highlighted in figure 1 (electronic
supplementary material, note S4 provides full details).
(ii) Model performance metrics
Our models to explain centrality achieved the following per-
formance: median R2 = 0.86 (95% CIs [0.49, 0.97]); median
adjusted R2 = 0.84 [0.44, 0.97]; median normalized RMSE =
0.38 [0.06, 1.14] and median normalized MAE = 0.25 [0.03,
0.70]. Electronic supplementary material, note S4 lists full
results for each centrality and pathogen taxa, and illustrates
the performance of our ensembles compared with their
based components.

(c) Ensemble models to predict reservoirs of zoonoses
and explain number of pathogens shared between
humans and mammalian species

(i) Predictors
Following averaging of variable importance with weights as
per the previous section, centrality measures emerged as
influential predictors across all our models (figures 2
and 3). Our novel II metric was the top single predictor
across all models to determine if mammalian species har-
boured zoonoses or not (median = 30.1%; 95% CIs [8.67%,
63.10%]). ODC had the median influence of 13.6% [7.78%,
23.90%] and was second predictor in all models except
DNA viruses (figure 2a). Centrality measures were also
important in our models to explain the number of pathogens
shared between humans and mammals. ODC (21.5%; [7.21%,
39.90%]) and OBC (20.9%; [10.50%, 28.10%]) were top predic-
tors in eight of the nine models in this category, II
significantly improved our helminth and bacterial models
(figure 3a).

Entropy of pathogens research effort was the top predic-
tor in our models to explain the number of zoonotic DNA
viruses (median = 21.5%; [7.21%, 39.90%]). Overall, research
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effort (host and pathogen) influenced our models to explain
number of zoonoses (pathogen = 9.05% [2.26%, 20.20%],
host = 7.78% [5.20%, 10.40%]) nearly twice as much as our
models to detect reservoirs of zoonoses (pathogen = 3.99%
[1.75%, 8.00%], host = 4.31% [1.07%, 5.63]).

The relative contribution of taxonomic orders, distances
to human and domestication status to our models of reser-
voirs of zoonoses and number of pathogens shared with
humans varied per pathogen taxa, electronic supplementary
material, note S5 visualizes these differences.

(ii) Predictions
We found that humans share pathogens with 1242 mamma-
lian species; however, the number of species harbouring
zoonoses differed per order and type of pathogen (figure 2b).
More rodent species harboured zoonotic pathogens than any
other order, except for DNA viruses, which were shared
mainly with primates, and Gram+ bacteria, shared mainly
with Artiodactyla and carnivores (81 species of each). Bats
formed significant reservoirs of RNA viruses. Taking the
total number of known extant species of species-rich orders
into account [46], we found that 52.46% of carnivores
shared pathogens with humans, followed by 35.50% of
known primates and 26.32% of known Artiodactyla. On the
other hand, humans shared pathogens with only 15.44%
and 13.91% of known bats and rodents, respectively.

Figure 3b illustrates the results of our models to predict
and explain number of zoonoses shared with mammalian
hosts. These results highlight differences in zoonoses sharing
per host order and pathogen taxa, as well as variations in fre-
quency of pathogen sharing with domesticated and wild
species. For instance, humans tend to share helminths with
carnivores (both domestic and wild). Zoonotic viruses, on
the other hand, showed differences by genome type. DNA
viruses are mostly shared with primates, whereas RNA
viruses are more variedly shared with wild species
particularly with bats, rodents and primates.

(iii) Models performance metrics
We compiled a comprehensive set of performance metrics for
all our models (electronic supplementary material, note S5).
Our models to predict reservoirs of zoonoses had median
AUC= 0.97 [0.94, 1.00], mean TSS = 0.71 [0.46, 1.00], mean
KS statistics = 74.14 [62.31, 100.00] and mean F1-score = 0.95
[0.78, 0.99]. Our models to explain the number of pathogens
shared with humans had the following performance metrics:



indirect influence

Opsahl degree

order

S
TD 

diet dist

research effort

Opsahl betweenness

VarS
TD

pathogen effort

habitat dist

geographical range

hunted

life traits dist

food

artificial habitat

other (relation)

phylogenetic dist

migratory

domestication status

companion

al
l

ba
ct

er
ia

G
ra

m
–

G
ra

m
+

he
lm

in
th

pr
ot

oz
oa

vi
ru

s
D

N
A

R
N

A Artiodactyla

all

Chiroptera

Lnsectivora

Lagomorpha

Other Rodentia

y ~ Im(x)Perissodactyla

Primates

Carnivora

CetaceaB
. t

au
ru

s
C

. h
ir

cu
s

C
. l

up
us

E
. c

ab
al

lu
s

F.
 c

at
us

O
. a

ri
es

S.
 s

cr
of

a

all

bacteria

Gram–

Gram+

helminth

protozoa

virus

DNA

RNA 125

rc
or

de
d 

zo
on

os
es

predicted zoonoses

0

0

40

0
0 40302010

0 40302010

0

20

15

10

5

0
0 15105 0 15105 0 15 20105

15

10

5

0

15

10

5

0

15

10

5

0

20

25

15

10

510

20

30

40

0

10

20

30

0

10

20

30

54321
0 50 100

25

50

75

100

(a) (b)

predicted zoonoses (log)

variable importance (median)

10 3020

bacteria Gram– Gram+

protozoa
0 302010 0 3020100 2010

virus DNA

helminth

RNA

Figure 3. Results of our ensemble models to explain the number of zoonoses harboured by mammalian species. (a) Median variable importance (relative influence)
of predictors included in the models over 100 runs. For the purposes of this figure, the contribution of order predictors is summed. Details of contribution of all
predictors over the 100 runs of each model are presented in electronic supplementary material, note S6 and figure S12. (b) Predicted number of zoonoses in each
mammalian host species. Heat-map illustrates logged predicted number of zoonoses in livestock, horses and domesticated dogs and cats. Points represent mam-
malian species, coloured by their order, size = log ( predicted zoonoses + 1). x-axes are predicted number of zoonoses; y-axes are detected number of zoonoses.
Labels are top species by number of predicted zoonoses (n = 10 in all pathogens panel, n = 5 in other panels). (Online version in colour.)

royalsocietypublishing.org/journal/rspb
Proc.R.Soc.B

287:20192882

8

median R2 = 0.89 [0.78, 0.94], median adjusted R2 = 0.89 [0.76,
0.94], median normalized RMSE = 0.68 [0.39, 1.17] and
median normalized MAE = 0.37 [0.23, 0.66]. Electronic sup-
plementary material, note S5 lists the detailed performance
metrics and compares the performance of our ensembles to
their base learners.

4. Discussion
We presented a methodology integrating shared-pathogen
networks and machine learning to answer three key ques-
tions: First, what makes a mammalian host species
important in networks of shared pathogens? Second, which
mammals are more likely to harbour zoonotic pathogens?
Third, can the number zoonotic pathogens of a mammalian
host be explained by its network centrality or host traits?

Our models to explain centrality (question 1) highlighted
differences in traits associated with key species in each of our
networks, as well as overarching general characteristics. Host
species capable of sharing pathogens with distantly related
species, and which harboured taxonomically varied patho-
gens, were more central due to being well connected with
their neighbours (II and Opsahl degree). On the other hand,
Opsahl betweenness was explained mainly by research
effort, domestication status and geographical range. This
indicated that there remain unexplored factors explaining
bridge species harbouring pathogens shared between
otherwise loosely connected communities, for which research
effort acted as a proxy.

Our models to predict and describe reservoirs of zoonoses
(questions 2 and 3) confirmed that position in networks of
shared pathogens is a key factor in determining the sharing
of pathogens between mammals and humans; and extended
this assumption to include all mammals rather than
individual orders [9,12].

The work presented here builds on previous research
[9,12,15,16,17,21] to advance our understanding of sharing
of pathogens among mammalian sources of zoonoses in
five key aspects: (i) our novel measure of centrality, II,
while resembling closeness, is designed specifically for net-
works of shared pathogens. This measure provided key
insight into the probability of mammalian hosts sharing
pathogens with humans (question 2). It suggested that,
regardless of pathogen type, mammal species that can
spread more of their pathogens indirectly through their
neighbours are more likely to harbour zoonoses than other
species. (ii) Our ensembles provided a flexible, robust,
unbiased mechanism to address our questions. (iii) By
investigating sharing of pathogens across multiple taxa and
sub-taxa (e.g. DNA/RNA viruses, Gram+/Gram− bacteria),
we were able to ascertain important differences in the mech-
anisms of sharing of different types of pathogens, and the
effect this has on zoonoses. (iv) In addition, by integrating
three measures of centrality, rather than focusing on a
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single measure, we were able to differentiate key species in
networks based on the unique characteristics of each net-
work. This was highlighted where host species with higher
betweenness carried more zoonotic viruses and bacteria,
whereas hosts with higher Opsahl degree carried more
zoonotic helminths and protozoa. (v) Finally, we were
also able to differentiate the roles that host order and their
domestication status play in different networks.

We recognize several areas for future improvements of
our models. First, our data were mined mainly from pub-
lished research and deposited genetic sequences. While we
made best effort to capture all interactions available within
our resources [19] and to control for research effort as per pre-
vious studies [9,12,16], we realize there are inherent biases in
our data sources. Recent research has revealed that between
20 and 40% of pathogen host ranges are currently unknown
[47]. An area of future improvement will therefore focus on
closing this particular knowledge gap, furthering recent
attempts to predict missing interactions in networks such as
ours. Second, edges in our networks, which represent sharing
of pathogens, may be interpreted in a variety of ways includ-
ing: spillover; direct contact; indirect sharing through vectors,
intermediate hosts or environment; and coevolution of
specific host–pathogen lineages. To further improve our
models, we will aim to distinguish between these various
events, focusing in particular on the role of transmission
routes as means to include direction of pathogen sharing
into our undirected networks. Third, we have focused our
analyses on host and pathogen species interactions with mini-
mal geographical layering. Geography plays a key role in
facilitating host interactions and affects the probability of con-
tact between humans and wildlife, which in turn increases
chances of zoonotic transmission [5,48]. A future analysis
will integrate geographical distribution of host species and
will improve our ability to predict sources of zoonoses.

In summary, the work presented here highlighted differ-
ences in characteristics and centrality measures of networks
of shared pathogens. It provided a methodology for selecting
which centrality measure to include in analysis of similar net-
works. Our models revealed factors underlining centrality in
these networks, and importantly how these factors vary
across pathogen taxa. We established predictors of reservoirs
of zoonoses and showcased centrality measures to be key in
determining these reservoirs. Finally, we provided new
insight into determinants of sharing of zoonoses between
humans and mammalian hosts across major pathogen taxa.
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