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ABSTRACT: A visible light induced palladium-catalyzed fluoroal-
kylation method was developed. The Heck-type alkyl coupling
reaction enables the introduction of trifluoroethyl, difluoroethyl and
other fluoroalkyl fragment into styrenes under mild reaction
conditions without the use of additional photosensitizers and
ensures access to fluoroalkylated olefins on a broad scale.

The introduction of fluorine-containing functional groups
into organic molecules and drug candidates can often

improve the enzymatic oxidative and thermal stability as well
as increase the lipophilicity and bioavailability of molecules.1

Therefore, in recent years the development of fluoroalkylating
methods and reagents, especially trifluoromethylation2 and
trifluoroethylation,3 has become an emerging area, including
the photocatalytic transformations.4

Besides the fluoroalkylation of aromatic and heteroaromatic
rings, the installation of short fluoroalkyl chains into terminal
alkene is also important, but is a less explored transformation,
which is mostly limited to perfluoroalkylation5 and trifluor-
oethylation. There are several different strategies to construct
the trifluoroethylated styrene structure. It can be synthesized
by nucleophilic substitution from the corresponding allyl-
bromide derivative,6 oxidative trifluoromethylation,7 classical
transition metal coupling with vinyl-boronates,8 or photo-
catalytic transformation9 using the corresponding fluoroalkyl
halides as coupling agents.
In continuation of our studies in the field of fluoroalkylation

reactions3a,b,10 and photocatalytic transformations,11 we aimed
to take advantage of the photo-Heck-type coupling approach
to introduce more versatile fluoroalkyl groups into the styrene
moiety using palladium catalysis and visible light irradiation
(Scheme 1). The classical palladium catalyzed cross-coupling
reaction12 involves a well-established two-electron redox
mechanism typically between the Pd(0)/Pd(II) oxidation
states. However, using the original Heck reaction for the
coupling of unactivated alkyl halides with aryl-alkenes is
challenging because of two factors:13 the oxidative addition
step is relatively slow with low-valent transition metals, and the
resulting alkylmetal species can undergo premature β-hydride
elimination which leads to side products. These disadvantages
can be eliminated by photoexcitation of the applied catalyst.14

The photoexcited Pd-complexes can participate in a single-
electron transfer (SET) mechanism to generate a Pd(I)-
species, which allows the desired coupling to occur selectively
in a photocatalytic manner. Two possible catalytic methods are

available to achieve the desired functionalization with
fluoroalkyl species (Scheme 1). The Gevorgyan method is
based on the Pd(OAc)2/Xantphos catalytic system, and the
transformation works efficiently in benzene in the presence of
Cs2CO3.

14e Similarly, Fu’s procedure uses the PdCl2(PPh3)2/
Xantphos catalyst in DMA/H2O solvent in the presence of
K2CO3 base.

14b Both alkylations require blue light irradiation
for appropriate excitation of the photocatalytic system.
We started our investigation with the optimization of the

reaction of styrene (1a) and trifluoroethyl iodide (2) using
palladium(II)−Xantphos catalyst systems. The reactions were
irradiated by 440−445 nm LEDs for 18 h at 25 °C and
analyzed by GC-MS. We found that the Gevorgyan-type
Pd(OAc)2−Xantphos photocoupling system14e works effi-
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Scheme 1. Aim: Direct Fluoroalkylation of Styrene
Derivatives
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ciently in benzene in the desired trifluoroethylation and
provides the expected product 3a in complete conversion. In
contrast, Fu’s conditions14b were not suitable for the
fluoroalkylation, which shows system sensitivity of the coupling
partner and indicates the necessity of fine-tuning of the
reaction conditions. After finding the appropriate catalytic
system we aimed to fine-tune the reaction conditions to reach
more suitable reaction conditions for the fluoroalkylation of
styrenes. In these experiments we focused on lowering the
catalyst and base loadings, and solvent selection.
We found that the catalyst loading can be lowered in the

case of the trifluoroethylation, but the minimum amount of
needed Pd(OAc)2 catalyst for the reaction completion was 5
mol %; further reduction of the catalyst loading significantly
decreased the conversion (Table 1, entries 2−6). A control

experiment without any irradiation indicated that the light is
essential for this transformation (Table 1, entry 7). Next, we
tested different Pd sources, and we demonstrated that the use
of PdCl2 could not result in any product; Pd2(dba)3 and
Pd(acac)2 were only moderately active in this reaction, and
Pd(TFA)2 performed almost as good as Pd(OAc)2 (Table 1,
entries 8−11). Among the tested polar solvents water, acetone
and ethyl acetate were relatively ineffective (Table 1, entries
12−14), while in THF the reaction reached 83% conversion.
Reactions performed in solvents similar to benzene gave
versatile results: chlorobenzene was completely ineffective,
while in toluene and benzotrifluoride (BTF) the coupling
reaction gave 80% and 90% conversion respectively, which are
good results but compared to benzene the transformation did

not reach completion. In cyclohexane alongside the desired
coupling iodocyclohexane was formed as a byproduct which
made this solvent unsuitable (Table 1, entry 19).
With the optimized conditions in hand first we investigated

the generality of the trifluoroethylation reaction (Scheme 2).

The transformation proceeded smoothly with styrene
derivatives with electron-withdrawing and electron-donating
groups as well, regardless of their position on the aromatic ring.
We synthesized different alkyl (3b, 3c, 3d) and aryl (3e)
derivatives in good yields, and the reaction worked efficiently
with halogenated styrenes (3f−j) and methoxy derivatives
(3m, 3n, 3o) as well. The silyl protected phenol functional
group is also tolerated under the reaction conditions, and
product 3p was isolated in 54% yield after a 24 h reaction time.
Aldehyde (3q), amide (3r) and ester (3s, 3t) derivatives were
also prepared successfully from the corresponding styrene. In

Table 1. Fine-tuning of Photocatalytic Conditionsa

Entry Catalyst Solvent Conv.

1 10 mol % Pd(OAc)2 benzene 100%b

2 5 mol % Pd(OAc)2 benzene 100%
3 4 mol % Pd(OAc)2 benzene 99%
4 3 mol % Pd(OAc)2 benzene 89%
5 2 mol % Pd(OAc)2 benzene 38%
6 1 mol % Pd(OAc)2 benzene 12%
7 5 mol % Pd(OAc)2 benzene 0%c

8 PdCl2 benzene 0%
9 Pd(acac)2 benzene 48%
10 Pd(TFA)2 benzene 83%
11 Pd2(dba)3 benzene 27%
12 Pd(OAc)2 water 7%
13 Pd(OAc)2 acetone 40%
14 Pd(OAc)2 ethyl acetate 46%
15 Pd(OAc)2 THF 83%
16 Pd(OAc)2 chlorobenzene 5%
17 Pd(OAc)2 toluene 80%
18 Pd(OAc)2 BTF 90%
19 Pd(OAc)2 cyclohexane 75%

aStandard reaction conditions: styrene (0.2 mmol), trifluoroethyl-
iodide (1.5 equiv), Cs2CO3 (1.5 equiv), catalyst (5 mol %), ligand (10
mol %) in 1 mL degassed benzene under Ar atmosphere, irradiated
with single 10 W 440−445 nm LEDs at 25 °C. b3 equiv of Cs2CO3
were used. cIn the dark.

Scheme 2. Scope of Trifluorethylation

aStandard reaction conditions: substrate (0.5 mmol), trifluoroethyl
iodide (1.5 equiv), Cs2CO3 (1.5 equiv), Pd(OAc)2 (5 mol %), and
Xantphos (10 mol %) was used in 2.5 mL degassed benzene under an
Ar atmosphere, irradiated with single 10 W 440−445 nm LEDs at 25
°C. bThe reaction time was 24 h. c10 mol % catalyst, 20 mol %
Xantphos and 3 equiv. base were used. dAverage of two reactions. eE/
Z ratio 3r 13:1; 3v 3:1; 3w: 33:1.
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this series the pyridine derivative (3u) was also obtained in
52% yield. On the other hand, 1,1-diphenylethylene derivatives
proved to be less reactive in this transformation. Therefore,
increased catalyst and base loadings were necessary to
accomplish the desired coupling. We managed to synthesize
the 3v and 3w derivatives in 55% and 58% yields, respectively.
Next, we broadened the scope of the photocatalytic

fluoroalkylation method with versatile fluoroalkyl iodides
(Scheme 3). We found that 1,1-difluoro-2-iodoethane is also
capable of participating in the coupling reaction.

This attracted our interest because the difluoromethyl
moiety is a well-studied motif in medicinal chemistry. The
difluoromethyl group is isosteric and isopolar with the −OH
and −SH groups and can behave as a H-donor as well.15 The
preparation of difluoroethylated styrene derivatives is per-
formed only through the functionalization of allylic halides

with difluorocarbene sources,16 and direct difluoroethylation of
terminal alkene is unprecedented.
Applying the previously used reaction conditions, we found

that the coupling of 1,1-difluoro-2-iodoethane with styrene
requires a 24 h reaction time to reach completion, and we
could isolate the corresponding difluoroethylated styrene
product (5a) in 82% yield. With the slightly modified
procedure, 12 additional derivatives were prepared to explore
the scope of the photocatalyzed coupling reaction. This
transformation also possesses good functional group tolerance,
and alkyl (5b, 5c, 5d), aryl (5e), halogen (5f−k), ester (5l),
methoxy (5m, 5n), and aldehyde (5o) derivatives were
successfully synthesized.
Increasing further the versatility of the fluoroalkyl part we

utilized 1H,1H-pentafluoropropyl iodide as a coupling partner,
and we obtained the corresponding coupling products under
the standard reaction conditions. In this case the pentafluor-
opropylated derivatives (5p−t) were isolated in 46−62% yield.
Additionally, two other fluoralkyl iodides were also tested in
this transformation, 1,1,2,2-tetrafluoro-3-iodopropane and
1H,1H,5H-octafluoropentyl iodide, and successfully gave the
desired coupled products (5u, 5v) in 68% and 53% yield,
respectively, which demonstrates that longer fluorous chains
are also applicable in this palladium-catalyzed photochemical
transformation.
Results of the radical quenching and light on−off experi-

ments17 support that the fluoroalkylation reaction follows the
general mechanism of the palladium-catalyzed alkylations.14

The Xantphos−Pd(0) complex can be excited with blue light
(440−460 nm), and then this Pd species reacts with fluoroalkyl
iodide in the SET reaction, supposedly generating a
Xantphos−Pd(I)−I and fluoroalkyl radical pair (the latter
was trapped with TEMPO to prove its presence),17 which are
in close proximity. Alkene reacts with this palladium(I)
intermediate through insertion or radical addition, and then
a β-hydrogen radical elimination could form the coupled
styrene product and the common H−Pd(II)−I. This latter
species undergoes base-assisted reductive elimination to
produce Xantphos−Pd(0), ready for the next catalytic cycle.
In conclusion we developed a visible light driven palladium-

catalyzed Heck-type coupling between styrenes and fluoroalkyl
iodides at room temperature, which enables the introduction of
versatile fluoroalkyl chains into terminal alkene functionality. A
series of styrene derivatives were subjected to the present
reaction conditions and formed the corresponding fluoroalkyl
derivatives in good yields. In our synthetic studies five different
fluoroalkyl iodides were successfully utilized. This method
offers an efficient disconnection to incorporate fluorine-
containing functional groups into styrene derivatives, which
could serve as a useful derivatization method to obtain
fluoroalkenylated compounds.
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Scheme 3. Scope of Different Fluoroalkyl Iodidesa

aStandard reaction conditions: substrate (0.5 mmol), fluoroalkyl
iodide (1.5 equiv), Cs2CO3 (1.5 equiv), Pd(OAc)2 (5 mol %),
Xantphos (10 mol %) was used in 2.5 mL degassed benzene under Ar
atmosphere, irradiated with single 10 W 440−445 nm LEDs at 25 °C.
bAverage of two reactions.
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