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Abstract: In recent years it has become clear that carcinogenesis is a complex process, both at the molecular and cellular 
levels. Understanding the origins, growth and spread of cancer, therefore requires an integrated or system-wide approach. 
Computational systems biology is an emerging sub-discipline in systems biology that utilizes the wealth of data from 
genomic, proteomic and metabolomic studies to build computer simulations of intra and intercellular processes. Several 
useful descriptive and predictive models of the origin, growth and spread of cancers have been developed in an effort to 
better understand the disease and potential therapeutic approaches. In this review we describe and assess the practical and 
theoretical underpinnings of commonly-used modeling approaches, including ordinary and partial differential equations, 
petri nets, cellular automata, agent based models and hybrid systems. A number of computer-based formalisms have been 
implemented to improve the accessibility of the various approaches to researchers whose primary interest lies outside of 
model development. We discuss several of these and describe how they have led to novel insights into tumor genesis, 
growth, apoptosis, vascularization and therapy.
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Background
Living organisms are complex systems. Nowhere is this complexity more evident than in the genesis 
and development of cancer. While cancer may originate from genetic and molecular changes that occur 
in a single cell, the subsequent proliferation, migration and interaction with other cells is crucial to its 
further development. In their landmark paper, Hanahan and Weinberg described six hallmarks they 
thought necessary for the transition from normal cells to invasive cancers (Hanahan and Weinberg, 
2000). These included: 1) self-suffi ciency in growth signals, 2) insensitivity to growth inhibitory signals, 
3) evading apoptosis, 4) limitless replicative potential, 5) sustained angiogenesis, and 6) tissue invasion 
and metastasis. While genetic instability was not explicitly included in this list, it was included as an 
implicit enabling alteration that might start a normal cell down a mutagenic pathway leading to the 
acquisition of one or more of these essential characteristics.

The molecules that govern the cell growth and division cycle in response to external and internal 
signals are numerous and interact through complex, multiply-connected pathways over a wide range 
of temporal and spatial scales. Tumors refl ect this complexity in that they are composed of several 
different cell types that interact to create malignant growth (Burkert et al. 2006). Despite the widespread 
acceptance of this complexity, the majority of biological and biomedical studies still utilize a strictly 
reductionist approach, focusing on the interactions of at most a few genes or proteins in each experi-
ment. Systems biology, an integrative discipline that attempts to describe and understand biology as 
systems of interconnected components, has arisen partly as a response to these traditional reductionist 
approaches. Systems biology is a young fi eld made possible by the explosion of data from genomic, 
transcriptomic, proteomic and metabolomic techniques developed within the last decade (Hollywood 
et al. 2006; Bugrim et al. 2004; Jares, 2006).

Computational systems biology, which is a sub-discipline of systems biology, has developed both 
as a tool supporting the processing of these massive amounts of data and as a modeling discipline, 
building upon this “omic” data in order to predict biological behavior (Ideker et al. 2001a; Alberghina 
et al. 2004). Not surprisingly, both experimental and computational systems biology approaches have 
provided fruitful insights into cancer.

Please note that this article may not be used for commercial purposes. For further information please refer to the  copyright 
statement at http://www.la-press.com/copyright.htm
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This review provides an overview of how 
computational systems biology can be, and is being 
used to model cancer at multiple levels and scales, 
ranging from molecules to cells to tissues. Specifi -
cally, we begin with a general description of the 
different computational modeling methods that can 
be used along with a discussion of their relative 
strengths and weaknesses. Following that, we 
describe some of the emerging formalisms, software 
and standards for representing biological systems. 
Finally, we provide a number of examples illus-
trating how computational systems biology has 
enriched our understanding of a variety of cancer-
related processes including genetic instability, tumor 
growth, apoptosis, angiogenesis and anti-cancer 
therapy. Overall it is our hope that this review will 
provide an improved understanding of modeling 
issues and thereby assist the reader in selecting an 
appropriate method for their own research.

Approaches to Computational 
Systems Modeling
To be truly useful to a biologist or physician, 
computational modeling should: 1) produce useful 
predictions or extrapolations that match experi-
mental results; 2) permit data to be generated that 
is beyond present-day experimental capabilities; 
3) allow experiments to be performed in silico to 
save time or cost; 4) yield non-intuitive insights 
into how a system or process works; 5) identify 
missing components, processes or functions in a 
system; 6) allow complex processes to be better 
understood or visualized and 7) facilitate the 
consolidation of quantitative data about a given 
system or process.

Simulations encompass many different spatial 
and temporal scales, ranging from nanometers to 
meters and nanoseconds to days (Fig. 1). Processes 
that occur over very small dimensions (nm) or short 
time periods (ms) are often referred to as “fi ne 
grain” models, while processes occuring over 
longer time periods (s) or larger (mm or cm) dimen-
sions are called “coarse grain” models. A funda-
mental challenge to computational systems biology 
is to develop models and modeling tools that can 
deal with this wide range of granularity. In this 
review we will describe some of the newer or more 
innovative modeling techniques that are being 
developed to permit both temporal and spatio-
temporal modeling over this wide range of scales, 
including: 1) systems of ordinary differential 

equations (ODEs), partial differential equations 
(PDEs) and related techniques, 2) Petri nets, 
3) cellular automata (CA), dynamic cellular 
automata (DCA) and agent-based models (ABMs) 
and 4) hybrid approaches. Figure 1 presents an 
overview of scaling issues in modeling cancer and 
indicates which approaches are particularly well-
suited to dealing with each area.

Building models of complex biological processes 
is an iterative process that requires considerable 
attention to detail. The network topology or struc-
ture of a model may arise through literature surveys 
or directly by computational analysis of high-
throughput data (Wang et al. 2007—[Epub ahead 
of print]). In many instances such analyses may 
reveal novel regulatory or signal transduction 
interactions whose kinetics and stoichiometry is 
unknown (Janes et al. 2005; Kumar et al. 2007). 
Quantitatively accurate modeling requires explicit 
values for many variables including molecular 
concentrations, cellular distribution of molecules, 
reactions rates, diffusion rates, transport rates and 
degradation rates. While many of these can be 
estimated from the literature or various online 
databases, a number of parameters often remain 
unknown at the start of any simulation. As a result, 
many modeling processes require that one provide 
estimates for key parameters. Usually “best guess” 
fi rst order estimates can be used and then fi ne-tuned 
using a well-understood instance of the model as 
a comparison. Parameters are iteratively adjusted 
on subsequent simulations until the model accu-
rately refl ects the known test case (Ideker et al. 
2001a; Kunkel et al. 2004; Ideker et al. 2006). This 
period of validation is always required where any 
unknown parameters exist. However, a detailed 
discussion of network discovery and the model 
refi nement/validation process is beyond the scope 
of this review.

Computational modeling using 
differential equations
Biological systems are essentially multicomponent 
chemical reactors and thus can be represented as 
systems of chemical reactions. This view permits 
mathematical analysis using powerful techniques 
developed from chemistry. Many standard biochem-
istry texts provide thorough derivations of ordinary 
differential equations (ODEs) for both simple and 
complex reactions. In fact, ODE based modeling is the 
most common simulation approach in computational 
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systems biology, refl ecting both its rigor and adapt-
ability (Kitano, 2002; De Jong, 2002).

Simple ODEs may have exact solutions. 
However, most complex ODEs do not have exact 
solutions and must be solved numerically. Based 
on methods fi rst derived by Newton and Gauss, 

numerical integrators utilize linear approximations 
of smooth curves over small time intervals to 
compute subsequent values of reactant concentra-
tions. Improving the accuracy of these linear esti-
mates may require using smaller time intervals, 
leading to computationally intense processes that 

Figure 1. Issues of scale in modeling cancer. From whole organism to tumor tissue to individual cells to the molecules of replication and 
metabolism, modeling tumors spans about nine orders of spatio-temporal magnitude. Shown above are some of the modeling issues which 
need to be addressed at each level of simulation. Each text box includes the relevant spatio-temporal scale and modeling issues encountered 
at that level. Appropriate modeling approaches to address each issue are shown in brackets. Building hierarchical systems of inter-related 
models is still a primary challenge to modern researchers. ODE – Ordinary differential equation system, PDE – Partial differential equation 
system, DCA – Dynamic cellular automaton, PN – Petri net system, ABM – Agent based model.
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use considerable machine time. Various methods 
have been derived to improve the speed and compu-
tational accuracy of these approximate methods, 
including Runge-Kutta algorithms and implicit 
methods (for so-called “stiff” differential equa-
tions). These algorithms are encapsulated in such 
publicly-available packages as the LSODA (Liver-
more Solver for ODEs with Automatic method 
switching for stiff and non-stiff problems) or 
CVODE (C Variable-coeffi cient ODE solver) inte-
grators (http://www.llnl.gov/CASC/odepack/).

In addition to improved methods for solving 
general systems of ODEs, models of biological 
systems can take advantage of features specifi c to 
such systems. One such class of ODEs is called 
delay differential equations (DDEs). DDEs 
can reduce the computational effort required to 
model signal cascades, such as phosphorylation-
dephosphorylation cycle networks (Srividhya 
et al. 2007). This allows the modeler to replace an 
intermediate signaling molecule (and all the ODEs 
associated with it) with a time delay term in the 
ODEs immediately preceding or following in the 
pathway. As long as the concentration of the inter-
mediate is not a molecule whose concentration is 
tracked within the system, this results in no loss of 
information. By removing terms representing 
intermediate components in multi-stage processes, 
such as signal transduction cascades or mitosis, 
this approach reduces the number of equations to 
be solved and leads to more effi cient processing.

Systems of ODEs have been used to mathemat-
ically model a wide variety of processes including 
metabolic pathways (Ideker et al. 2001b), mitosis 
in yeast (Tyson, 1991) and genetic regulatory 
circuits (Elowitz and Leibler, 2000). For example, 
as a representative MAP kinase signal transduction 
cascade, the ERK/MAPK pathway has been 
modeled independently by several researchers 
using ODE systems (Orton et al. 2005). Surprisingly, 
differences in construction details of various 
models, including number of molecular species 
and reactions, still led to similar results and 
predictions. It has been suggested that this is likely 
an indication of the general robustness of the ODE 
approach (Orton et al. 2005). Alternatively, this 
may refl ect the inherent robustness of biological 
systems themselves.

In many cases of biological or chemical modeling 
the kinetics can be described by a series of loga-
rithmic or power law functions. As a result power 
law approximations of ODE systems have been 

developed to improve the computational processing 
of this very common class of kinetic models. In this 
approach the rate of a reaction in the steady state 
can be estimated using Taylor series approximations 
of ODEs (Savageau, 1991). This leads to a system of 
non-linear equations where each rate is a product of 
non-integer powers of reactant concentrations and 
a coeffi cient. In a logarithmic coordinate system 
where the slope of the line represents the kinetic 
order of a particular reaction, the non-linear equa-
tions can be readily transformed into a system of 
linear equations which can be numerically solved 
with little computer effort. These so-called 
S-systems have been used to model the TCA cycle 
in Dictyostelium discoideum (Shiraishi and 
Savageau, 1992; Shiraishi and Savageau, 1993) and 
to compute strategies for improving L-carnitine 
production in E. coli by altering media and biore-
actor conditions (Sevilla et al. 2005).

S-system models can also be used to estimate 
coeffi cients and exponents associated with indi-
vidual components when reaction rates are unknown. 
One such model used simulated annealing (SA), a 
process whereby initial estimates of coeffi cients and 
exponents are stochastically perturbed while the 
system is slowly “cooled” from an initial high 
pseudo-temperature (Gonzalez et al. 2006). SA 
methods permit the system to explore beyond local 
minima while the pseudo-temperature is high, then 
to converge towards local minima upon cooling. 
During the cooling period, model outcomes are 
compared to actual biochemical profi les using a 
least-squares error analysis. If the error for the 
current simulation is equal to or lower than that for 
the previous simulation, the current simulation is 
automatically accepted. If the new error is greater, 
it may still be accepted with a probability that is 
proportional to the pseudo-temperature.

Issues in ODE-based models
Both conventional systems of ODEs and their 
Power Law approximations do not automatically 
refl ect compartmentalization, transport and diffu-
sion of molecular species unless explicitly speci-
fi ed. This is because reaction kinetics equations, 
upon which these mathematical models are formu-
lated, assume steady-states in well-mixed solutions 
with abundant reactants and few enzymes. The 
simplifi cations in standard representations of enzy-
matic reactions (such as Michaelis-Menton equa-
tions) incorporate assumptions about the relative 
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rates of intermediate steps which are independent 
of transient localized differences in concentrations. 
In reality, the cellular space even inside bacteria is 
crowded with macromolecules, having 300 to 400 
g/l of macromolecules (e.g. protein and RNA) 
occupying 20 to 30 percent of cytoplasmic space, 
compared to the 1 to 10 g/l under which biochem-
ists normally study reaction kinetics (Ellis, 2001). 
Macromolecular crowding strongly affects assump-
tions about diffusion implicit in ODE-based 
modeling systems. For instance, one basic assump-
tion in most models is that local concentrations of 
reactants or catalytic enzymes within the compart-
ment are homogeneous. Even if local concentra-
tions are explicitly modeled, diffusion rates for 
species of considerably different physical size are 
often assumed to be identical. Clearly, under 
crowded conditions, small molecule diffusion will 
be less impeded than that of larger proteins and 
protein complexes (Ellis, 2001).

Macromolecular crowding also affects reaction 
kinetics. Equilibrium rate constants for macromo-
lecular association reactions under crowded 
conditions can increase by two to three orders of 
magnitude compared to dilute concentrations 
(Ellis, 2001). Thus the net effect of crowding on 
enzyme-catalyzed small-molecule reactions is a 
complicated function of the reduction in the rates 
of reactant diffusion and the promotion of enzyme-
reactant transition complexes and is different for 
each reaction.

Within the cell, macromolecular crowding also 
leads to the formation of numerous non membrane-
bound three-dimensional compartments and one-
dimensional channels where reactions may occur. 
In addition, membranes can act as two-dimensional 
surfaces, leading to localized concentrations of 
proteins and complexes (Clegg, 1984; Srere et al. 
1989). While conventional ODE systems and 
Power Law approximations do not inherently 
incorporate macromolecular crowding, they can 
be readily adjusted to a more accurate form using 
so-called “modifi ed fractal-like kinetics” (Schnell 
and Turner, 2004; Kopelman, 1988). This adjust-
ment introduces a time-independent rate constant 
that refl ects the dimensionality of the reaction 
chamber (a measure of macromolecular over-
crowding and compartmentalization).

Many biological molecules are present in very 
low concentrations (1 – 10 nM within the cytoplasm, 
which translates to fewer than 100 molecules per 
cell). Classical ODE solvers are highly unstable 

and may fail to accurately refl ect the granularity 
and discrete system behaviour typically found at 
such low concentrations. Because of this, some 
modelers have added “noise terms” to their systems 
of equations by using so-called stochastic differ-
ential equations (SDEs) (Meinhardt and De Boer, 
2001; Chen et al. 2005). An alternative and widely-
used approach to introducing stochasticity into a 
system of ODEs is to introduce a “master equation” 
derived from a “grand probability function” 
(Gillespie, 1976). The Stochastic Simulation Algo-
rithm (SSA) is a simple method for selecting which 
reactions will occur in a given time interval based 
on such a master equation. For each reaction, the 
SSA method calculates P(t,µ), the reaction prob-
ability density function; where P(t,µ)dt = the 
probability that, given the state (X1, X2, … Xn) at 
time t, the next reaction, will occur in the infi ni-
tesimal time interval (t + τ, t + τ + dτ). For any 
reactant in any time interval in a chemical reaction 
system P(τ,µ) can be calculated in a straightfor-
ward fashion from a uniform pseudorandom 
generator (see Gillespie (1976) for a complete 
derivation).

SSA methods have been used to model a 
variety of processes, including PKC signal trans-
duction (Manninen et al. 2006), MAPK signal 
transduction (Chatterjee et al. 2005), and Hox gene 
expression in the developing vertebrate hindbrain 
(Kastner et al. 2002). Although SSA methods are 
accurate, they are computationally intensive. 
Chatterjee et al. have developed an explicit bino-
mial tau-leap method to accelerate SSA models by 
two to three orders of magnitude and demonstrated 
this improvement in a MAPK cascade simulation 
(Chatterjee et al. 2005). This algorithm computes 
transition probabilities per unit time for a reaction 
system, then allows a “bundle” of events sampled 
from a binomial distribution to occur simultane-
ously in the next time interval τ. This bypasses the 
dominating effects of fast kinetics reactions in the 
SSA model and emphasizes slower reactions that 
are likely of more interest to the modeler. Gillespie 
has recently reviewed several improvements to the 
original SSA method as well as implicit tau-leap 
methods (Gillespie, 2007). He has also introduced 
slow-scale SSA methods, an approximation that is 
applicable only for stiff ODE systems but which 
also result in accelerations of two to three orders 
of magnitude in solution time.

A key limitation of ODE-based models is that 
they only allow for one independent variable in a 
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system. As a result, most ODEs represent changes 
in the concentration of some chemical species 
varying over the independent variable time. Systems 
of partial differential equations (PDEs) must be used 
if one wishes to incorporate explicit spatial distribu-
tion of components into a model. PDEs have been 
used to model several processes in cancers, 
including chemotactically-directed tumor growth 
(Castro et al. 2005), growth factor-stimulated glio-
blastoma growth (Khain and Sander, 2006), the 
tumor-immune system interaction (Matzavinos et al. 
2004), and tumor growth along tubular structures 
(Marciniak-Czochra and Kimmel, 2007). Due to the 
increased complexity and number of variables, PDE 
solvers are even more computationally intensive 
than ODE solvers.

Historically, the effort and mathematical skill 
required to set up a useful ODE or PDE model put 
this approach beyond the reach of most experi-
mental biologists. However, recent advances in 
graphical interface (GUI) design, improved stan-
dards in displaying and generating reaction models 
along with the development of standardized mark-
up languages such as SBML (Systems Biology 
Mark-up Language) and Cell-ML (Cell Mark-up 
Language) are making the generation and exchange 
of interesting biological models relatively simple 
(Schilstra et al. 2006). A large repository of ODE-
based Cell-ML metabolic and cell signaling models 
has been compiled at the Cell-ML model repository 
website (http://www.cellml.org/examples/reposi-
tory/) as well as in the JWS online system (http://
jjj.biochem.sun.ac.za) which is part of the silicon 
cell project (http://www.siliconcell.net) (Snoep 
et al. 2006). Additionally a large number of SBML 
models are located at the BioModels website 
(http://www.ebi.ac.uk/biomodels/). Table 1 
provides a list of common ODE simulation pack-
ages, many of which are compatible with SBML 
or Cell-ML.

Computational modeling using 
petri nets
Petri nets are a discrete alternative for representing 
time-dependent processes such as those occuring 
within biological systems (Moore et al. 2005). Petri 
nets, which were originally developed in the 1960’s, 
have long been used to model discrete distributed 
flow systems such as data-communications 
networks and manufacturing processes. It wasn’t 
until 1993 that biologists realized that this modeling 

approach could be easily adapted to representing 
biological systems (Reddy et al. 1993). A Petri net 
contains two kinds of nodes, called “places” and 
“transitions”, represented graphically by circles and 
rectangles, respectively. In a molecular model each 
place is a species of molecule with some number 
of tokens inside, representing the number of mole-
cules or concentration of that species (called the 
“marking” of that place). Transitions represent 
reactions. Places are connected to transitions by 
arrows (or “directed arcs”) either from source 
(input) places into the transition or from the transi-
tion to product (output) places. The stoichiometry 
of a reaction is indicated by a weight on the arc. 
Because it is a discrete system, it is driven in step-
wise fashion by implicit time increments. A transi-
tion “fi res” (i.e. the reaction occurs) when the 
markings at all its input places are greater than the 
weights on its input arcs (ie when there are enough 
source molecules), producing product of the appro-
priate weights on its output arcs (which are subse-
quently stored in the product places).

Petri nets were originally designed to model 
discrete processes but later enhancements have 
added the ability to deal with continuous quan-
tities (Goss and Peccoud, 1998; Matsuno et al. 
2003). In addition, the basic Petri net formalism 
has been extended to deal with many of the 
complex issues that also arise in ODE-based 
models (Pinney et al. 2003). Hybrid Petri Net 
and Functional Hybrid Petri Net (FHPN) models 
allow markings in places to take either discrete 
or continuous values, thus permitting equivalent 
modeling power to ODE-based systems (Doi 
et al. 2004; Matsuno et al. 2003). Timed Petri 
Nets allow the implicit incorporation of deter-
ministic delays in firing transitions, similar to 
those incorporated in DDE systems. Stochastic 
Petri Nets control transition firing with an expo-
nentially-distributed time delay, equivalent to 
“chemical master equation” approximations of 
stochastic behavior in ODEs (Goss and Peccoud, 
1998; Kurtz, 1972). Colored Petri Nets, which 
are an extension of Hybrid Petri Nets, allow for 
the definition of mathematical relationships 
inside transitions governing the rate of firing 
(Lee et al. 2006). Finally, Hierarchical Petri Nets 
are intended to support the composition of more 
complex models using combinations of previous 
models. No single implementation provides 
support for all variations. Further, compartments 
can only be represented explicitly, where 
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different places represent the same chemical 
species in different compartments.

Petri Nets have been used to model a wide range 
of biological processes, including qualitative 
modeling of apoptosis (Heiner et al. 2004), iron 
homeostasis (Sackmann et al. 2006) and the yeast 
mating response (Sackmann et al. 2006). FHPNs 
have been used to model several biochemical 
processes, including the E. coli lac operon (Doi 
et al. 2004), urea cycle disorders (Chen and 
Hofestadt, 2006) and p53 transcriptional activity 
(Doi et al. 2006). Koh et al. have used FHPNs to 
model the AKT and MAPK pathways (Koh et al. 
2006). Using an evolutionary parameter selection 
technique and pathway decomposition these authors 
were able to determine optimal parameters for the 
model. Subsequent simulations suggested that Akt-
MAPK crosstalk is required for enabling the MAPK 
pathway. Colored Petri Nets have recently been 
used for quantitative modeling of the EGF signal 
transduction pathway in an effi cient and dynamic 
manner using rate equations inside transitions that 
are highly reminiscent of ODE-based SBML or 
CellML systems (Lee et al. 2006).

Computational modeling using cellular 
automata and agent based models
An alternative approach to modeling the 
complex systems of discrete molecules that are 

found in living organisms is to use cellular 
automata (CA) to represent individual molecules 
and the rules that govern their interactions. 
Cellular automata (CA) are simple computer 
simulation tools that can be used to model both 
temporal and spatio-temporal processes using 
discrete time and/or spatial steps. Cellular 
automata were invented in the late 1940’s by 
von Neumann and Ulam (Rucker and Walker, 
1997) who conceived of an infinite lattice of 
points (or cells), each capable of a finite number 
of states. Each cell is connected to a finite 
number of neighbors whose collective states at 
time tn induce it to assume a new state at time 
tn+1 in a specified manner. In biological systems 
the lattice represents two- or three-dimensional 
volumes in space and each cell can contain one 
molecule or biological cell (or sometimes more). 
So-called “lattice-free” systems use the lattice 
to represent real, physical space and individual 
entities may span more than one cell (i.e. more 
than a single x,y,z coordinate). Time is a discrete 
entity in CA models. At time tn the state and 
neighbors of each cell are tallied and rules 
applied to determine the state transition for that 
cell in the next interval tn+1.

Rules of varying complexity govern the interac-
tions between adjacent or nearby molecules. Rules 
may be quite simple, for example, specifying binding 
of adjacent molecules with a certain probability 

Table 1. Partial list of computational systems biology simulation software packages.

Method Package URL and reference
ODE, PDE, SSF  Cell Designer http://www.celldesigner.org/index.html (Kitano et al. 2005)
 CellWare www.cellware.org (Dhar et al. 2004)
 Dynetica http://www.duke.edu/~you/Dynetica_page.htm (You et al. 2003)
 E-Cell http://www.e-cell.org/ (Tomita et al. 1999)
 Gepasi http://www.gepasi.org/(Mendes, 1993)
 SmartCell http://smartcell.embl.de/ (Ander et al. 2004)
 VCell http://www.vcell.org (Loew and Schaff, 2001)
 MesoRD http://mesord.sourceforge.net/index.phtml (Hattne et al. 2005)
 Dizzy http://magnet.systemsbiology.net/software/Dizzy/ (Ramsey et al. 2005)
Petri Net,  Snoopy http://www-dssz.informatik.tu-cottbus.de/index.html?/software/snoopy.html
 CPN Tools http://wiki.daimi.au.dk/cpntools/cpntools.wiki (Lee et al. 2006)
 Cell Illustrator-
 Animator http://www.gene-networks.com(Peleg et al. 2005)
DCA and ABM CancerSim http://www.cs.unm.edu/~forrest/software/cancersim/ (Abbott et al. 2006)
 MCell http://www.mcell.cnl.salk.edu/ (Stiles and Bartol, 2001)
 SimCell http://wishart.biology.ualberta.ca/SimCell/ (Wishart et al. 2005)
 AgentCell http://fl ash.uchicago.edu/~emonet/biology/agentcell/ (Emonet et al. 2005)
Hybrid Cell++ http://www.compsysbio.org/CellSim/ (Sanford et al. 2006)
 CellML http://www.cellml.org/ (Bhalla and Ravi Iyengar, 1999)
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(Wishart et al. 2005). Alternatively, more complex 
rules can be formulated. For example, interactions 
of molecules may take place in a distance-dependent 
manner, representing biophysical relationships more 
accurately (Broderick et al. 2005).

In order to realistically simulate complex 
systems of reacting molecules, stochasticity needs 
to be added to the deterministic rules of the original 
cellular automata formalism. Dynamic Cellular 
Automata (DCA) permit “Brownian-like” motion 
of individual molecules through the incorporation 
of a random number generator which selects a 
direction of motion in the next time step (Wishart 
et al. 2005). Depending on the implementation of 
the DCA algorithm, molecules may move one or 
more cells in a single time step.

Chemical reaction rates are emergent proper-
ties of DCA models although molecular reaction 
probabilities may be derived from conventional 
reaction rates. However, given the problems in 
deriving biologically relevant reaction rates that 
take into account macromolecular crowding, 
extremely low concentrations and compartmen-
talization, it may be more accurate to compute 
parameters that match the biochemical profi le of 
a well-known test model.

DCA models have been used to model a wide 
variety of processes including diffusion (Kier et al. 
1997; Wishart et al. 2005), micelle formation (Kier 
et al. 1996b), basic enzyme kinetics (Kier et al. 
1996a; Wishart et al. 2005), myxobacteria aggrega-
tion (Sozinova et al. 2005), osmotic shock 
(Broderick et al. 2005) and HIV/AIDS progression 
and treatment in single patients (Sloot et al. 2005). 
Both metabolic processes and simple genetic 
circuits have been modeled using estimates for 
reaction probabilities based on general kinetics or 
empirical values (Wishart et al. 2005). The results 
in all these cases have proven to be surprisingly 
accurate despite the apparent simplicity of the 
models, proving the power of the DCA approach.

Models of complete cells, even simple bacteria, 
could potentially incorporate billions of indi-
vidual molecules. Interactions between molecules 
must be specifi ed in a computationally effi cient 
manner if such models are to compete with solu-
tion times for the mere hundreds of equations 
potentially found in comparable ODE systems. 
Nonetheless interactions must be fi rmly based on 
real forces or accepted approximations. For 
example, a recent DCA model of lipid bilayer 
dynamics in a 60 nm diameter proto-cell with 

over 10,000 individual components used the 
Lennard-Jones potential as the basis for attractive 
and repulsive forces to realistically model the 
membrane (Broderick et al. 2005).

Agent Based Modeling (ABM) is similar in 
concept and design to Dynamic Cellular Automata. 
In ABMs genes, proteins, metabolites or cells can 
all be “agents”. Agents are allowed to interact with 
each other over space and time according to a pre-
defi ned set of rules. The motions may be directed 
or random (Brownian) and the rules may be simple 
or highly complex. Unlike CA models, agent based 
systems do not formally require spatial grids or 
synchronized time steps, although practical coding 
considerations usually force these constraints on 
ABMs. Space is usually represented in a lattice-free 
grid. ABMs share many of the same advantages 
and disadvantages as DCA or CA models. Agent-
based models have been used to simulate bacterial 
chemotaxis (Emonet et al. 2005), to model the 
calcium dependent cell migration events in wound 
healing (Walker et al. 2004) and to predict clinical 
trial outcomes of different anti-cytokine treatments 
for sepsis (An, 2004).

Hybrid Approaches
ODE, Petri Net, DCA and ABM approaches all 
have their unique advantages and disadvantages. 
While DCA and ABM systems have molecular-
grain accuracy and implicit simulation of compart-
mentalization, diffusion and stochasticity, they can 
also be computationally more intensive as the 
number of components in a model can increase 
rapidly (Ridgway et al. 2006). ODE systems ideally 
represent dilute reactants in single compartments, 
though effi cient methods have been developed for 
approximating more biologically realistic models. 
Nevertheless, ODE systems do not generally 
capture the true granularity or stochasticity of 
living systems and do not usually provide adequate 
visual feedback so important to developing clear 
conceptualization (Wishart et al. 2005).

A number of researchers have recommended 
hybrid or hierarchical hybrid systems to combine 
the strengths of both discrete and continuous 
approaches (Coveney and Fowler, 2005; Ridgway 
et al. 2006; Sorger, 2005). For example a simula-
tion of bacterial biofi lm development was devel-
oped where soluble substrates were represented by 
PDE systems in four spatio-temporal dimensions 
while bacterial cell growth was modeled seperately 
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defi nition (specifi cation available at http://source-
forge.net/project/showfi les.php?group_id=71971) 
which incorporate Content MathML (http://www.
w3.org/TR/MathML2/) and Resource Description 
Framework (RDF – http://www.w3.org/RDF/) for 
metadata description, only made this situation 
worse. Fortunately a large number of support 
programs have enabled biologists to define 
components of an SBML system using simple 
graphical descriptions of reactions and compart-
ments that are much more easily interpretable. 
Links to web-sites supporting SBML models can 
be found at http://www.sbml.org.

For simulation purposes SBML is strictly ODE-
based. Despite this restriction, a large variety of 
SBML-related modeling programs have arisen for 
the purpose of actually running simulations defi ned 
in the formalism. SBML handles compartmental-
ization of reactants through its use of a KineticLaw 
reaction defi nition which incorporates compart-
ment volumes into standard reaction rate equations 
(Finney et al. 2006). However, while rate equations 
for simple compartmentalized reactions may be 
converted easily to a corresponding KineticLaw, 
more complex reactions may require specific 
knowledge of compartment transfer rates. Both 
continuous and discrete models can be defi ned in 
SBML though they require different representa-
tions of the corresponding rate equations. A 
repository of published and unpublished SBML 
models is maintained at http://www.ebi.ac.uk/
biomodels/ which can also be reached from the 
Biomodels web site http://www.biomodels.net/ 
(Le Novere et al. 2006).

CellML is a an example of another XML-based 
formalism developed through the International 
Union of Physiological Sciences (IUPS) Human 
Physiome Project (Hunter et al. 2002; Lloyd et al. 
2004). CellML models networks of interconnected 
components whose behavior is described by math-
ematical equations written in Content MathML 2.0, 
a subset of which is embedded within the CellML 
framework. These features make CellML particu-
larly amenable to modeling electrophysiological 
systems though it readily incorporates chemical 
reactions and gene networks. In addition, CellML 
provides for the inclusion of metadata (i.e. data 
describing the model, itself) within the model. This 
may include data derived from publications and 
ontological or semantic descriptions, such as 
keywords. Many of these features have now 
been incorporated into SBML Level 2 as well. 

with a deterministic CA (Picioreanu et al. 1998). 
This model accurately refl ected global oxygen 
consumption as well as the concentration profi les 
of substrate and biomass. The distribution of the 
bacterial cells in relation to substrates and inocula-
tion density were also accurately predicted. A 
primary benefit from hybrid models is the 
ability to integrate processes that occur rapidly 
(e.g. diffusion) with processes that can take days 
(e.g. cell growth and migration). This mixing of 
scales of time and space is normally one of the 
most significant impediments to accurately 
modeling biological processes using reasonable 
computer power (Coveney and Fowler, 2005).

Biological systems can also be viewed as 
complex control systems whose rules can be repre-
sented using so-called “fuzzy logic” (Sproule 
et al. 2002). Fuzzy logic permits the use of qualita-
tive terms such as “high” or “low” concentration 
to be incorporated into models. A hybrid model 
incorporating inference rules and fuzzy logic has 
recently demonstrated the utility of this approach 
by modeling sonic hedgehog signaling in the 
development of medulloblastomas (Bosl, 2007).

Formalisms for Representing 
Biological Systems
Most biologists are not comfortable representing 
molecular systems using many of the mathemat-
ical tools described above. Further, most models 
have been developed without consideration for 
integration with models developed by other 
groups. To address these issues, Hucka, Finney 
and others formed a Software Platforms for 
Systems Biology forum in 2000 where they fi rst 
proposed the development of SBML or Systems 
Biology Markup Language (Hucka et al. 2003; 
Finney and Hucka, 2003). SBML is a simple 
formalism (language) for describing networks of 
chemical reactions occurring inside biological 
entities. It uses the widely-accepted XML (eXten-
sible Markup Language) representation to defi ne 
compartments, molecular species, reactions, 
parameters and rules (Webb and White, 2005).

Representing a simple reaction such as 
A B Ck+ ⎯ →⎯1  is not a trivial process in SBML. 
Even ignoring supporting statements, describing 
this single chemical equation still requires a rela-
tively large amount of SBML code. In addition to 
being long, the code is largely unreadable to the 
novice. Level 2 enhancements to the SBML 
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An important part of the CellML philosophy 
(besides providing a clear, consistent, verifi able 
formalism) is to encourage hierarchical composi-
tion of models. This allows one to combine 
previously developed models in workable combi-
nations (Lloyd et al. 2004). CellML’s encapsulation 
grouping structure is somewhat reminiscent of 
modern object-oriented programming languages. 
Version 1.1 of CellML also introduced the import 
feature to allow for components and connections 
to be reused in new models.

The modeling power of CellML is based on the 
ability to explicitly defi ne the mathematical rela-
tions between all components. Compartments 
within a cell are considered components into which 
other components may be grouped. Thus, move-
ment of components between compartments must 
be defi ned explicitly. Stochastic modeling is not 
yet supported by CellML nor is the modeling of 
discrete objects. The CellML and SBML project 
teams are cooperating to incorporate each other’s 
strengths, where possible, and to provide for 
models in one formalism to be translated into the 
other (Schilstra et al. 2006). Complete specifi cation 
of the CellML language can be found at http://
www.cellml.org/specifications and over 350 
models are currently contained in a repository at 
http://www.cellml.org/models/.

No single formalism represents the Cellular 
Automata approach to modeling Usually the defi ni-
tion of each CA formalism is encapsulated in its 
specifi c implementation. Recently, however, some 
effort has been made to formalize a more consistent 
approach to generating and sharing hybrid CA 
models of cellular processes (Cho et al. 2005). This 
hybrid approach allows both discrete and continuous 
components, constraints, stochasticity, regulation 
of transcription and mutations in a mathematical 
framework. However this system has only been 
used to model a small reaction system and it is 
uncertain whether it could be readily extended to 
more complex processes. Overall the CA fi eld 
continues to be dominated by insular approaches 
to specific problems. This should not be too 
surprising given the fact that the cellular automata 
approach is more concerned with an implementation 
philosophy rather than notational representation. 
On the other hand proponents of CA emphasize that 
continuous values are actually emergent properties 
of discrete processes and that a CA approach would 
result in truer models (Wolfram, 2002). Others have 
suggested that multiple formalisms incorporating, 

for example, ODEs for physiological and chemical 
changes but CA formalisms for discrete cells in a 
tissue may lead to the best compromise between 
biologic accuracy and implementation speed 
(Defontaine et al. 2004).

Frequently, translation into a specifi c formalism 
is the most diffi cult step in converting a drawing 
of some process into a formal model for that 
process. The notation systems for all formalisms 
look nothing like the diagrams that biologists and 
biochemists are used to (with the exception that 
biochemists may be somewhat familiar with ODE 
representations of chemical reactions). Fortunately 
computer-based graphical tools have been devel-
oped permitting the entry of a model with symbols 
familiar to biologists (or easily learned) and subse-
quent machine conversion into a particular 
formalism. A number of these are listed in Table 1 
along with web sites from which they can be down-
loaded or run.

In addition to defi ning a model, simulation 
requires some computer program to run the model 
over a period of time or iterations producing output 
for interpretation. Output usually consists of graphs 
of the concentration of some component over time 
(or number of molecules, for discrete models) but 
may also include dynamic representations of the 
system or other analysis. The programs listed in 
Table 1 all include or can be linked to a variety of 
simulation modules. Reviews comparing specifi c 
features of some of these systems have been 
published (Peleg et al. 2005; Alves et al. 2006). In 
addition, a number of specifi c SBML tools have 
been developed, including SBML ODE Solver 
(Machne et al. 2006), MathSBML (Shapiro et al. 
2004), SBML ToolBox (Keating et al. 2006), SBW-
MATLAB interface (Wellock et al. 2005), SBML-
PET (parameter estimation tool) (Zi and Klipp, 
2006), and various other tools for programmers 
wishing to connect to SBML or the Systems 
Biology Workshop (SBW) (Gillespie et al. 2006). 
The availability of these tools (http://sbml.org/
index.psp) should make computational systems 
biology far more accessible to a much larger 
community of life sciences researchers.

How has Modeling Informed us 
About Cancer?
As was noted earlier biological simulations should 
not be considered as simple academic exercises. 
Rather they should aim to inform researchers about 
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some unobvious characteristic of the simulated 
process. It is appropriate to ask, then, how models 
of cancer have led to novel insights into the disease. 
In the following section we review how modeling 
and computational systems biology has contributed 
to our understanding of the underlying molecular, 
cellular and tissue-level mechanisms of cancer.

Genetic Instability
The contribution of genetic instability to the devel-
opment of cancer is controversial. Estimates of the 
number of mutations acquired in cancer cells range 
from 104 at the lower limit to a maximum of about 
1012 (Abbott et al. 2006). A simple ODE model has 
been developed to explore the kinetics of tumor 
progression and to compare the importance of 
genetic instability compared to other factors such 
as avoidance of apoptosis, increased growth rate 
or angiogenic signaling (Spencer et al. 2004). The 
17 equations in this model incorporated a muta-
genesis rate which resulted in various advanta-
geous mutations. Following acquisition of the 
genetic instability mutation, the global rate of 
mutagenesis was increased. Surprisingly, the model 
demonstrated that genetic instability was only 
important in the development of late-stage sporadic 
tumors, as it confered no general survival advan-
tage to altered cells in the early stages of cancer.

A separate study led to a similar conclusion on 
the basis of examination of the karyotype of 
populations of cancer cells (Heng et al. 2006). 
Rather than instability associated with individual 
genes, large-scale chromosomal instability was 
shown to make a more important contribution to 
early development of pre-cancerous cells. Clonal 
expansion and avoidance of apoptosis was criti-
cally required for early tumor development as these 
characteristic allowed unstable cells to exhibit any 
acquired survival advantages. These ODE models 
did not, however, incorporate removing replication 
limits on cancerous cells nor metastasis, but 
proposed that agent-based approaches might model 
these characteristics better.

A direct test of increased genetic instability in 
tumor tissues has recently been conducted in trans-
genic mice that produce mammary tumors with 
high frequency (Stringer et al. 2005). These mice 
were also transgenic for a mutant allele of human 
placental alkaline phosphatase incorporating an 
insertion of an 11 base pair G:C tract. This insertion 
caused a frameshift which rendered the protein 

inactive. Loss or insertion of base pairs due to an 
increased mutation rate (resulting from genetic 
instability associated with cancerous cells) could 
restore gene function and allow such cells to be 
visualized in situ in tissue sections. A simple 
probablistic computer model predicted that many 
islands of individual staining cells, rather than only 
a few large clusters of staining cells, should 
predominate in tumors if genetic instability were 
more important in early-stage cancers than 
increased proliferation or apoptotic avoidance 
(Stringer et al. 2005). In the aggregate, across 17 
tumors examined, the frequency of cell clusters of 
the predicted size matched the predictions of this 
simple genetic model. However, individual tumors 
exhibited extreme variability in cluster population, 
suggesting that hyperproliferation and survival 
were more important than genetic instability in 
many tumors.

A more recent stochastic cellular automata 
model based on Hanahan and Weinberg’s “hall-
marks of cancer” was proposed to resolve the issue 
of the importance of genetic instability (Spencer 
et al. 2006). A 100 × 100 × 100 grid representing 
a maximum of 106 cells was initialized with a 
single cell, a single blood supply for nutrients and 
a limited growth factor supply. Based on a literature 
survey and an informal sensitivity analysis, cells 
were able to acquire mutations at pre-defined 
probabilites. Acquired mutations included genetic 
instability (increased rate of subsequent mutagen-
esis), insensitivity to inhibitory signals, evasion of 
apoptosis, limitless replication, self-suffi ciency in 
growth and sustained angiogenic signaling. Growth 
of the vascular system under angiogenic signaling 
was overlaid on the grid.

Simulated early onset tumors in this model 
were dominated by genetic instability while late 
onset tumors were driven largely by acquisition 
of limitless growth. The model further empha-
sized the importance to tumor growth of 
acquiring multiple different mutations and 
demonstrated large fluctuations in tumor hetero-
geneity and size as they developed. However, 
though it wasn’t required for initiation of tumor 
formation and development, angiogenesis was 
found to be the primary factor driving tumor 
growth beyond early stages. It is interesting that 
cells supporting angiogenesis did not neces-
sarily dominate larger tumors. Instead other cell 
types with growth or survival advantages would 
“piggyback” their development off the increased 
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blood supply stimulated by a nearby angiogenic 
sub-population (Spencer et al. 2006).

Tumor growth
Pre-vascular tumor tissue growth can be modeled 
mathematically from macroscopic growth curve 
data. Tumor size often assumes a sigmoidal growth 
pattern which many earlier researchers interpreted 
as demonstrating the dominant role played by 
surrounding growth inhibitors (Cox et al. 1980). 
However, replacing inhibitors with an external 
supply of a hypothetical growth factor resulted in a 
more accurate simulation of tumor morphology in 
simple PDE models (Castro et al. 2005). More recent 
studies have added autocrine stimulatory factors 
such as EGF to the earlier models to more accurately 
reflect spatial characteristics of tumor tissue 
including the thickness of the proliferating rim in 
tumor spheroids (Bajzer and Vuk-Pavlovic, 2005).

Epidermal growth factor receptor (EFGR, also 
known as ErbB1) overexpression has been strongly 
implicated in highly malignant brain tumors. A 
multi-scale agent-based model has been developed 
by Deisboeck and colleagues over the past several 
years to investigate the relationship between EGFR 
dynamics, tumor cell proliferation and cell 
migration (Mansury et al. 2002; Mansury and 
Deisboeck, 2003; Athale et al. 2005). The model 
simulated intracellular molecular interactions 
through a system of ODEs in an explicitly-
compartmentalized system representing individual 
cells and incorporating paracrine and autocrine 
TGFα signaling as well as nutrient supply. This 
led to a simple representation of the phenotypic 
decision of the cell; whether to rest, proliferate or 
migrate. Motility was then simulated by placing 
cells on a CA-type lattice overlaid with nutrient 
and signaling molecule concentrations.

The model confi rmed previous experimental 
fi ndings that increasing EGFR density on the cell 
surface correlates with an increase in the rate of 
tumor expansion (Berens et al. 1996). The model 
also suggested that the early switching of cells in 
such aggressive tumors from proliferative to 
migrating behavior may be the result of EGFR 
signaling and suggested that proteomics data 
should be added to transcriptional analysis in 
making predictive assessments of tumor dynamics 
(Athale and Deisboeck, 2006). A subsequent 
version of this model explicitly incorporated an 
updated molecular model of the cell cycle as well 
as the effects of hypoxia on the division rate and 

expanded the lattice into three dimensions, thereby 
necessitating the use of PDEs (Athale and 
Deisboeck, 2006). This version largely corrobo-
rated the earlier fi ndings. It also led to the recom-
mendation that the spatio-temporal dynamics of 
protein-gene interactions should be monitored 
diagnostically to distinguish between different 
molecular network states that nonetheless have 
highly similar cell phenotypes.

In epithelial tissue, normal growth is regulated 
by a complex interplay between inhibitory mech-
anisms and growth stimulating signals. Many 
tumors are initiated when cells make a transition 
from stable epithelial behaviour to expanding 
mesenchymal growth (Thiery, 2002). A lattice-free 
DCA biophysical model permitted the simulation 
of cell- and tissue-shape changes under pressures 
of adhesion and deformation from neighboring 
cells and underlying extra-cellular matrix (Galle 
et al. 2005). Displacement and deformation forces 
were modeled using Langevin equations incorpo-
rating both deterministic intercellular and 
stochastic forces with constants derived from the 
literature or directly from experiments. The model 
was validated using about 104 cells in a full 3-D 
simulation, though most data was collected using 
a 3-D monolayer. Growth inhibitory cell-cell inter-
actions were modeled as well as cell-substrate 
division inhibition and anoikis, a form of 
programmed cell death initiated when cells lose 
contact with their underlying matrix. The strength 
of the cell-substrate adhesion was found to be 
critical in inhibiting formation of spheroids atop 
the epithelial layers (Galle et al. 2005).

In a subsequent paper, the model predictions 
were compared to growth patterns of cultured 
tumor cells overexpressing alternative isoforms of 
the EGF receptor, CD97 (Galle et al. 2006). Over-
expression of one particular CD97 isoform (EGF 
1,2,5) stimulated single-cell extracellular matrix 
proteolysis and motility. However, it had no affect 
on cell-doubling times. Simulations confi rmed 
these fi ndings and added several other important 
observations: 1) directed migration away from the 
tumor center led to much more rapid invasion of 
surrounding tissue, 2) modifying the endogenous 
rate of cell cycling or induction of apoptosis from 
normal cells had little effect on tumor invasion 
(but, paradoxically, slowing the cell cyle suffi -
ciently, permitted more of them to escape contact 
inhibition and enter a rapid growth phase), and 
3) if the rate of migration increased as a result of 
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reduced contact inhibition from neighboring tumor 
cells rather than as a result of growth induction 
from surrounding tissues the clonal population of 
the simulated tumor matched actual tumors more 
closely. This was confi rmed by an experiment 
showing CD97 expression was lower in confl uent 
(contact-inhibited) cells than in isolated cells in 
culture (Galle et al. 2006).

At the molecular scale, the dynamics of EGFR 
ligand binding and receptor dimerization is still 
largely unknown. A dynamic cellular automata 
(DCA) model incorporating Monte Carlo methods 
has been used to simulate EGF receptor activation 
and to compare the predictions to single-particle 
tracking studies (Mayawala et al. 2005). Receptors 
were randomly initiated into two-dimensional 
lattices of 100 × 100 or 250 × 250 cells (repre-
senting the plasma membrane) at high (5,500/µm2) 
or low (125/µm2) densities. Diffusion probabilities 
were calculated using random walk theory from 
diffusivity constants while reaction probabilities 
were similarly calculated from kinetic constants. 
To improve computational effi ciency only lattice-
sites containing receptors were randomly selected 
for movement or reaction at each time step. Three 
possible pathways to EGFR activation were simu-
lated: 1) dimerization followed by ligand-binding, 
2) ligand-binding followed by heterodimer forma-
tion followed by more ligand-binding, and 
3) ligand-binding followed by homodimer forma-
tion of ligand-receptor complexes. The model 
demonstrated a dependence on both ligand and 
receptor concentration as to the specifi c mechanism 
that was most favored.

Tumors do not always develop in the relatively 
uniform mesenchymal environment. Lung adeno-
carcinomas originate and develop within the 
epithelia of the alveoli and the resulting tumor has 
a distinct non-spherical shape (Kerr, 2001). The 
alveolar epithelia may be modeled as an extended 
series of tubular sacs and a simplifi ed simulation 
of tumorous growth along a single sac has been 
implemented recently in a system of PDEs 
(Marciniak-Czochra and Kimmel, 2007). In this 
model, cell proliferation was enhanced by a 
presumed growth factor which was produced by 
the surround and bound at the cell surface. The 
growth factor then spread by an unidentifi ed inter-
cellular diffusion process to adjacent cells. The 
growth factor was not consumed by cells but was 
supplied continuously. Under these conditions, 
cells exhibited a long latency period but eventually 

entered a phase of exponential increase in some 
regions with concomitant exponential decrease in 
others, eventually leading to a “chaotic” growth 
profi le (Marciniak-Czochra and Kimmel, 2007).

Whether in a mesenchymal or epithelial envi-
ronment, tumor growth is actively inhibited by 
interactions with NK cells and cytotoxic T cells of 
the immune system. A hybrid CA-PDE model has 
recently been used to simulate the complex 
response of tumors to growth signals while under 
attack by the immune system (Mallet and De Pillis, 
2006). Cells were represented on a square grid 
supplied by nutrients along the top and bottom 
edges. Each grid square contained only one cell, 
either a cancer cell, an NK cell, a cytotoxic T cell 
or a normal cell. PDE equations governed the 
diffusion of two small-molecule nutrients; one 
required for cancer cell survival, the other for divi-
sion. At each time cycle, diffusion of the nutrients 
was fi rst simulated and the new concentrations 
imposed on the grid. Then cells responded to both 
the nutrient level as well as to neighboring cells 
according to specifi ed CA rules. The authors found 
that, while basic tumor growth was accurately 
modeled, the tumor and immune cell populations 
were unexpectedly sensitive to different recruit-
ment and killing parameters for cytotoxic T cells. 
Depending on the exact values, both tumor and 
immune cell populations could oscillate wildly in 
the model, accurately portraying oscillations found 
experimentally in diseases such as non-Hodgkins 
lymphoma (Mallet and De Pillis, 2006).

Avoiding apoptosis
Escaping apoptotic signaling is an important mech-
anism cancer cells use to avoid being cleared from 
the body early in tumor develpoment (Hanahan and 
Weinberg, 2000; Abbott et al. 2006). In normal cells 
the apoptotic response can be induced by ligand 
binding to the membrane-bound FAS/CD95 death 
receptor which induces formation of the death-
inducing signaling complex (DISC) and results in 
the production of activated forms of caspase 8 and 
caspase 3, the major apoptotic effectors. A critical 
survey of the literature and available databases led 
to the development of a complex ODE model of the 
CD95-inducible apoptotic pathway which included 
about 70 molecules, 80 equations and 120 unknown 
parameters (Bentele et al. 2004). Mitochondria and 
protein degradation components were subsequently 
packaged into “black-box” components, defi ned by 
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their input-output behavior, in order to make a 
tractable model. A subsequent sensitivity analysis 
reduced the number of unknown global parameters 
from 58 to 18.

Application of the model led to the discovery 
of a threshold mechanism in apoptotic signaling. 
The c-FLIP protein inhibits DISC activity by 
strongly binding to the caspase-8 activating site of 
DISCs. Below threshold levels of CD95 signaling, 
c-FLIP binding was found to limit the number of 
active DISCs. As a result no cells died. Above the 
threshold level, the number of activated DISCs 
exceeded the cytoplasmic c-FLIP pool and apop-
tosis was predicted to occur in all cells. Following 
chemotherapeutic treatment, many cancers develop 
apoptotic resistance, which may be due to the 
abnormally high c-FLIP expression found in 
certain cancer cells (Micheau, 2003). Subsequent 
experiments have shown that overexpression of a 
transcription factor (E2F1) down-regulated c-FLIP 
in cultured human lung adenocarcinoma cells and 
sensitized them to FAS-induced apoptosis and T 
lymphocyte attack (Salon et al. 2005).

NF-κB (Nuclear factor—kappa B) is an 
important downstream transcription factor also 
implicated in the regulation of apoptosis as well 
as in cell signaling, growth and response to stress. 
It has been identifi ed as a therapeutic target in 
chronic infl ammatory diseases as well as in cancer 
(Yamamoto and Gaynor, 2001). An ODE model of 
the regulatory factors of NF-κB has been developed 
incorporating NF-κB, three IκB inhibitory isoforms 
(IκBα, -β and -ε) and the activating IκB kinase, 
IKK (Hoffmann et al. 2002). The resulting model 
consisted of 24 ODEs. It included rates of 
formation, degradation and transport of all 
biologically-relevant monomers, as well as dimeric 
or trimeric complexes in explicit nuclear and 
cytoplasmic compartments. Parameters were 
derived from the literature, previous experiments 
or by fi tting to a knock-out cell line using a genetic 
search algorithm. Finally, parameters were adjusted 
to fi t wild-type cell data.

Simulations using the adjusted parameters led 
to the surprising discovery that the different 
inhibitory proteins (IκBα, -β and -ε) act together 
to produce different components of NF-κB expres-
sion levels. By itself, IκBα results in strongly 
oscillatory levels of NF-κB expression, while 
increasing levels of IκBβ and IκBε led to fi rst a 
dampening of the oscillations and then a levelling 
out of NF-κB expression at a plateau. This 

mechanism predicted that transient stimulation by 
TNF-α should lead to prolonged expression of 
NF-κB resulting in sustained production of down-
stream genes and protection from apoptosis.

Angiogenesis
In general, the growth of solid tumors is limited to 
about 0.5 mm diameter without access to an 
oxygenated blood supply. To develop beyond this 
size, tumors may stimulate the growth of new blood 
vessels. This process is called angiogenesis. It is 
dependent upon the secreted growth factor Angio-
poietin 2 (Ang2) binding to the transmembrane 
Tie2 receptor tyrosine kinase (Bach et al. 2007). 
In the presence of vascular endothelial growth 
factor (VEGF), along with other proliferative and 
migratory signals, this causes sprouting of new 
vasculature from existing vessels.

An ODE simulation of the effect of this vascular 
remodeling on tumor growth has recently been 
developed (Arakelyan et al. 2002). The model 
incorporated starvation-induced VEGF expression 
in tumors as the sole angiogenic factor but also 
accomodated the destabilization of mature vessels 
and regression of immature vessels by Ang2. While 
formation of new immature vasculature led to a 
strictly monotonic exponential growth of tumor 
tissue, incorporating vessel regression and vascular 
maturation into the model led to oscillations in both 
vessel and tumor tissue volumes. This led the 
authors to suggest that treatment with both anti-
angiogenic and anti-maturation drugs might be 
more effi cacious than mono-therapeutic approaches. 
This theoretical result was found to be consistent 
with phase 3 clinical data for the anti-angiogenic 
drug Avastin (Garber, 2002).

Angiogenic factors are secreted by hypoxic cells 
on the periphery of the central necrotic region of 
the tumor (Bach et al. 2007). The cellular response 
to hypoxia is largely regulated by the α subunit of 
HIF1, the heterodimeric hypoxia-inducible 
transcription factor. High nuclear levels of HIF1α 
have been associated with higher grade gliomas 
independent of hypoxic induction (Zagzag et al. 
2000). Under normal oxygenation levels, HIF1α  
remains in the cytosol where it is fi rst prolyl-
hydroxylated by prolyl hydroxylase domain 2 
enzyme (PHD2), then ubiquitylated and subse-
quently degraded by the proteasome. As a result 
cytosoloic HIF1α has a very short estimated half-
life (fi ve to eight minutes). In hypoxic conditions 
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the cytosolic HIF1α escapes hydroxylation and 
enters the nucleus, where it binds with HIF1β/
ARNT and activates the angiogenic pathway, 
including VEGF and its receptor VEGFR2/Flk1. 
Hydroxylation of HIF1α by PHD2 in the nucleus 
blocks binding to HIF1β/ARNT and reduces tran-
scriptional activation by HIF1α.

The hypoxic response pathway was modeled 
by a system of ODEs refl ecting the molecular 
kinetics of 17 compounds and validated to data 
from several independent experiments (Qutub and 
Popel, 2006). The model demonstrated both a 
rapid, switch-like response to low oxygen and a 
slower, more gradual one, depending on the pres-
ence of cytosolic iron, ascorbate and PHD2. Based 
on these fi ndings iron supplementation, ascorbate 
supplementation, or a combination of both were 
compared to PHD2 targeting as alternative thera-
peutic approaches to increasing HIF1α hydroxyl-
ation and reducing its transcriptional activation 
under hypoxic conditions. Ascorbate supplementa-
tion alone was found to be very effective at 
increasing hydoxylation levels of HIF1α, but the 
effect was considerably reduced (from 60% to only 
3%) when iron supplementation was also available 
(Qutub and Popel, 2006). Iron supplementation 
and increased expression of PHD2 were equally 
effective at increasing HIF1α hydroxylation. These 
fi ndings might suggest that iron supplementation 
coupled with increased ascorbate should be a cost-
effective therapeutic approach to inhibiting HIF1α  
angiogenesis of hypoxic tumors. However the 
authors were quick to point out that their model 
has several significant limitations, including 
unknown kinetic reaction rates, unknown effects 
of the acidic tumor microenvironment, different 
HIF1α binding affi nities for iron versus oxygen 
and other, recently-characterized proteins that 
effect the rate of hydroxylation of HIF1α.

Therapeutics
Therapeutic approaches to cancers include surgical 
removal (in whole or part), partial or whole body 
irradiation and a vast array of chemotherapies. 
Chemotherapeutic agents may be broadly classifi ed 
as cell-cycle phase-specifi c, cell-cycle non-specifi c, 
or cytostatic/anti-angiogenic (Gardner, 2002). 
Phase-specifi c drugs include methotrexate and 
5-fl uorouracil, both of which act by blocking DNA 
synthesis during S-phase in rapidly dividing cancer 
cells. Cylcophosphamide and doxorubicin are 

examples of cell-cycle non-specifi c drugs; these 
drugs interfere with DNA function by covalent 
modification or non-covalent intercalation. 
Cytostatic drugs include tamoxifen and herceptin, 
which act as antagonists to specifi c growth factor 
receptors whose activity is necessary for tumor 
development. Avastin and sorafenib are examples 
of anti-angiogenic drugs which work by inhibiting 
VEGF activity either by direct binding or by 
blocking downstream signaling.

Chemotherapeutics are frequently administered 
in combination, because tumors are comprised of 
heterogeneous cell populations with different 
metabolic profi les and susceptibilities to attack by 
drugs. Gardner developed a kinetically tailored 
treatment (KITT) model which utilized a pair of 
ODEs (plus other supporting equations) to incor-
porate rates of tumor genesis, growth, apoptosis, 
necrosis, drug-induced death, development of drug 
resistance, cytotoxic side effects and drug pharma-
cokinetics (Gardner, 2002). Tumor growth was 
modeled either as exponential or Gompertzian and 
a variety of treatment regimens were tested, 
including all possible combinations of six relevant 
drugs under either standard or alternative schedules. 
Nearly 27,000 tumors were modeled over a wide 
range of growth and survival parameters. Including 
cytostatic drug administration with cytotoxic drugs 
substantially increased the effectiveness of the 
treatment whether the cytostatic component was 
administered under the standard or alternative 
schedule. In addition, rapidly dividing tumors 
responded optimally to treatment with two different 
cell-cycle phase-specific drugs while slower 
developing tumors responded better to treatment 
with two cell-cycle non-specifi c drugs.

The effectiveness of this two-component 
chemotherapeutic approach has been verifi ed by a 
simple delayed differential equations model, 
relating tumor growth, immune system attack and 
drug-induced cell cycle inhibition (Villasana and 
Radunskaya, 2003). In this model, cells were 
subdivided into tumor interphase or mitotic 
subpopulations and immune system components. 
Treatment with a cell-cycle specific inhibitor 
arrested cells in mitosis where they could die due 
to either a failure to complete the cycle or to cyto-
toxic immune system effects. This model demon-
strated that delaying cells in mitosis may actually 
lead to instability in cell populations if the delay 
does not lead to rapid tumor cell death. This 
confi rmed the previous suggestion that combining 
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cytostatic and cytotoxic drugs might lead to a more 
effective therapeutic approach than with either 
seperately (Gardner, 2002).

Similar fi ndings were reported by Crispini and 
colleagues in their model of the interaction between 
tumor morphology and invasiveness and the micro-
vasculature that develops under angiogenic condi-
tions (Cristini et al. 2005). They used a hybrid 
system of 2-D PDEs to model tumor growth, 
nutrient/oxygen diffusion and tissue pressure, while 
the vasculature was represented by a discrete DCA 
superimposed on the grid (Zheng et al. 2005). In 
this model hypoxia and extracellular acidosis asso-
ciated with poor vascularization of the central region 
of the tumor led to reduced cellular adhesion. 
Coupled with natural variations in vascular density, 
this caused non-uniform cell proliferation and 
migration leading to a “diffusional instability” that 
resulted in a highly-invasive tumor morphology. 
Neo-vascular suppression merely exacerbated this 
condition while “vascular normalization” led to 
improved nutrient and oxygen delivery to the tumor, 
resulting in stability of the spherical morphology 
and reduced invasiveness (Cristini et al. 2005).

However, anti-angiogenic therapies, rather 
than suppressing all vascular extension into the 
tumor, have actually been shown to normalize 
tumor vasculature by pruning immature vessels 
(Tong et al. 2004). Recent analysis has shown that 
this vascular pruning early in anti-angiogenic 
treatment is responsible for reducing interstitial 
fl uid pressure and improving convection within 
the tumor while reducing convection from the 
tumor into its periphery (Jain et al. 2007). These 
improvements in convection within the tumor also 
permit improved delivery of co-administered 
cytoxic drugs to the tumor cells, leading to 
improved targeted killing of the cancer and 
confi rming the benefi ts of two-component thera-
pies (Tong et al. 2004).

In addition to optimizing therapeutic compo-
nents and dosages, another challenge facing clini-
cians relates to selecting the most efficacious 
administration schedule. For example, in order to 
effectively prevent mammary carcinogenesis in 
HER-2/neu transgenic mice the Triplex vaccine 
must be administered beginning at six weeks after 
birth and repeated every two weeks for the entire 
lifespan of the mouse (Lollini et al. 2006). An ABM 
simulation was used as an evaluation model, driven 
by a genetic algorithm to test whether this 
arduous vaccination protocol could be optimized 

(Pappalardo et al. 2006). While “best guess” 
approaches resulted in 27% fewer repeat vaccina-
tions, the genetic search algorithm discovered a 
protocol which reduced the number of vaccinations 
by 44% over the original. Experimental verifi cation 
of this suggested protocol is underway.

Novel cancer therapeutics can have even more 
complex pharmacodynamics. For example, radio-
virotherapy combines radiation therapy with the 
increased sensitivity of cancer cells to some viral 
infections. A viral genome (e.g. measles) is altered 
so that infection of a cell also introduces the gene 
encoding a transmembrane ion import pump. 
Expression of the ion pump in infected (but not 
dead) cells causes them to concentrate intravenously 
admitted radioactive ions leading to tumor regres-
sion (Dingli et al. 2004). The interaction of tumor 
cells, replicating virus, radioactive isotope and the 
immune system has recently been modeled in a 
complex compartmentalized system of ODEs to 
better understand the interaction between these 
components so that therapeutic outcomes may be 
optimized (Dingli et al. 2006). The system was 
partially discretized so that any population of cells 
or viruses below one was automatically set to zero; 
this allowed for the complete elimination of tumors 
and viruses in some simulations. Following valida-
tion of the model and estimation of parameters 
lacking experimental values, simulations led to the 
following conclusions: a) radiotherapy should begin 
within seven days of viral administration, b) initial 
viral dose partially determines response time to the 
therapy but more than fi ve-fold increases over initial 
levels were not benefi cial, and c) the optimal dose 
for radioactive iodide was within a narrow window 
(plus or minus 20%) and halving the dose did not 
result in complete loss of the tumor. In the absence 
of effective modeling, arriving at these same conclu-
sions would have involved years of clinical trials.

Conclusion
Although a number of important insights have 
already resulted from the relatively simple and 
non-comprehensive models presented above, it is 
clear that a number of challenges still exist. One 
of the most obvious is the lack of precise, quanti-
tative data for gene and protein networks so that 
realistic parameters can be entered into these 
models. While a considerable amount of transcrip-
tional and translational data is available, good 
quality metabolic data lags far behind. The situation 
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is complicated in metazoans because, even in a 
disease state, not all cells in a tissue will express 
the same genes, proteins or metabolites. Single-cell 
isolation and analysis, including lab-on-a-chip and 
protein-nanoarrays, may improve this situation 
somewhat.

Ultimately, models of living systems attempt to 
simulate extremely complex mixtures of proteins, 
genes and metabolites. Approximations to the 
actual reactions occuring in such a complex 
mixture are made of necessity and the resulting 
simplifi cations may lose important, relevant infor-
mation. For example, when modeling new candi-
date drugs, it may be impossible to predict all 
potential undesirable interactions with non-target 
molecules. While network models may be able to 
help identify some of these interactions based on 
resulting physiological changes, only accurate 
prediction of all possible aberrant reactions at the 
molecular level could obviate this issue entirely.

The proliferation of approaches and implemen-
tations makes it difficult to select the “best” 
approach for any particular modeling problem 
(see Fig. 1). Nevertheless comparisons between 
different formalisms for specifi c purposes have 
been made (Stromback and Lambrix, 2005). 
Several groups are actively collaborating (or, some-
times, competing) to develop a consensus approach 
to representing biological pathways and biochem-
ical systems. A Unifi ed Modeling Language (UML) 
to easily enable the hierarchical construction of 
hybrid models with explicit modeling of stochastic 
processes, compartmentalization and diffusion has 
been proposed (Webb and White, 2005). This 
formalism borrows heavily from the object-oriented 
experience in developing reusable, hierarchical 
program modules and is similar to a complex hier-
archical, agent-based model.

Many researchers support the move towards a 
clear, consistent formalism to depict biological 
processes. Kitano has defi ned a System Biology 
Graphical Notation (Kitano et al. 2005) which has 
been encapsulated in the SBML-compatible 
program CellDesigner and used to successfully 
model the complex EGFR pathway (Oda et al. 
2005). Other approaches to supporting hybrid 
combinations of different formalisms have been 
described above. As groups supporting one 
particular formalism over another point out the 
advantages of their approach, their best suggestions 
are often readily incorporated into the most 
prevalent formalisms. To some extent, there is a 

great deal of functional convergence among the 
different approaches and the best selection may be 
whichever one is “most natural” to the modeler 
without losing any of the desired power.

In recognition of the deleterious effect this 
proliferation of approaches has on the advancement 
of modeling, particularly in relation to cancer 
research, the National Cancer Institute has recently 
established the Integrative Cancer Biology Program. 
The Center for the Development of a Virtual Tumor 
(CViT) at the Massachusetts General Hospital in 
Boston is one member of this program (Deisboeck 
et al. 2007). The CViT is attempting to establish a 
community of investigators who will work towards 
the development of a multi-scale simulation plat-
form and repository in support of modeling cancers. 
In addition to the model repository, CViT will 
provide tools that support world-wide collaborative 
efforts in modeling cancer and that provide a frame-
work for semantic descriptions of models indepen-
dent of their implementation. Effort, such as this, 
will be crucial in order for computational systems 
biology researchers to benefi t from, and build upon, 
each other’s experiences.
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