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Abstract: A novel amide-assisted rearrangement reaction of hydroxybenzimidoyl chloride has been
established for the efficient synthesis of 1,3-diphenylurea derivatives. A variety of electronically and
sterically different 1,3-diphenylurea derivatives can be obtained in good to excellent yields, and a
proposed reaction mechanism is also presented.
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1. Introduction

Urea derivatives have a myriad of applications in biological studies, analytical chem-
istry, pharmaceuticals, polymer sciences, and agrochemicals [1–8]. N, N′-disubstituted urea
exhibits a wide range of potent biological properties in bioactive and pharmacologically
impressive structures [9–14]. For instance, many urea-containing compounds have been
used to cure human diseases (Figure 1) [15–18].

Figure 1. Representative biological urea derivatives.

Given the medicinal and biological properties of N, N′-disubstituted urea, synthetic–
organic chemists and medicinal chemists have shown considerable interest in the de-
velopment of efficient methodologies for the synthesis of this structure. The traditional
methods of synthesizing urea involve the condensation reaction between an amine and
active carbonyl compounds, such as isocyanate [19–22], chloroformate [23], and carbonyl
di-imidazole [24,25] (Scheme 1a). Also, the Curtius rearrangement provides an effective
method for preparing urea from an arylformyl chloride substrate (Scheme 1b) [26–28].
These methods have been extensively studied and applied in actual production, but the
development of novel methods for the preparation of urea is still in high demand.

Aromatic oxime is a vital precursor and intermediate in organic synthesis [29–31].
The typical Beckman rearrangement reaction can achieve the conversion of ketoxime to
amide products under strong acid conditions [32,33]. Since the hydrogen-atom migration
of aldoxime is difficult, metal catalysts are usually required in order to carry out the Beck-
mann rearrangement of aldoxime [34–37]. Therefore, it is still challenging to achieve a
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metal-free aldoxime rearrangement. The amides have been widely used as directing groups
to activate C-H bonds and facilitate the conversion of multiple functional groups [38–42].
To date, there have been no reports of amide-assisted rearrangement reactions. We envision
that the amide can utilize the hydrogen bond to bind with the hydroxyl group of hydrox-
yarylformimidoyl chloride, thereby activating the N-O bond, which is conducive to the
departure of the hydrated positive ion and allows the rearrangement of aldoxime.

Scheme 1. Preparation methods of N, N′-disubstituted urea.

Herein, we have developed a smooth and efficient synthesis of 1,3-diphenylurea deriva-
tives from hydroxybenzimidoyl chloride under mild conditions with amides as additives.

2. Results and Discussion

In our initial studies, N-hydroxybenzimidoyl chloride (1a) was reacted with ben-
zamide using N, N-dimethylformamide (DMF) as the solvent, and the desired product
2a was obtained in medium yields (31%, Table 1, entry 1). Different solvents, such as
methanol, ethanol, 1,4-dioxane, tetrahydrofuran (THF), dimethylsulfoxide (DMSO), and
dichloromethane (DCM), were screened at room temperature. The results indicate that the
most efficacious reaction occurred with DMSO (yield 42%, Table 1, entry 8). Encouraged
by this result, we sought to enhance the yield of this reaction and carried out a screening of
bases, such as K2CO3, Et3N, DMAP, DBU, and t-BuOK (Table 1, entries 10–14). The experi-
mental data showed that the reaction proceeded with good yield (42%, Table 1, entry 8)
when Cs2CO3 was used, while the other bases were not as effective. The reaction could not
be carried out in the absence of a base (Table 1, entry 15). Additionally, increasing tempera-
ture is beneficial to the reaction, since higher yields were obtained at 120 ◦C (87%, Table 1,
entry 21). Under these conditions, increasing the reaction time did not affect the yield (87%,
Table 1, entry 23). Subsequently, we selected acetamide, propionamide, 2-phenylacetamide,
and 4-chlorobenzamide to screen the additives. The results show that the effect of using
benzamide is still more potent than the other amides. Simple amides, such as acetamide
and propionamide, are also effective, but 2-phenylacetamide and 4-chlorobenzamide are
not as effective (Table 1, entries 24–27). Notably, without the addition of the amide reagents,
the reactions described herein will not occur (Table 1, entries 28). Therefore, under opti-
mized conditions (using DMSO as the solvent with Cs2CO3 as the base at 120

◦
C for 5 h),

different N-hydroximoyl chlorides were selected in order to prepare products 2a–2l (yield:
71–87%, Table 2). Reducing the amount of benzamide will significantly reduce the reaction
yield (Table 1, entries 29–30), although the reaction yield did not increase significantly with
an increase in the amount of benzamide, (Table 1, entries 31).
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Table 1. Optimization of experimental conditions a,c.

Entry Base Solvent Additive Time (h) t [◦C] b Yield (%)
1 Cs2CO3 DMF Benzamide 5 rt b 31
2 Cs2CO3 MeOH Benzamide 5 rt b nr
3 Cs2CO3 EtOH Benzamide 5 rt b nr
4 Cs2CO3 DCM Benzamide 5 rt b nr
5 Cs2CO3 Toluene Benzamide 5 rt b 8
6 Cs2CO3 THF Benzamide 5 rt b nr
7 Cs2CO3 Dioxane Benzamide 5 rt b 11
8 Cs2CO3 DMSO Benzamide 5 rtb 42
9 Cs2CO3 Acetone Benzamide 5 rt b nr

10 K2CO3 DMSO Benzamide 5 rt b 25
11 Et3N DMSO Benzamide 5 rt b 27
12 DMAP DMSO Benzamide 5 rt b 22
13 DBU DMSO Benzamide 5 rt b 19
14 tBuOK DMSO Benzamide 5 rt b 34
15 None DMSO Benzamide 5 rt b nr
16 Cs2CO3 DMSO Benzamide 5 30 45
17 Cs2CO3 DMSO Benzamide 5 45 58
18 Cs2CO3 DMSO Benzamide 5 60 61
19 Cs2CO3 DMSO Benzamide 5 75 66
20 Cs2CO3 DMSO Benzamide 5 90 73
21 Cs2CO3 DMSO Benzamide 5 120 87
22 Cs2CO3 DMSO Benzamide 5 reflux 87
23 Cs2CO3 DMSO Benzamide 10 120 87
24 Cs2CO3 DMSO Acetamide 5 120 71
25 Cs2CO3 DMSO Propionamide 5 120 62
26 Cs2CO3 DMSO Phenylacetamide 5 120 39
27 Cs2CO3 DMSO Chlorobenzamide 5 120 trace
28 Cs2CO3 DMSO None 10 120 nr
29 Cs2CO3 DMSO Benzamide (0.2 mmol) 10 120 63
30 Cs2CO3 DMSO Benzamide (0.1 mmol) 10 120 46
31 Cs2CO3 DMSO Benzamide (0.5 mmol) 10 120 88

a Reagents and conditions: N-hydroxybenzimidoyl chloride (1a, 1.0 mmol), benzamide (0.4 mmol), base
(2.2 mmol), solvent (20 mL). b rt = room temperature. c Isolated yield based on 1a.

In Table 2, the results show that N-hydroxybenzimidoyl chloride (1) substrates that
bore electron-donating groups (such as methoxy or methyl) as the R substituents were
well-tolerated at good yields (2e, 83%, 2f, 80%, 2h, 84%, 2j, 86%). In addition, electron-
withdrawing substituents (such as chloro-, fluoro- or trifluoromethyl) are also usable
in the reaction, but the reaction yield is reduced (2c, 72%, 2i, 76%, 2k, 71%, 2l, 73%).
Furthermore, the yield of para-containing substituents is higher than the yield of meta-
containing substituents (2c, 72%, 2i, 76%). Finally, the reaction yield of a substrate that
contains two groups is not as high as a substrate that contains one group (2b, 77%, 2j,
86%). Unfortunately, no corresponding products were obtained using other heteroaromatic
substrates (1), such as pyridine, furane or thiophene.

The chemical structures of the 1,3-diphenylurea derivatives were examined by 1H
NMR, 13C NMR, and HRMS analyses (see Supplementary Materials). The structure of 2a
was unambiguously confirmed by single-crystal X-ray analysis [43], as shown in Figure 2.
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Table 2. Synthesis of 1,3-diphenylurea derivatives a,b.

a General conditions: N-hydroxybenzimidoyl chloride (1a, 1.0 mmol), benzamide (0.4 mmol), Cs2CO3 (2.2 mmol),
DMSO (20 mL). b Isolated yield based on 1.

Figure 2. Crystal structure of 2a.

3. Conclusions

In summary, an amide-assisted rearrangement reaction of hydroxybenzimidoyl chlo-
ride has been developed for the preparation of 1,3-diphenylurea derivatives. This highly
effective reaction proceeds well to afford 1,3-diphenylurea derivatives without metal cat-
alysts under mild conditions and shows good functional-group tolerance. A proposed
reaction mechanism has been presented, suggesting that the reaction went through a
novel rearrangement process. We believe that the findings of this study promote the rapid
synthesis of novel diphenylurea compounds exhibiting crucial biological activity.

Supplementary Materials: The following are available online, X-ray crystallography data of com-
pounds: 2a, Characterization data and copies of 1H and 13C NMR spectra for all new compounds.
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