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the brainstem connectome 
database
Oliver Schmitt1,2 ✉, Peter Eipert1, Frauke Ruß1, Julia Beier1, Kanar Kadir1 & anja Horn3

Connectivity data of the nervous system and subdivisions, such as the brainstem, cerebral cortex and 
subcortical nuclei, are necessary to understand connectional structures, predict effects of connectional 
disorders and simulate network dynamics. For that purpose, a database was built and analyzed 
which comprises all known directed and weighted connections within the rat brainstem. A longterm 
metastudy of original research publications describing tract tracing results form the foundation of the 
brainstem connectome (BC) database which can be analyzed directly in the framework neuroVIISAS. 
The BC database can be accessed directly by connectivity tables, a web-based tool and the framework. 
Analysis of global and local network properties, a motif analysis, and a community analysis of the 
brainstem connectome provides insight into its network organization. For example, we found that 
BC is a scale-free network with a small-world connectivity. The Louvain modularity and weighted 
stochastic block matching resulted in partially matching of functions and connectivity. BC modeling was 
performed to demonstrate signal propagation through the somatosensory pathway which is affected in 
Multiple sclerosis.

Background & Summary
Neuronal connections between regions of the nervous system enable the transmission of dynamic signals. 
Information about the existence, absence or lack of data on neuronal connections and their features is important 
for realistic modeling of signal transfer in connectomes. Conceiving the effects of connectome lesions requires 
comprehensive and accurate connectivity data as well as properly modelled dynamic processes. The global and 
local impacts of lesions caused by stroke or neurodegenerative disorders like Multiple sclerosis, Parkinson and 
Alzheimer disease allow their simulation and dynamical analysis in such accurate structural connectomes1.

Until now, connectomes2 of a few species have been elaborated3–13. However, a microconnectome at the 
synaptic level is available only for the nematode Caenorhabditis elegans12. The microconnectome of the ultras-
tructural volume of the Drosophila melanogaster is still not on-hand13. More realistic connectomes are generated 
by accumulating tract tracing (TT) data (TTD). Since 1971, neuronal connections of strains of laboratory rats 
were investigated extensively and repeatedly by applying TT techniques14 (Table 1). These precise neuroan-
atomical TT data are collated in meta-studies and considered as gold standard for comparisons with tracto-
graphic data15,16. However, the interpretation and translation of descriptions of projections and overlapping 
terminologies may lead to variability of TT connections17. A longterm project18,19 systematically collated and 
curated neuronal connectivity data and connectional features of original TT research publications11,17,18. Here, a 
new brainstem connectome database is introduced comprising every known connection of every region of the 
brainstem. In the brainstem connectome (BC) project, all hiterto known neuronal connections of the brain stem 
nuclei complexes of the adult rat were collated. This BC database can be queried through a web interface for all 
regions reported in original research publications.

Compared to other metastudy connectome databases and subsystems of connectomes20–26, a significant fea-
ture of the BC database is the preservation of precise neuroanatomical information. Same connections within 
different animals and/or reports are always recorded. Thus, accumulations of same observations in different ani-
mals are available for statistical analysis and thresholding of high consensus connections and rare observations 
of neuronal connections. This permits the calculation of observation scores and estimating reliability10,17. For an 
overview of all features regarding the data sources, collation, curation and validation we refer to17,18. Moreover, 
the BC database is linked with six secondary databases (bibtex bibliographies27, NeuroLex28, BrainInfo29, 
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Lockard30, NeuroElectro31, Swanson Terminology32). An export function in neuroVIISAS allows the generation 
of mysql databases which are accessible in the web33.

The brainstem is a structurally and functionally complex control center of the rat nervous system. A struc-
tural and visual analysis of connectomes should be performed34 before they are characterized by dynamic mod-
eling. So far, the BC has not been characterized quantitatively in terms of connectome analysis. Here, such an 
analysis of intrinsic hierarchical connectivity of the BC is performed with regard to the structural network 
organization as well as some functional properties.

Hitherto, neuroinformatic toolboxes are used to analyze and visualize connectomes35–40. In addition, generic 
network analysis environments are available41–43. The neuroVIISAS (neuro Vsualization, Imagemapping, 
Information System for Analysis and Simulation) framework allows the analysis of connectivity categories 
(structural, functional, visual) (Fig. 1) of macroscale to microscale as well as hierarchical connectomes. neu-
roVIISAS is a generic and platform-independent framework that links ontologies, digital atlases, connectomics, 
and simulations of whole-brain network dynamics. By using this framework, connectivity data obtained from 
tractographic, TT and serial block face scanning microscopy can be investigated under different aspects like 
structural organization, functional properties and dynamic features (Fig. 1). Recently, a differential connec-
tomics module for pairwise network comparison has expanded the analytical capabilities of the neuroVIISAS 
framework44–46. The framework allows working with tables of (non-)weighted and/or (non-)directed connec-
tions as well as with hierarchical or neuroontological (non-)weighted and/or (non-)directed connections among 
hierarchically organized superregions and subregions. So far, connectomes of different species and of highly 
diverse structural organisations (unilateral, bilateral, weighted, binary, directed, non-directed) can be directly 
loaded with neuroVIISAS and are available in proper project file formats (https://neuroviisas.med.uni-rostock.
de/otherConnectomes/otherConnectomes.shtml).

The main purpose of this contribution is to introduce the first BC database. A second issue is the structural 
and functional analysis of the BC connectome using the neuroVIISAS framework. Because the BC is embedded 
in a complex subcortical and cortical connectome it will be analyzed with regard to extrinsic connectivity as 
well. This allows the investigation of the somatosensory pathway from the dorsal root ganglia through the brain-
stem and diencephalon to the somatosensory cortex. Among other pathways and functional systems the soma-
tosensory pathway is significantly affected in Multiple sclerosis through CD4+ T-helper cell and CD9+ cytotoxic 
T cell dysregulation47–50. A further objective of this investigion is to elucidate how signal propagation within the 
somatosensory pathway is affected by changing connectivity weights in comparison with a demyelination pro-
cess in MS.

Tracer family Examples Dir Vel Pub

Proteins

Horseradish peroxidase (HRP) R/A

F

141

Albumin 14

Immunoglobulin M (IgM) R 142

Anorganic fluorochromes

Fast Blue (FB) R

M

143–145

Diamidino yellow (DY) R 146

Fluoro-gold (FG) R 147

Dextranes
Fluoro-Ruby (FR) A/R

M
148,149

Biotinylated dextran amine (BDA) A/R 150

Lectines

Wheat germ agglutinin (WGA; WGA-HRP) R/A

F

151

Bandeiraea simplicifolia isolectin B4 (IB4) A 152

Phaseolus vulgaris-leucoagglutinin (PHA-L) A 153,154

Beads

Latex microspheres R

F

155

Cholera toxin B-gold R 156

Wheat germ agglutinin-apoHRP gold R 157

Bacterial toxins

Tetanus toxin fragment C (BIIb) R/A

F

158,159

Botulinum toxin A (BoTu) R/A 160

Cholera toxin B fragment (CTB) R/A 161

Growth factors

Nerve growth factor (NGF) R

F

162,163

Glial cell-derived neurotrophic factor (GDNF) A 164

Ciliary neurotrophic factor (CNTF) R 165

Amino acids
3H-Leucin A F/S 166,167

3H-Prolin A F/S 168

Vit. biotin and L-lysine Biocytin A F 169

Carbocyanine dyes
DiI A/R S 170

DiO A/R S 171,172

Table 1. Some tract-tracer substances and factors which are axonally transported or propagated by 
diffusion. S: slow, M: medium, F: fast, A: anterograde, R: retrograde, A/R: bilateral transport, Dir: axonal 
transport direction, Vel: transport velocity, Vit: vitamin, Pub: Publication, DiI: 1,1′-diocta decyl-3,3,3′,3′-
tetramethylindodicarbocyanine perchlorate, DiO: 3,3′-dioctadecyloxacarbocyanine perchlorate.
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Methods
Tract-tracing data. Collating information of neuronal connections between pairs of neuroanatomically 
defined regions can be performed by manually reading out data from original research publications which 
describe the anterograde and retrograde transport of tract-tracing substances. The original research publications 
of this study were filtered from Pubmed (https://www.ncbi.nlm.nih.gov), GoogleScholar (https://scholar.google.
com/), Scopus (https://www.scopus.com) and Web of Science (http://apps.webofknowledge.com/). After match-
ing the 4 database queries, the references were imported into Jabref (http://jabref.sourceforge.net/) to obtain 
a unique and flexible bibtex style. Up to now, the database has been continuously updated. Added references 
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Fig. 1 Schematic outline of the brainstem connectome generation and simulations in the neuroVIISAS 
framework. Data generation starts with hypothesis of possible connections using stereotaxic atlases and 
concepts of knowledge (ontologies). Then TT experiments are performed and connections are published. 
Original research publications were evaluated and connections described herein were collated and imported 
into the rat connectome database to build the connectivity of adjacency matrices. These are starting points 
for global and local as well as motif network analysis. neuroVIISAS provides tools to investigate pathways 
and community detection algorithms like weighted stochastic block matching (WSBM), Louvain modularity 
and spectral graph analysis among oth-ers. The weights of a pathway can be reduced to model demyelination 
disorders (lesion) which can be compared with control coactivation matrices derived from excitatory FitzHugh 
Nagumo network propagation models.
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were immediately put into the pipeline of systematic curation. The database is available at https://neuroviisas.
med.uni-rostock.de/references.html or https://neuroviisas.med.uni-rostock.de/daten/references.bib and can be 
downloaded from51 as well. Such a metastudy approach to generate connectomes is well established and has been 
performed successfully in ferret, avian, macaque, cat and rat4,5,7,8,10,11.

Automatic recognition might represent another possibility to readout neuronal connections from original 
research publications. However, the algorithmic analysis of the semantic structure of the connection description 
still produces too many false positive and false negative identifications. Moreover, the identification of hetero-
geneous presentations of connectivity data in the form of texts, tables and figures is far beyond the capabilities 
of text spotting systems (generative adversarial networks, deep learning, semantic-based text recognition)52–55.

High-throughput TT of whole brains is a great advance for generating the connectome of the mouse 
brain3,56,57, however, the spatial resolution and the parcellation of neuroanatomical regions are limited. In addi-
tion, tractographic analyses of diffusion tensor imaging data allow the computation of adjacency matrices58–61. A 
great advantage of DTI connectomes is the measurement in vivo and straightforward application to genetically 
and experimentally (Multiple sclerosis, Parkinson, depression, stroke models) modified animals. The interre-
gional connections do possess spatial orientations, even though they are not directed. Further methods which 
generate connectomes at different scales of resolution (microconnectome, mesoconnectome, macroconnec-
tome) are described in review articles62,63.

The approach applied here for generating a connectome is considered to be a metastudy64 or retrospective 
study as performed by many groups in the field7,8,20–26,52,65–75. In order to prevent skewing of original research 
literature in terms of structures that have been studied, all 7867 publications which applied TT techniques 
(Table 1) were used for collation of connectivity data. TT publications were excluded which describe connectiv-
ity in prenatal rats, genetically modified rats (knock-in, knock-out, RNA silencing) or experimentally modified 
rats (neurodegenerative disease models, stroke models, intoxications etc.). The advantage of this procedure is 
that afferent and efferent connections of the BS were gathered which are incidentally observed in TT experi-
ments in other parts of the brain.

Further bias which possibly skew the BC data may arise from TT experiments of preferentially investigated 
functional systems that are abundantly affected in neurological disorders. Considerably more connectivity infor-
mation may originate from these preferential investigations than from neuroanatomical TT studies independent 
of hypothesis-driven neurological disorder studies.

Finally, we tested the hypothesis that bias may arise from the volume of BS regions because small regions 
are less studied or shape a larger variability of identifying tracers. There was evidence that a small linear posi-
tive correlation of c=0.2 exists between the volume and the number of different original research publications. 
However, the quite small locus coeruleus region (0,079 mm2) has been identified in more the 750 research pub-
lications. Thus, besides the size of a region, the functional relevance and importance in neurological disorders 
may skew the distribution of connectivity information in a metastudy connectome as well.

In most stereotaxic tract-tracing studies, tracers are used that are actively transported anterogradely to axonal 
terminals or retrogradely to perikarya (Table 1). Once the tracers have reached their target areas, they can be vis-
ualized in most methods either by immunohistochemical or enzymatic substrate conversion. These chromogens, 
detectable in histological sections, provide the underlying information for the connectional data, which are spec-
ified and documented at three different levels of accuracy. After successful visualization in histological sections 
or mostly systematic section series with specific section distances, visualized tracers are localized or assigned to 
specific areas. At level 1, this assignment "tracer to area" is done in the original publications purely descriptively, 
in schematic block diagrams or semi-schematic figures. Most often, at level 2, medium precision documentation 
is presented by means of symbolic (*, **, *** or -, +, ++, +++) or semiquantitative (0, 1, 2, 3: no connection, 
light, moderate, strong) data of the observed neuronal connections in the form of text or tables. These ordinal 
measures represent an estimate of connection densities. Level 3 is based on either stereological quantification of 
perikarya labeled by tract tracing or densitometric quantification of labeled axonal terminals. Semiquantitative 
documentation of tract-tracing observations is most commonly used in the literature. So far, the semiquantita-
tive values can not be normalized between studies and thus comparability is limited. The stability of the under-
lying chromogen, which makes the neuronal connections visible, measurable and estimable, is relatively high. 
Observation and discovery of the tracer as well as its assignment to areas also depends on the experience of the 
investigator. When analyzing the connectivity data, we reliably recognize these different categories of neural 
connection descriptions and are able to code the information about connections and weights as follows.

All neuronal connections are encoded by ranked qualitative connections weights from the primary research 
literature. The most frequent categories are x: very few [0.5], few [1], few to moderate [1.5], moderate [2], mod-
erate to strong [2.5], strong [3] and very strong [4]. The primary research publications describing results of 
experimental TT suggest that a realistic scale for ranked qualitative values is exponential rather than linear. A 
105 exponential scale was applied for such values in the cerebral cortex of the macaque76. Here, a 104 exponential 
scale ( f x( )) fit the rat data better77–81:

( )f x( ) 10 x16
49 ( 4) 2

= − ⋅ −

Data Records
All data files and software are hosted at figshare51. Two different types of data records are relevant for the work 
with BC connectome data in neuroVIISAS. A complex data record (CDR: bc.brain. A direct download is possible 
from https://neuroviisas.med.uni-rostock.de/bc.brain) allows to specify different analyses of BC. The straight-
forward data record (SDR: bc.csv) is a simple list of all intrinsic neuronal connections of the brainstem nuclei.
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The rat brainstem connectome data are available by querying the publications, longnames or shortnames of 
regions of the brainstem through a web interface of neuroVIISAS (https://neuroviisas.med.uni-rostock.de/con-
nectome/index.php)33. This connectome resource has been indexed by FAIRsharing (bsg-d001343)82.

In addition, the adjacency matrix is downloadable as a connection list (bc.csv)51 (straightforward data record: 
SDR) and a neuroVIISAS project data file (bc.brain)51. The latter contains all data records of the brainstem 
regions where each connection consists of 20 data fields (complex data record: CDR):

•	 Description of source
A short description of source region features with regard to tracer visualization.

•	 Source
The unique abbreviation of a source region.

•	 Description of target
A short description of target region features with regard to tracer visualization.

•	 Target
The unique abbreviation of a target region.

•	 Weight
Ordinal weights w { 3, 2, 1, 0 5, 0, 0 5, 1, 1 5, 2, 2 5, 3, 4}= − − − − . . . .

•	 LessIpsi
Indicates if tracing is stronger ipsilateral than contralateral >i c or contralateral than ipsilateral c i> .

•	 Reference
The ID of the publication which is included in a *.bibtex file (e.g., “Lu:2019a”).

•	 Tracer
The unique abbreviation of a tracer that was used to detect the connection described by the data record.

•	 Case
An abbreviation for an animal or experiment in which a connection has been detected. The abbreviations 
are those which are used in the publication.

•	 Animal
Strain of experimental animal.

•	 Labeling
•	 Soma

Specification of region containing perikarya which are the source of a connection.
•	 SomaNote

Expression of proteins, modulators, transmitters and receptors of a region where a connection begins.
•	 Laterality

The connection links ipsilateral, contralateral or unilateral regions:

– IPSI: ipsilateral
– CONTRA: contralateral
– LL: unilateral left side of brain, body, organization
– RR: unilateral right side of brain, body, organization
– LR: contralateral connection from left to right
– RL: contralateral connection from right to left

•	 Terminal
Specification of region containing the axon terminals which are the target of a connection.

•	 TerminalNote
Expression of proteins, modulators, transmitters and receptors of a region where a connection terminates.

•	 Terminalic
Specification of axonal termination with regard to laterality.

•	 TransportDirection
The direction in which a tracer was transported in the axoplasm with possible values:

– r: retrograde
– a: anterograde
– a/r: retrograde and anterograde
– ta: anterograde transsynaptic transport with unknown intermediate regions
– tr: retrograde transsynaptic transport with unknown intermediate regions
– tma: anterograde transsynaptic transport within a monosynaptic connection
– tmr: retrograde transsynaptic transport within a monosynaptic connection

•	 Modality
The modality designates an entity of a connectional system:

– P: pathway connection
– C: collateral connection: singular monosynaptic connection

•	 Page
The page on which the connection has been described.

•	 Annotation
Comments about the connection.

https://doi.org/10.1038/s41597-022-01219-3
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•	 Collator
Surname of the person who generated the data record.

•	 Date
The date when the data record was generated.

•	 Sex
The sex of the experimental animal: m: male, f: female, m, f: male or female, no entry: unknown sex.

– f: female
– m: male
– m, f: male or female: unknown sex

The data fields Source, Target, Weight, Publication and Laterality are mandatory for importing new con-
nection records into the BC project in the neuroVIISAS framework. However, data records can be re-defined or 
custom-built. The removal of data fields within a project file is not supported. Appending a new field to a record 
is compatible with importing new fields and adding them to the data structure with a certain number of data 
fields. Thus, importing new connectional data structures is possible.

This data record is designed for large and complex connectome projects. However, the relatively short list of 
neuronal connections of the SDR in form of tabulator separated Source, Target, Weight data fields in a csv text 
file is easier to access (an example of a strongly connected random network can be downloaded51). The only 
requirement for such a light import of connectivity data is the definition of a project (root of hierarchy or list 
of regions). Features like laterality and publication links are not defined by importing links and weights, only. 
Nevertheless, they can be defined following the import of the text file.

The BC connectome dataset is openly available for download from figshare51. Available files for download 
are the following:

•	 bc.brain: the complete brainstem connectome with longnames, shortnames, laterality information, weights 
and links to references.bib.

•	 bc.csv: the weighted connectivity data with region codes for loading in spreadsheet software (11717 connec-
tions). It is the version of the straightforward data record (SDR).

•	 scn.csv: Strongly connected directed random network (null model) as a csv text file.
•	 neuroVIISAS_windows-x64_1_4_2_4.exe: the analysis framework for analyzing the BC connectome dataset 

for a MS windows operating system.
•	 neuroVIISAS_unix_1_4_2_4.sh: the analysis framework for analyzing the BC connectome dataset for a Linux 

operating system.
•	 neuroVIISAS_macos_1_4_2_4_Folder.dmg: the analysis framework for analyzing the BC connectome data-

set for a iOS system.
•	 references.bib: Bibtex database representing all references of original research papers which were used to 

build the BC connectome.

Since new concepts of neuronal, neuroendocrine, neuromodular and temporary dynamic connections are 
developed, the data structure allows extensions of field containment. Thus, it is possible to add new types or 
concepts of synaptic connections to the item Modality, such as

•	 Neuronal electrochemical synapse83.
•	 Temporary synapse: Within adult hippocampal neurogenesis new excitatory granule cells are generated in the 

dentate gyrus. Their axons form the mossy fiber tract that links the dentate gyrus to CA384–86.
•	 Tripartite synapse (gliotransmission)87.
•	 Quadpartite synapse88.
•	 Enteroendocrine-vagal-synapse89.

So far, three types of connection modalities have been defined in the database. The classical monosynaptic 
electrochemical connection is defined by leaving the entry of the Modality field blank. Because very many collat-
eral observations were made by injecting two or multiple tracers and because all collaterals belong to a particular 
neuron, they can be considered as a connectional entity. Another modality of connectional entity is a pathway 
which is sometimes described in virus TT studies. This concept of administrating complex modalities of con-
nections is proposed here for the first time. Of course, analysis of collateral connection entities and/or pathway 
connection entities is supported by the neuroVIISAS framework.

In the CDR type of database, connections documented in different publications are clearly distinguishable 
by their Publication ID. Therefore, the import of one table of data, which may contain connections of different 
publications, is a common way of appending new data to a neuroVIISAS project.

A further novelty of the connectome database in general, and of the BC database in particular, is the real-
ization of accumulating the same connections with different features. Different features could be different 
experimental cases within the same publication or the same connections described in different publications. 
Interestingly, we found different weight values and comments of the same connections in different publications. 
Adding these complete raw data to the project database in neuroVIISAS allows us to identify and to filter high 
and low conformity as well as difference of neuronal connections.

https://doi.org/10.1038/s41597-022-01219-3
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Connectome databases in neuroVIISAS. Project files are compressed databases which are loaded in the 
framework. Various project files can be imported in particular project frames allowing the comparison of differ-
ent connectomes46 for differential connectome analyses.

In the simplest case, the mandatory data of a project is just one region. More generally, such a singular 
“region” is a root node to which lists of regions can be mounted or a hierarchy of regions (typically neuroana-
tomical regions) can be generated.

A hierarchy of regions can be organized by introducing a spatial ontology or a neuroontology which defines 
the spatial and topographic relations between distinct regions especially when subregions (children) are branch-
ing from superior regions (parents). However, such an ontological definition of a hierarchically organized termi-
nology is not mandatory for a connectome analysis.

Sets of tables (attribute tables) are customizable for different connectome projects. The tables are linked with 
nodes of the hierarchy. The set of tables in the BC consists of Chemoarchitectonics subtables, Electrophysiology 
subtables, Quantitative information subtables and Special information subtables (Definition table for a region, 
Function table for a region, Cell population characterization table and a Commentaries table).

Each region of the hierarchy can be related to a contour or a closed polygon overlaid on an atlas image, MRI 
section, microscopic section and other types of image data. The image data are organized as a navigable stack 
(jumping, scrolling, selecting, searching for image and image contents). If image stacks are imported that need 
to be defined in a particular reference space like stereotaxic atlases, such a space can be defined even if images 
are not equidistant within one axis. For the following connectome analysis of the BC, the atlas images of the rat 
brain are not necessary.

External databases in the framework which are not directly linked with a region represent further knowl-
edge resources. A region of a project hierarchy can be searched directly through all external databases (Brainfo, 
Lockard, NeuroElectro, Neurolex, Swanson). The import of new databases is possible to enrich the knowledge 
resources.

Bibtex files contain all references of connectome projects. Specifying a bibtex file in a project, will load it 
automatically after the following start of the framework. Then it is possible to obtain reference information for 
each connection. Because pdf locations can be linked with bibtex records, a documented neuronal connection 
can be found in an original research publication by directly loading the publication into a pdf viewer.

The information environment for documentation and coding of raw data is available in an Edit connection 
frame. It contains a Trace code table where each tracer (viral, non viral, passive diffusion tracers) is defined.

technical Validation
Two options are used to test the reliability of the connectivity data of this metastudy. First, a collator-independent 
option compares neuronal connections documented in the original research literature. This approach enables fil-
tering most consensus observations (raw data reliability). Because descriptions of neuronal connectivity obser-
vations in original research publications can be complex and sometimes ambiguous, a second option compares 
neuronal connections in the same original research publication by different collators (collator data reliability).

The different nomenclatures and new definitions of sub-regions are met by the extensible and editable hierar-
chy of regions in neuroVIISAS. Furthermore, more varying nomenclatures (variants concept) can be selected in 
the same connectome dataset, depending on the intention of the evaluator. These and other methods for flexibly 
handling of competing and partially incompatible nomenclatures have been described in detail elsewhere18.

Tracer substances can also be taken up by axons-on-passage or fibers-of-passage around an injection site and 
lead to nonspecific labeling of target regions23,81,90. This nonspecific mechanism represents the most important 
source of error in the interpretation of tract-tracing experiments. Furthermore, different application methods 
(bolus, pressure, intermittent, iontophoretic and its parameters, gel-foam) of the tracers contribute to the obser-
vational variability of neuronal projections. The concentrations of the tracer substances and the applied volumes 
as well as the exact time course of the stereotactic application can also influence the distribution, uptake and 
transport in the neuronal compartment. Farther, variability may occur between the sexes, ages, and lineages 
of the laboratory rats used (Wistar, Sprague-Dawley, Fischer-344, Wistar Kyoto rat, Long Evans hooded rat, 
Osborn-Mendel). Finally, the variability of survival times after tracer application and the distances of target 
areas observed in different studies may be related to the semiquantitative weighting of neuronal connections. In 
the course of our very extensive metastudy, we found that the documentations of experimental conditions was 
inconsistent. Therefore, we collected exactly the data that are most frequently reported in the studies. And it is 
on this basis that we will estimate the reliability and observation scores in the following.

To appraise the raw data reliability of the neuronal connections, an estimation of the data reliability was per-
formed91 by computing an observation score O. A large observation score of a connection indicates that the 
probability of the real biological existence of this neuronal connection is large. A requirement for computing O 
is that most original research publications describing TT results are gathered. As a consequence, the number of 
observations of all known connections of a connectome is larger than the number of connections. The observa-
tion score of a neuronal connection is estimated by adding reliability weights. Reliability weights (Table 2) are 
declared for

•	 types of tracer transport directions (anterograde, retrograde) (t weight of the transport direction of a tracer) 
and

•	 the weight or strength of a neuronal connection (w weight of the connection strength).
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The reliability O is given by:

∑ ∑= + + −+ + − −( ) ( )O w t w t (1)

Multiple observations of the same connection between identical regions are frequently documented in dif-
ferent as well as in the same original research publication in different animals (cases). These multiple connection 
data are available in the BS database and are used to calculate sums of w of case-based and non-case-based 
experimental observations. If a neuronal connection was observed only by a retrograde or anterograde method, 
then a smaller t = 0.5 is assigned than for an observation through an anterograde and retrograde method in two 
independent experiments (t = 1). An anterograde and retrograde tracer transport (bilateral: a/r) is allowed in 
this weighting scheme (Table 2) as well. The subscripts − and + of the variables indicate an observation of an 
existing connection (w+, +t ) or an explicit description that a connection does not exist ( −w , −t ). Hence, explicitly 
not existent connections are weighted by negative reliability weights. The number of observations of a specific 
connection is added up (∑w). The value of t is calculated by identifying different directions (anterograde, retro-
grade) of tracer transports within all connections that were added up. For instance, a particular neuronal 
monosynaptic connection that was observed in 10 different TT experiments by applying anterogradely trans-
ported tracers obtains a w=10 and a t = 0.5 (O 10 5= . ). If the connection observed in a total of 10 times was 
found by using 7 anterograde and 3 retrograde tracers, then t = 1 ( =O 11). Another allocation of o parameters 
may be that a connection is detected 9 times ( w 9∑ =+ ) with 7 retrograde and 2 anterograde tracers ( =+t 1) 
and in addition, this particular connection was not found in one experiment (∑ = −−w 1) with an anterograde 
tracer (t 0 5= .− ), then O 8 5= . . If there are many descriptions in publications that a specific connection does 
not exist, it gets a strong negative observation score. Many descriptions of the same types of observations of a 
particular neuronal connection emerge as a consensus observation with a large O value irrespective of whether 
a connection exists or not. Finally, these scores can be presented in a reliability matrix. It should be emphasized 
that the observation score is defined for the data of a connection between a specific source or efferent region and 
a target or afferent region. Hence, it is not a score for biological connections but rather for the underlying data of 
the connections.

The inter-rater variation of a rat connectome metastudy has been evaluated systematically17. In that study 
neuronal connectivity data for three blinded collators were compared. It was found that the variability of the 
interpretation of neuronal connections from TT original publications is 6%≤  (100%: identical lists of neuronal 
connections of all three raters).

By determining the observation score for each observed connection of the unilateral BS adjacency matrix, an 
observation score matrix O can be computed (Fig. 2a). Furthermore, the discrepancies of all observed connec-

Variable Case Value

t a/r 0.25

t r 0.5

t a 0.5

t r+a/r 0.7

t a+a/r 0.7

t a+r 1.0

t a+r+a/r 1.0

w −3.0 unknown 0.7

w −2.0 fibers of passage 0.0

w −1.0 not clear 0.8

w −0.5 exists 0.9

w 0.0 not present −1.0

w 0.5 very light 1.0

w 1.0 light / sparse 1.0

w 1.5 light / moderate 1.0

w 2.0 moderate / dense 1.0

w 2.5 moderate / strong 1.0

w 3.0 strong 1.0

w 4.0 very strong 1.0

Table 2. Reliability weights used for estimating the reliability parameter o. Value: reliability weight of 
connection strength, t: variable of reliability weight for transport directions of tracers, w- variable of reliability 
weight for strengths of connections, a: anterograde tracer transport, r: retrograde tracer transport, a/r: 
bidirectional tracer transport. a+r+a/r means that a connection has been proved by an anterograde, a 
retrograde and a bidirectional transported tracer.
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tions can be determined (Fig. 2b). A discrepancy of a connection is maximal (1) if a connection has been docu-
mented in an original research publication and the same connection has been explicitly indicated as a 
non-existent connection in another original research publication. The set of weights is we and for any connection 
or edge e w w{ , , }e en1

= …  was used. The discrepancy of an edge de is given by

Fig. 2 Overview of ipsilateral BS matrices. The magnification of all regions with longnames, shortnames and 
color codes is shown in table 2.1 of the tutorial. (a) Observation score matrix. (b) Discrepancy matrix. (c) Exist 
non-exist matrix. (d) Variation of weights matrix. (e) Number of publications matrix.
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To directly recognize contradictions of observed or not observed neuronal connections, the non-exist - exist 
matrix can be computed (Fig. 2c). The non-exist - exist matrix E displays neuronal connections which are 
described by positive statements (exist), and descriptions of explicitly non-existent connections as well as some 
observations which find a connection whereas some others do not confirm such a connection.

The non-exist exist attributes of a connection are defined as
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And finally, the variability of ordinally scaled weights, which are used in the original research publications 
as an estimation of axonal density, is quantified by the standard deviation of transformed weights as shown 
in Fig. 2d. A particular connection that is documented in distinct original research publications with varying 
strengths can be directly identified by a measure of weight or strength variation. If the variation in the weights 
of a connection is small, then the average of connection weights can be considered as a more reliable strength 
than that of a large variation.

Since connectivity data of all original research publications of the BS have been made available, a matrix 
indicating the number of publications describing each connection can be computed as well. A large number of 
original research publications of a particular connection means that the real biological existence of this con-
nection is more probable than an observation documented in only one original research publication (Fig. 2e).

Usage Notes
The data set of the BS connectome is loaded as an bc.brain project file51 into a neuroVIISAS installation on 
Linux, Windows or iOS. The.brain file of a neuroVIISAS project contains the compressed data. It is composed 
of project specific data files. It includes the VTK surface reconstruction of the stereotactic atlas regions and a 
serialization of the Java object structure of the project with the hierarchy of the regions, the neuronal connec-
tions, the contours of the regions and the coordinate systems. The data structure is generalized in such a way that 
diverse biomedical network data, such as protein interactions from proteomic studies, protein interactions of 
the SARS-CoV-2 RNA virus, to give only a few examples from other knowledge categories, can be studied in one 
and the same software infrastructure. Serialization is done using the ObjectOutput stream of Java, which has the 
advantage of storing and loading a complex data structure quickly and easily.

The principal steps (Fig. 3a) for analyzing the BS connectome data start with a general project analysis. 
Thereafter, an adjacency matrix must be specified to perform a global connectome characterization and a local 
network analysis. Thereupon, special structural analyses like motif investigations and communication detections 
may follow. After gaining an overview of the structural features of the connectome, it is far easier to define a sim-
ulation of a dynamic process across a principal pathway and signal propagation analysis. In the following, brief 
instructions are given to assist with the reuse of the BC data, describing important steps in greater detail. After 
the installation of neuroVIISAS, the neuroVIISAS.jar program file can be started by clicking on the neuroVIISAS 
desktop icon (Windows), run.bat (Windows) or run.sh (Linux) batch files. The batch files are located in the 
installation directories of neuroVIISAS. If necessary, the -Xss parameter (stack size) can be increased (“24M“ 
is a very large value for neuroVIISAS project files) by editing the batch files. In the case of starting neuroVIISAS 
directly with a click on the neuroVIISAS.jar file in the installation directory, an error message may appear fol-
lowing loading of the bc.brain project file because the memory and stack size parameters from the batch files are 
not used. The tutorial provides more information51.

The bc.brain project file is loaded by clicking on the entry File in the menu bar of the main window. For this, 
Open project has to be selected in the pull down menu. Because different links and paths are defined for dif-
ferent projects, the path to the references.bib and to the pdf document directory cannot be found by the newly 
installed neuroVIISAS. If the message window “Document path was not found” appears, then the button Skip 
should be clicked. The path to the database of references (references.bib) which is also available in51 can be set 
by click on Settings in the menu bar of the main window and then on Change project settings in the pull 
down menu. Clicking on the button Choose new bibtex file defines the path to the references.bib. Then, it is 
possible to determine the associated publication for each connection. If this path definition is not performed, 
the connectome analysis can be done as well without links to references. After successful loading, a project 
window in the left part of the main window opens. The root node of the BS hierarchy is “13/12/2019_bc_con-
nectome” and the child node of the root node is “Rat”. A double click on the nodes extends the hierarchy. Now it 
is possible to use all resources for analyzing, visualizing and simulation. The analysis window will be opened by 
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clicking in the menu bar on Analysis and then in the pull down menu on Advanced connectivity analysis. 
Now the BS hierarchy must be extended to compute the adjacency matrix by pressing the “+” key nine times. 
Subsequently the Enter key can be pressed and the adjacency matrix in the default view (number of edges) is 
computed. After this basic selection of regions of the BS connectome, further analyses can be done. If a matrix, 
table or computational analysis has been selected, it is necessary to press the Refresh button at the lower right 
corner of the analysis window.

a

b c

d
Fig. 3 Workflow and visualization of the bilateral BC. (a) Workflow of database generation, stepwise data 
accumulation and data analysis, respectively. (b) Overview of bilateral weighted and directed BC. (c) Filtered 
connections with weights ≥ 3. (d) Bilateral visualization for regions with connection weights ≥ 3.
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In addition, connectomes of selected regions can be exported into other formats to be loaded, e.g., in Matlab 
for analyses with the Brain Connectivity Toolbox (BCT)92 or DynamicBC93. More information on specific func-
tions can be found in the entry Help in the menu bar of the main and analysis windows.

Project overview. After loading the BC dataset (bc.brain), the user assigns the original research report data-
base (reference.bib) (Setting menu → Change project settings → Choose new bibtex file → path to refer-
ence.bib). Subsequently, the general project statistic shows a quantitative overview of the BC database (Analysis 
→ Project statistics). 1133 original research publications describe the intrinsic BS connections. A total of 6730 
experimental observations provide details about the neuronal connection. The bilateral tree of sub- and superre-
gions consists of 766 nodes. 465 regions are leaves of the region hierarchy. In the whole tree connections between 
all BS leaves and superregions in both hemispheres are 16306. 2628 reciprocal connections exist in the bilateral 
BS connectome. The bilateral BC connectome contains 95 collateral entity connections and 84 transsynaptic 
connection entities. The frequency of weighted connections is light (4242), strong (3400) and moderate (2729).

Global connectome analysis. The Analysis menu and item Advanced connectivity analysis allow 
analyzing and performing simulations of the BC dataset. The analysis windows shows 5 frames: Triangle hier-
archy, Info, Mini View, Tree hierarchy and Adjacency Matrix. Initially, the Triangle hierarchy frame 
displays the root node of the hierarchy of regions. The hierarchy expands level by level using the “+” key. Pressing 
the button Refresh at the lower right bottom of the window or the “Enter” key computes the adjacency matrix. 
An adjacency matrix contains the information of connections between any pair of regions of a network or con-
nectome. The “Settings” button at the upper right of the adjacency matrix window (beside the two funnel (used 
for data filtering) buttons) allows a display of the Average weight / Most frequent weight in the weighted 
adjacency matrix. This specification of the adjacency matrix determines the data for the following network and 
statistical analyses. The Tab Global parameters opens a table view of global parameters of the specified con-
nectome. Global connectome parameters describe quantitative features of the connectome like how many con-
nections are building the connectome or how many connections are reciprocal. By selecting parameters of interest 
or unchecking complex ones, like the reciprocity, reduces the computing time. This can be done by pressing the 
“Settings” button at the upper right of the window (there are 4 buttons for the operations of the window layout 
and one button for the settings with a mouse over function) which contains the global parameter tables. By 
exporting the computation of different edge (neuronal connections) and node (region) preserving randomization 
models to a SLURM script (slurm workload manager94), the connectome analysis is possible by parallel compu-
tation on a computing cluster. 444 regions (222 left and 222 right hemispheric regions) linked by 4785 weighted 
and directed neuronal connections constitute the bilateral BS connectome. These 444 regions correspond to the 
distinct regions of the stereotaxic atlas of the rat brain95. However, 14 regions are not intrinsically connected. 630 
connections are reciprocal. The line density (density of a connectome is the ratio of the number of connections 
to the number of possible connections in a connectome node) is 2% and the average degree is 19. The degree of a 
region is the number of connections that are connected to that region and the average degree is the average of all 
region degrees. The function average path length (the average shortest path length or characteristic path length) 
calculates the shortest path between all pairs of regions, and computes the average over all paths of the length 
from that. The BC has an average path length of 2.931. The clustering coefficient of a region is the ratio of existing 
connections connecting a region’s neighbors to each other to the maximum possible number of such connections. 
The clustering coefficient for the entire connectome is the average of the clustering coefficients of all the regions 
of the BC. A high clustering coefficient for a connectome is another indication of a small world. The average 
cluster coefficient of the BC is 0.2813. The trade off between high local clustering and short path length is the 
small-worldness. A small average shortest path length and a large clustering coefficient characterize a small world 
network. The small-worldness is relatively large with 10.9 and the modularity is 0.33. The modularity is a meas-
ure of the structure of connectomes. It quantifies the strength of division of a connectome into modules or sets 
of regions. The error Δ from a scale-free distribution of connections is low (0.5). If distributions of the number 
of connections of regions (degrees) follow a power law, then it is a scale-free network-free network. The error Δ 
indicates the differences in the distribution of connectional regions of the BC connectome to the distribution fol-
lowing the power law. A small error Δ indicates a large similarity of the BC and a scale-free network. By compar-
ing 8 different edge- and node-preserving random networks, Watts-Strogatz and rewiring models turned out to 
be most similar to the BC connectome with regard to other random models. The difference of the Watts-Strogatz 
networks and the BC connectome indicates a specific connectional organization of the BC connectome.

By filtering the connectome for connection weights 3≥ , 1032 connections remain (Fig. 3c). Even after filter-
ing and condensing strong edges of the BC, the connectivity of intrinsically strongly connected BS regions 
remains complex.

Local connectome analysis. The computation of local network parameters works in the manner described 
for the global connectome analysis. The Tab Local parameters opens an empty table where parameters can be 
specified through the “Settings” button. The Shapley index and average values of dynamic simulations (AvgSEREx, 
AvgRDEx, AvgFHNEx, FHNSpikes, AvgHREx) are computationally complex. The settings list (upper right button 
of the local parameter table window) allows unchecking these local parameters. The 444 regions of the bilateral 
BC are ranked by computing 23 among 54 local network parameters (e.g., Degreeall , ClusterCoefficient , 
Katz status index− − 96,97, Excentricity, Betweeness, −Shapley index98). It turns out that the pedunculopontine 
tegmental nucleus, laterodorsal tegmental nucleus, median raphe nucleus and raphe magnus nucleus have the 
largest ranks in the bilateral intrinsic BC connectome. Average large ranks shape strong connectivity (Degreeall) at 
strategic positions ( − − −Katz status index Shapley index, ). It is now clear that these regions are most impor-
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tant with regard to network integrity of the bilateral BC. This is also confirmed by vulnerability analysis (results 
are not shown)99.

Motif analysis. Selecting the Tab Motifs initializes the motif analysis. The Motifs generator creates 13 
3-node subgraphs. Isomorphism search (Statistics search) determines the frequency of all 13 motifs. The 
isomorphism search counts these 13 directed 3 node motifs100,101 in the bilateral BS connectome and in 1000 
edge- and node-preserving Erdös-Rényi randomizations (Fig. 4a). The chain motif 3-02 has the largest frequency. 
In other studies we have observed that the circular motif 3-07 occurs less frequent in empirical networks than in 
random networks. Interestingly, the circular motif 3-07 occurs more often in the BC than in 1000 simulations to 
a slight but significant extent/degree. Notably, more complex motifs (reciprocal edges) have significantly larger 
frequencies than the simple convergent, divergent or chain motifs.

Community structure. Before community analysis is available, it is necessary to define a variant class in the 
main window. It allows a rearrangement of regions by the community detection approach. Again, in the Analysis 
menu, the item Advanced connectivity analysis is selected and the adjacency matrix must be specified for 
community analysis. The menu Other offers the Hierarchical clustering functions used in the following.

The community structure of the unilateral intrinsic BC (bc.brain project file) with 222 nodes and log trans-
formed weighted 1645 edges was analyzed. The community detection Louvain modularity analysis (LMA)102 
using a γ = 1 and 10000 iterations for consensus clustering103,104 determines 4 modules. These 4 modules have 
some functional preferences (Fig. 4b):

Module 1 (Olivar): lateral lemniscus nuclei, para-, peripheral and superior olivar nuclei and nucleus of the 
trapezoid body

Module 2 (Vegetative, sensoric): Ambiguus nucleus, solitary system, gracile nucleus, cuneate nucleus

Module 3 (Reticular, oculomotoric): Mesencephalic reticular formation, oculomotor nuclei

Module 4 (Mesencephalic, motoric): Mesencephalic nuclei, pontine nuclei, tegmental nuclei

The weighted stochastic block (WSBM) modeling approach using 10000 iterations105–108 (Fig. 4c) computes 
somewhat other modules. The WSBM generates the following 4 modules:

Module 1 (Collicular, olivar): Lateral lemniscus nuclei, inferior colliculus nuclei, para-, periolivary and superior 
olivary nuclei

Module 2 (Reticular, oculomotor): Locus coeruleus, reticular formation nuclei, raphe nuclei, pretectal oculo-
motor nuclei, facial nucleus

Module 3 (Mesencephalic, motoric, sensoric): Mesencephalic nuclei, periaqueductal nuclei, noradrenergic cell 
groups A5 and A7, cuneate nucleus, gracile nucleus, inferior olive

Module 4 (Mixed-sparse): Ambiguus nuclei, C2, C3 cell groups, trapezoid nuclei, subcoeruleus nuclei

The modules 1 to 3 of WSBM possess denser connections than module 4. Such a distribution of dense con-
nections and a large sparsely connected module are a typical core-periphery organization105.

Grouping by consensus clustering of LMA and by WSBM sorts the regions of the adjacency matrix with 
respect to the density of their connections. Thus, if a group of regions is found to be more strongly connected to 
each other than to regions of one or more other groups, then this group is called a module. The intrinsic connec-
tivity architecture is thus analyzed to maximize common neural connections within a module. It is important to 
emphasize that only ipsi- and contralateral directed neuronal connections are used to calculate the composition 
of the groups.

The module 1 is composed of regions that are primarily components of the auditory system. These include 
the nuclei of the lateral lemniscus, which contain neurons that are a major component of the ascending auditory 
pathway and include both monaural and binaural cell groups. They are a major source of input to the inferior 
colliculus. The superior olivary complex is a collection of smaller nuclei that are important for the ascending 
and descending auditory pathways. The trapezoid body or ventral acoustic striata forms a part of the auditory 
pathway that originates from the anterior cochlear nucleus and crosses the side before termination in the supe-
rior olivary nucleus. Thus, these intensely neuronally connected regions represent the functional core of the first 
module. Connectivity here seems to be closely correlated with the same to very similar auditory subfunctions of 
separable nuclear regions.

Module 2 was assigned to the nucleus ambiguus, the nucleus of the solitary tract (solitary system), the 
nucleus gracilis, and the nucleus cuneatus, among others. The nucleus ambiguus represents a group of large 
motor neurons in the depth of the medullary reticular formation. These neuron groups innervate muscles of the 
soft palate, pharynx and larynx (swallowing). Furthermore, preganglionic parasympathetic motor neurons are 
present that innervate postganglionic parasympathetic neurons (ganglia) of the heart cardioinhibitory. Thus, 
ipsilateral branchial efferent motor fibers of the vagus nerve originate from the nucleus ambiguus and terminate 
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Fig. 4 Motif, modularity and dynamic analyses. (a) Motif analysis of 13 directed 3 node motifs. The motifs on 
the x-axis were sorted by the z-values. Blue dots indicate the frequency of motifs in the empirical BS. Black dots 
indicate frequencies of 1000 edge and node preserving randomization. Y-axes (frequencies) is logarithmically 
scaled. (b) Consensus clustering (10000 iterations) of Louvain modularity with γ = .1 0 of the unilateral BC. 4 
modules along the main diagonal were highlighted. (c) Weighted stochastic block matching of the unilateral BC 
(10000 iterations). 3 modules around the main diagonal are clearly visible. The 4th module contains sporadic 
connections, only. (d) FHN simulation with initial condition >0 for left dorsal root ganglia (DRG_l) (red). 
Magenta curve: Right ventroposterolateral thalamic nucleus (VPL_r), Brown: Right primary somatosensory 
cortex (S1_r), Turquoise: Left cuneate nucleus (Cu_l). (e) Modulation function for connection weights. (f) 
Decrease in membrane potentials of primary somatosensory cortex activation.
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laryngeally, pharyngeally, or in the soft palate. In addition, fibers extend from the nucleus ambiguus via the glos-
sopharyngeal nerve to the stylopharyngeus muscle.

In contrast to the motor ambiguus system, the solitarius system processes sensory signals from the facial, 
glossopharyngeal and vagus nerves. The ambiguus system projects to the reticular formation, parasympathetic 
preganglionic neurons, hypothalamus (paraventricular nucleus) and thalamus, forming circuits important for 
processing information for autonomic regulation. Functionally important is the transmission of taste informa-
tion of the facial nerve via the chorda tympani, the glossopharyngeal nerve and the vagus nerve. Another quality 
of information of this system comes from chemoreceptors and mechanoreceptors of the general visceral path-
way of the carotid body via the glossopharyngeal nerve and from the aortic bodies and sinoatrial node via the 
vagus nerve. Finally, the nucleus ambiguus chemically and mechanically receives information from the heart, 
lung, airways, gastrointestinal system and many other organs.

The sensory and motor nucleus complexes of module 2 functionally combine to provide vital reflexes such 
as the gag reflex or pharyngeal reflex. The assignment of two distinct categories of neuronal functions sensoric 
vs. motoric in the same module speaks to a circuit concept in which different neuronal processing components 
must necessarily be arranged to provide integration of neuronal signals that allow organisms to adapt to chang-
ing environmental conditions.

Module 3 is composed of the reticular formation and oculomotor core areas among other structural and 
functional subsystems. An integral part of the reticular formation system is the raphe system with a multitude 
of important sub-functions such as the suppression of pain reaction (descending pain modulation) and in the 
broadest sense the control of spinal cord activity. But also the regulation of the sleep-wake cycle, autonomic 
activity, reproductive behavior and neuroendrine control are important functional components of the medullary 
and mesencephalic reticular system. The connectivity of the reticular system and the oculomotor nuclei have 
been assigned to module 3 and this may indicate that ascending reticular activation (ARAS) or CNS arousal 
system is coupled with the oculomotor system to trigger visual attention at the brainstem level.

Module 4 includes nuclear areas of the mesencephalon, pontine and tegmental nuclei and therefore appears 
functionally inhomogeneous mainly because corticocerebellar projections are switched in the pons. However 
the pons can be subdivided into a basal pontine nuclei complex and a reticulotegmental part, so that here too, 
in addition to a connectional relationship, there is also a functional relationship of the pontine complex to 
tegmental nuclei composed of the laterodorsal tegmental nucleus, the pedunculopontine nucleus (pedunculo-
pontine tegmental nucleus), the rostromedial tegmental nucleus, and the tegmental pontine reticular nucleus. 
Functionally, a trigger and activation function of the cortico-cerebello-thalamo-cortical pathway is also sug-
gested here. The biological significance of the modules is to intertwine similar and dissimilar functions by 
means of neuronal connectivity in such a way that polysynaptic reflexes and complex behavioral patterns can be 
adapted to changing environmental conditions.

We are aware that the grouping is not perfect and reflects each type of functional component of the brain-
stem. These include the vestibulo-spinal system, the brainstem respiratory circuits and the control system of 
the lower urinary tract, which requires carful coordination by neural pathways in the spinal cord to control 
conscious micturition. One explanation for the incomplete grouping could be the high connectional density to 
extrinsic regions of the connectome.

The 4 modules calculated by the consensus clustering of the Louvain modularity analysis and the 4 modules 
of the WSBM show obvious differences. The arrangements of BS connectome regions show a mixed topology105. 
WSBM arranges regions with functional similarities within same modules. Furthermore, WSBM identifies a 
core-periphery structure of densely interconnected regions in the first and second module.

Propagation in a BS connectome coupled FitzHugh-Nagumo simulation. Structural data on neu-
ronal networks in the form of systematically collated connections are an important basis alongside dynamic mod-
els and the functional properties of these connections. The importance of dynamic modeling was motivated in 
detail in109. Computational modeling of dynamic processes provides important information about the properties 
of connectomes and networks. In this respect, different approaches can be applied depending on the questions at 
hand such as top-down modeling to study the structure-functions relationships of neural circuits or bottom-up 
modeling to reconstruct a neural system in detail in terms of a reverse engineering approach110,111. However, 
developing a realistic model of brainstem functionality and studying its dynamic properties is problematic for 
the following reasons.

Immunohistochemical demonstration of marker enzymes of neurotransmitter and neuromodulator metab-
olism are also detected in various tract-tracing publications. Where this information is available, it has been 
recorded by us. We have also made this information available in the bc.csv file. Unfortunately, there are also 
many tract-tracing studies that have other objectives and do not provide information on inhibitory or excit-
atory connectivity. Even if evidence on inhibitory and excitatory components of microcircuits is available in 
publications, electrical synapses thus gap junctions and gliotransmission may also modulate excitatory and 
inhibitory signaling that have not been studied in the same publications. In addition, antagonistic effects of the 
same neurotransmitter on different postsynaptic receptors such as dopamine 1 receptors and dopamine 2 recep-
tors must be considered. It follows that even if the neurotransmitter-neuromodulator pattern of interconnected 
regions is known, data on the receptor composition of postsynaptic targets are lacking. All in all, the necessary 
data are incomplete to perform realistic dynamic modeling of excitatory and inhibitory neuron populations 
of the brainstem connectome based on neurotransmitter measurement data. Therefore, we did not intend to 
perform a realistic simulation in the sense of a reverse engineering bottom-up approach. Due to insufficient 
neuroanatomical data, we implemented another accepted methodology in neuroVIISAS to study the flow of 
information in directed and weighted connectomes. Dynamic models can be used in neuroVIISAS based on 
coupled oscillators (Kuramoto, Stuart-Landau, Chen, van der Pol and many more)112–117. Different neural mass 
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models are also available in neuroVIISAS118–121. Population models can be applied to simulation engine NEST in 
directed and weighted connectomes via a Python interface122 which is available as well in neuroVIISAS. Several 
studies investigate connectome and network dynamics using point neuron models such as FitzHugh-Nagumo 
(FHN)123–128, Morris-Lecar129, Hodgkin-Huxley130,131 and others. Here, we utilized the coupled excitatory FHN 
model to the directed and weighted brainstem connectome because it is well characterized and can be efficiently 
computed123,132–140. Coupled FHN models are widely accepted to characterize network models and connectomes 
in terms of their dyamic properties (coherence) as well as to understand the relationship between network topol-
ogies and activation patterns. Therefore, the FHN model was also applied to the brainstem connectome for an 
exemplary application.

The connections between dorsal root ganglia (DRG), ipsilateral brain stem regions, contralateral thalamus 
(VPL: ventral posterolateral thalamic nucleus) and the contralateral target region primary somatosensory cortex 
(S1) couple the excitatory FitzHugh-Nagumo (FHN) model neurons123–127. For this adaption of the BC con-
nectome the database bcFHN.brain was used which is available at figshare. The menu Analysis panel opens a 
Simulation sub-menu with different classes of dynamic models like the FHN-simulation. The Settings button 
displays modeling parameters. This model uses the direction of connections and the log transformed weights. In 
a first simulation, the initial conditions are related to DRG_l and connection weights are not modulated. Fig. 4d 
documents a stable oscillation with weak phase shifts. This pattern of oscillations is still visible by repeating the 
simulation. In the following, this oscillation pattern is compared with the pattern that emerges when the weights 
of the connections are changed.

A linear decrease in connections weights shapes the change of weights in terms of a demyelination pro-
cess (Fig. 4e). The FHN model uses the same parameters like those in the control simulation (Fig. 4e). The 
oscillations of the non-modified BC are directly compared with the selective weight-modifications BC. It turns 
out that especially the target region of the somatosensory pathway, which is the right hemispheric primary 
somatosensory cortex (S1_r), displays a relatively stronger decrease in membrane potentials than Cu_l and 
VPL_r do (Fig. 4f). The structural change appears to lead to a change of dynamics. The linear decrease in con-
nection weights of the first neuron of the somatosensory pathway (all other weights were not modified) in the 
BC connectome (all regions and connections were left in place) causes a change of oscillations of the S1 target 
region relatively (contralateral) far away from the structural deficit in the spinal cord. Further work is needed to 
determine the interference of signals through multiple inputs and outputs of regions along the somatosensory 
pathway through the brainstem connectome.

Code availability
The code written in JAVA for the generation of the BC database and the analysis of the connectome including the 
database is available at https://neuroviisas.med.uni-rostock.de/neuroviisas.shtml.
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