
Vol.:(0123456789)1 3

https://doi.org/10.1007/s10278-020-00417-y

Lung Nodule Classification Using Biomarkers, Volumetric Radiomics, 
and 3D CNNs

Kushal Mehta1 · Arshita Jain1 · Jayalakshmi Mangalagiri1 · Sumeet Menon1 · Phuong Nguyen1 · 
David R. Chapman1 

Received: 8 May 2020 / Revised: 8 May 2020 / Accepted: 30 December 2020 
© The Author(s) 2021

Abstract
We present a hybrid algorithm to estimate lung nodule malignancy that combines imaging biomarkers from Radiologist’s 
annotation with image classification of CT scans. Our algorithm employs a 3D Convolutional Neural Network (CNN) as 
well as a Random Forest in order to combine CT imagery with biomarker annotation and volumetric radiomic features. We 
analyze and compare the performance of the algorithm using only imagery, only biomarkers, combined imagery + biomark-
ers, combined imagery + volumetric radiomic features, and finally the combination of imagery + biomarkers + volumetric 
features in order to classify the suspicion level of nodule malignancy. The National Cancer Institute (NCI) Lung Image Data-
base Consortium (LIDC) IDRI dataset is used to train and evaluate the classification task. We show that the incorporation 
of semi-supervised learning by means of K-Nearest-Neighbors (KNN) can increase the available training sample size of the 
LIDC-IDRI, thereby further improving the accuracy of malignancy estimation of most of the models tested although there is 
no significant improvement with the use of KNN semi-supervised learning if image classification with CNNs and volumetric 
features is combined with descriptive biomarkers. Unexpectedly, we also show that a model using image biomarkers alone 
is more accurate than one that combines biomarkers with volumetric radiomics, 3D CNNs, and semi-supervised learning. 
We discuss the possibility that this result may be influenced by cognitive bias in LIDC-IDRI because malignancy estimates 
were recorded by the same radiologist panel as biomarkers, as well as future work to incorporate pathology information 
over a subset of study participants.
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Introduction

Lung cancer accounts for the highest number of cancer 
related deaths globally, but early detection can improve 
prognosis. Lung cancer screening using low-dose computed 

tomography (LDCT) has become standard practice as a way 
of determining which pulmonary nodules are likely benign 
and which nodules require biopsy to determine malignancy. 
However, lung cancer screening has a high false positive 
rate clinically due to the need to identify a large percentage 
of malignant nodules for biopsy. Thus, many biopsies are 
performed on patients that ultimately do not have cancer. 
Our goal is to develop a hybrid Computer-Aided Diagno-
sis (CAD) algorithm that combines Convolutional Neural 
Network (CNN)-based image classification, with volumetric 
Radiomics, as well as descriptive biomarkers from Radi-
ologists annotation. We also evaluate the extent to which 
descriptive biomarkers can be used for the purposes of semi-
supervised learning in order to help to reduce this false posi-
tive rate.

The main objective of this paper is to determine to what 
extent that imaging biomarkers (from radiologist annota-
tion) can be combined with automated 3D image clas-
sification of CT scans in order to create a hybrid human 
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knowledge + machine learning algorithm for the assessment 
of lung nodule malignancy. In this paper, we present an algo-
rithm for classifying the lung nodule malignancy suspicion 
level as either being malignant or benign where malignant 
means that the nodule is highly suspicious and benign being 
that the nodule is highly not suspicious. Our approach is to 
combine these data sources using a CNN as well as a random 
forest classification algorithm.

The novelty of our approach lies in two factors that have 
not been previously explored utilizing the LIDC-IDRI 
dataset for lung nodule malignancy estimation. #1 The 
integration and impact analysis of the combination of image 
classification (CNN + volumetric radiomics) in tandem 
with descriptive biomarkers from radiologists annotation. 
#2 The use of descriptive biomarkers as a foundation for 
semi-supervised learning in order to make use of nodules 
with “intermediate” malignancy as part of the training data. 
We describe as part of our literature review, that these two 
techniques have not yet been analyzed to determine their 
relative impacts on lung nodule malignancy estimation. As 
such, our approach implements both of these methodologies 
and we make use of hypothesis testing in order to determine 
the extent to which combination either or both of these 
techniques improves the sensitivity and specificity of 
malignancy estimation as measured by AUC. The goal is 
to show that both of these techniques have the ability to 
increase the AUC of lung nodule malignancy estimation as 
compared with baseline algorithms that do not take these 
factors into account.

For the classification of lung nodule malignancy, we use 
the scores of levels 1 to 5 which are labeled by the four 
board-certified radiologists for the creation of the LIDC-
IDRI dataset for lung nodules ≥ 3 mm. These scores range 
from 1 to 5 with 1 meaning highly unlikely to be malignant, 
2 as moderately unlikely, 3 as intermediate, 4 as moder-
ately suspicious to be malignant, and 5 as highly likely to be 
malignant. The total number of lung nodules after removing 
inconsistent data is 4505.

We assess and compare the classification accuracy of malig-
nancy suspicion by using general categories of computational 
strategies: radiologist identified image biomarkers using Ran-
dom Forest, image classification using 3D CNNs, and hybrid 
algorithms that combine image features, biomarkers, and volu-
metric radiomic features. In our assessment we will determine 
the discriminating power of each of these techniques individu-
ally as well as combined and also measure the impact of semi-
supervised learning in improving the classification accuracy 
of the random forest algorithm.

An unexpected result of our analysis is that the biomarker 
only predictions perform better and achieve higher AUC 
than the hybrid model that combines biomarkers, volu-
metric radiomics, and 3D CNNs. This would suggest that 
descriptive biomarkers are superior to volumetric radiomics 

as well as 3D CNNs. However, it is impossible to eliminate 
the possibility of cognitive bias in the LIDC-IDRI, because 
the biomarkers are recorded by the same radiologist panel 
that estimated malignancy [14].

What Are Biomarkers

The National Institutes of Health biomarker definition work-
ing group defined a biomarker as “a characteristic that is 
objectively measured and evaluated as an indicator of nor-
mal biological processes, pathogenic processes, or pharma-
cologic response to a therapeutic intervention.”

In the area of medical imaging, an imaging biomarker is 
a characteristic feature of an image which is applicable to a 
patient’s diagnosis. Imaging biomarkers play a vital role in 
major medical fields such as oncology as they are widely use-
ful in predicting the lung nodule malignancy suspicion. There 
are several applications of biomarkers which includes predic-
tion, detection, staging, grading, and evaluation of respon-
siveness to the treatment. Imaging biomarkers are utilized 
for all of these applications, and they have the advantage 
of being non-invasive and being spatially and temporally 
resolved. The biomarkers of a nodule independent on each 
of the CT scans include subtlety, internal structure, calci-
fication, sphericity, margin, lobulation, spiculation, texture, 
and malignancy. Each of these characteristic features are 
explained briefly in the following sections.

What Are Volumetric Radiomic Features?

Lung CT scans contain features that are either qualitative or 
quantitative. These features reflect the pathophysiology of 
the nodule. These quantitative features are extracted from 
the image with the help of mathematical and data charac-
terization algorithms. This process is known as radiomics, 
and the extracted quantitative features are known as radiomic 
features. V. Parekh et al. [9] define it as, “Radiomics is the 
high throughput extraction of quantitative features from radio-
logical images creating a high dimensional data set followed 
by data mining for potentially improved decision support.” 
The radiomic features mainly comprise of texture, shape, and 
gray level statistics of the nodule. We focus on the shape and 
volumetric features in this study, specifically, the maximum 
diameter of the nodule, the surface area, and the volume of the 
nodule. The units for each of these features are in millimeter, 
square millimeter, and cubic millimeter.

Literature Review

Algorithms and statistical methodologies to predict the 
probability of lung nodule malignancy are an area of active 
research. Many related papers have developed methodologies 
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to estimate the probability of malignancy using either human 
annotated imaging biomarkers, or automated image classi-
fication algorithms. However, few papers have attempted to 
combine this human annotation with automated image clas-
sification into a single technique.

The analysis of imaging biomarkers and their discrimi-
nating power for nodule malignancy is an important area 
of research. Liu et al. [1] present a cross-validated analysis 
where they identify the radiological image characteristics 
most helpful in predicting the risk of malignancy in lung 
nodules. These semantic qualities are further integrated 
with size-based measures which lead to enhanced predic-
tion of accuracy. Their methodology measures the quantity 
of incidentally recognized pulmonary nodules depending 
on some observed radiological features measured on a 
point scale and followed by a machine-learning method 
which utilizes this information in predicting the status of 
cancer. Hancock and Magnan [2] explored the predictive 
ability of statistical learning methods for classifying the 
malignancy of lung nodules using LIDC dataset and the 
radiologist annotations for the lung nodules from where 
they derived estimates of the diameter and volume of the 
lung nodules. Also, the paper strongly states that the lung 
nodules can be classified as malignant or benign by just 
using quantified, diagnostic image features. In their classi-
fication of malignancy, they have analyzed how accurately 
the malignancy could be classified depending upon the 
particular features and feature subsets and have ranked 
spiculation, lobulation, subtlety, and calcification to be 
the top four features that is having higher predictive power 
than others. They have calculated theoretical upper bounds 
on the accuracy of classification which can be achieved by 
an ideal classifier by just using the annotated feature values 
assigned by the radiologist which can get can accuracy of 
85.74% which is 4.43% below the theoretical maximum of 
90.17% with AUC score of 0.932. But when they have also 
considered diameter and volume features, then this AUC 
score has enhanced to 0.949 with an accuracy of 88.08%. 
As such it is clear that machine learning using radiologist 
annotated imaging biomarkers is a viable approach.

A separate branch of related research studies has inves-
tigated automated image classification techniques. In 
recent years two main branches of image classification 
methods have been investigated: (a) automated feature 
extraction using deep neural networks and (b) hand-crafted 
feature extraction using radiomics. Deep neural networks 
attempt to learn a representation and have outperformed 
the use of hand-crafted features on general image classifi-
cation tasks [3] [4] [5]. Radiomic however are quantifiable 
radiological features that can be algorithmically extracted 
through hand-crafted computer vision techniques.

The use of deep neural networks was first explored by 
Kumar, D., Wong, A., and Clausi, D. A. (June) [6]; the 

authors applied deep autoencoders with a binary decision 
tree classifier to estimate malignancy of 4323 nodules of 
the LIDC-IDRI dataset, achieving an overall accuracy of 
75.01% with 83.35% sensitivity and a false positive of 0.39 
per patient over a tenfold cross validation.

3D CNN models for nodule malignancy were first explored 
by Li, W., Cao, P., Zhao, D., and Wang, J. [7]. The authors 
designed specific network architectures for three types of 
nodules namely solid, semisolid, and ground glass opac-
ity (GGO). These architectures were trained using 62,492 
regions-of-interest (ROIs) samples which include 40,772 
nodules and 21,720 non-nodules from LIDC-IDRI database. 
Furthermore, the paper has a deep CNN presented which is 
built on 32 * 32 image ROI data. The need for separate archi-
tectures was resolved by Shen et al. (2017) [KM1] which 
presents a novel Multi-crop Convolutional Neural Network 
(MC-CNN). The MC-CNN model follows a novel multi-crop 
pooling strategy and has the added advantage of deriving nod-
ule semantic attributes and diameter in addition to estimating 
the lung nodule malignancy. Apart from classifying the nodule 
malignancy suspicion, the authors in this paper have extended 
their proposed approach furthermore to evaluate uncertainty 
of malignancy by quantifying nodule semantic label predic-
tion which includes the characteristic features like subtlety and 
margin along with estimating the diameter of the nodule using 
their proposed multi-crop convolutional neural networks. This 
approach helps the researchers in the assessment of uncertainty 
of malignancy in lung nodules, and their results in this paper 
seem to be motivating.

Zhao et al. [5] employs a CNN called Agile CNN that 
uses a unique combination of LeNet [8] and Alexnet [9] for 
classification of the lung nodules in the LIDC dataset into 
malignant and benign class. The LeNet architecture is used 
with the parameter settings of Alexnet [9]. Inputs to this 
model are 2D images of shape 53 by 53 that contain non-
centralized nodules. They achieve an accuracy of 82.2% and 
an AUC of 0.877 for a dataset that contains 243 CT image 
nodule samples. While traditional 2D CNN’s are efficient in 
image classification problems, a CNN that takes 3D images 
as input is better suited to solve medical image classification 
problems. A 3D region of interest has the potential to encap-
sulate the entire nodule, and the CNN can extract abstract 
features in 3 dimensions.

Ensemble CNN estimation was investigated by Liao 
et al. [10]. Their model has two modules where a 3-d 
region proposal network (RPN) detects suspicious nod-
ules and the second module picks up the top five nodules 
which seem to be having more probability based on its 
evaluation and integrates them with a leaky noisy-OR gate 
for acquiring the probability of lung cancer in a patient. 
They used a modified U-net as their backbone network 
for both of its modules. All of these algorithms that 
employ deep neural networks have attempted to perform 
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automated feature extraction, although recent methods 
have required architectural enhancements in order to 
extract features at a variety of scales. Our research differs 
from these approaches because we attempt to incorporate 
imaging biomarkers from human annotation in addition to 
automated feature extraction using 3D CNNs.

Radiomics-based approaches have the advantage that 
the extracted features are quantifiable and have an intui-
tive radiological definition [15]. Rodrigues et al. [11] 
aimed at classifying the lung nodules of being malignant 
or benign along with classifying the levels of malignancy 
(1–5). For such a classification, a novel structural co-
occurrence matrix (SCM)–dependent approach is used 
for the extraction of features though the images of nod-
ules before classifying them as being malignant or benign 
along with the levels of malignancy. For this classifica-
tion, the authors in this research have made use of three 
classifiers namely multilayer perceptron, support vector 
machine, and k-nearest neighbors’ algorithm.

The most similar approaches to our research are algo-
rithms that combine multiple techniques. Causey et al. 
[12] have developed a highly accurate image classification 
algorithm named NoduleX which uses a combination of 
CNN as well as radiomics for prediction on lung nodule 
malignancy using CT images of LIDC data set. They also 
presented several variations of the radiomics as well as 
deep learning CNN hyperparameters. This paper detects 
high accuracy in classifying lung nodule malignancy with 
an AUC of 0.99. Our research differs from Causey et al. 
[12] in that we investigate the classification accuracy of 
3D CNNs + imaging biomarkers (from radiologist annota-
tion), as opposed to 3D CNNs + Radiomics.

In Li et al. (2019) [13] a fusion algorithm is proposed 
where they have integrated the highest level CNN repre-
sentation learned at the output layer of a 3D CNN with 
the handcrafted features by utilizing the support vector 
machine that couples with the sequential forward features 
selection approach for selecting the optimal feature subset, 
thereby building the final classifier. The authors of this 
paper claim that their fusion algorithm could pave a path 
to enhanced performance in recognizing the malignant 
and benign lung nodules by using the LDCT lung cancer 
screening dataset with a high sensitivity and specificity.

Materials and Datasets

LIDC‑IDRI Dataset Overview

The LIDC-IDRI dataset [8] is a publicly available dataset 
that consists of diagnostic and lung cancer screening thoracic 
computed tomography (CT) scans with marked-up annotated 
lesions. This dataset is a web-accessible international 

resource initiated by the National Cancer Institute (NCI), 
and then further developed by the Foundation for the 
National Institutes of Health (FNIH) and going along with 
the Food and Drug Administration (FDA). LIDC is used 
for the purpose of research towards development, training, 
and assessing of computer-aided diagnostic (CAD) methods 
for detecting and diagnosing lung cancer in its early stages. 
This dataset is created in collaboration with seven academic 
centers and eight medical imaging companies that have 
1018 CT cases where it has thoracic CT scan images as 
DICOM files, and an additional XML file, for each patient. 
The LIDC study has annotations that are provided by four 
experienced thoracic radiologists who reviewed each of all 
the 1018 CT cases in the LIDC/IDRI cohort and marked 
lesions into 3 categories based on the nodule size. The 
nodule ≥ 3 mm means that they have a greater probability 
of being malignant than lesions that have a nodule < 3 mm 
and non-nodule ≥ 3 mm. The malignancy rating is given 
from 1 to 5 depending on the size of the nodule.

Image Biomarkers

Each nodule ≥ 3 mm in the LIDC-IDRI dataset contains 
the following image characteristics which were annotated 
by four independent board-certified radiologists,

Subtlety: Difference between the lung and its surround-
ings.
Internal Structure: Composition present internally in 
the nodule.
Calcification: Appearance of calcium in the nodule. The 
smaller the nodule, the more likely it comprises cal-
cium for visualization. A nodule being benign is highly 
related with a calcification rating that is central, non-
central, laminated, and popcorn.
Sphericity: The measurement of the shape of a nodule 
in terms of roundness.
Margin: Looking for how well the margins of the nod-
ule are established.
Lobulation: If the lobular shape is clearly visible from 
the margin or not. If it is apparent, then it is a sign of a 
nodule being benign.
Spiculation: Level to which a nodule is exhibiting spic-
ules or spike-like formations along the border of lung 
nodule where spiculated margin indicates that the nod-
ule is malignant.
Texture: The density of the nodule internally which 
serves as an important characteristic when segmenting a 
nodule as partly solid and nonsolid texture can complicate 
when establishing the nodule boundary.
Malignancy: Likelihood of growing cancer where malig-
nancy is highly likely to be related with large nodule size 
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and smaller nodules being more likely to be benign. Also, 
the nodules associated in being benign are noncalcified 
and include spiculated margins.

According to the LIDC/IDRI dataset, the classification 
of these biomarkers belongs to only the nodules whose size 
is ≥ 3 mm and our model has trained accordingly for pre-
dicting the malignancy levels. Since our dataset has 1010 
patients and nodules greater than the number of patients, 
we have found that 6859 nodules are ≥ 3 mm according to 
annotations that are provided by the four experienced Radi-
ologists. However, for a subset of 100 cases among the initial 
399 cases released, there is some rate of inconsistency with 
respect to the spiculation and lobulation characteristics of 
lesions that are identified to be nodules > 3 mm. Due to 
this inconsistency in the data, XML nodule characteristics 
data will have an impact, and thus, we have excluded this 
inconsistent data by considering the CT scans that were pre-
sent in the initial release. Therefore, we ended up having 
4505 nodules which are ≥ 3 mm. Each of these nodules now 
have 8 characteristics in total along with 1 characteristic 
called malignancy that is treated as a label for that particular 
nodule.

Nodule Visualization

LIDC-IDRI consists of lung cancer screening thoracic 
computed tomography (CT) scans with marked-up anno-
tated lesions. Each subject includes CT scan images and an 
associated XML file that records the results of image anno-
tations by experienced thoracic radiologists. Each XML 
file consists of nodules divided in three broad categories: 
nodules ≥ 3-mm diameter, nodules < 3-mm diameter, and 
non-nodules ≥ 3-mm diameter. For each nodule ≥ 3 mm, 
each radiologist drew a complete outline around the nod-
ules in all sections that it appeared, with the pixels that 
comprise the outline at the first pixel outside the nodule. 
These annotations are given in the form of nodule regions 
of interest and their z-positions. We used these spatial 
coordinates to construct a 3-D box and 3-D mask, cen-
tered at annotated locations of lung nodules, of a fixed 
size. We use box size of 32 pixel × 32 pixel × 16 slices for 
our experiments.

We combine the biomarkers, 3D image volume, and the 
3D image mask into a unified dataset that we use for all our 
experiments in this paper. The dataset is saved as a numpy 
array and contains the following information for every anno-
tation in the LIDC Dataset.  

When combining biomarkers and volumetric Radiomics, 
the features are as follows,

Subtlety
Internal Structure
Calcification
Sphericity
Margin
Lobulation
Speculation
Texture
Malignancy
Patient ID
3D Volume
3D Mask

Approach

We treat the malignancy category approximation as a 
binary classification problem for “Malignant” versus 
“Benign” nodules by splitting the annotated nodules on 
the radiologist assigned malignancy scores. Note that the 
terms “Malignant” and “Benign” refer to the suspicion 
levels of the nodules as annotated by the radiologists in 
the LIDC dataset and not the actual malignancy level of 
the nodule. The class “Benign” means that the nodule is 
highly unlikely to be malignant and the class “Malignant” 
means the nodule is highly suspicious to be cancerous. 
These scores range from 1 to 5 (1 meaning highly unlikely 
to be malignant, 2 as moderately unlikely, 3 as intermedi-
ate, 4 as moderately suspicious to be malignant, and 5 as 
highly suspicious to be malignant). We identify each of 
these sets as R1, R2, R3, R4, and R5. We show the number 
of nodules belonging to each of these classes in Fig. 1.

As we perform binary classification, we must group the 
nodules based on their malignancy scores. The criteria to 
group the nodules into these classes differ for each distri-
bution in the dataset that are described as follows:

Fig. 1   Number of nodules per malignancy level of the 4505 nodules 
in the dataset
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Distribution A (Fully Supervised Method)—R12 
vs R45—Nodules belonging to sets R1 and R2 are 
grouped in a set we call R12 and are all labeled as class 
0 (“Benign”). Similarly, set R45 consists of nodules that 
belong in the sets R4 and R5 and are given the label 1 
(“Malignant”). This follows the approach of Hancock 
et al.. Nodules labeled by a radiologist as having an 
intermediate malignancy (R3) are not considered for 
classification in this distribution. We have 2817 nodules 
after grouping the nodules and removing R3. Models 
that make use of this distribution for training and test-
ing follow a fully supervised method. We shall refer 
to those models as fully supervised models throughout 
the paper.
Distribution B (Semi-Supervised Method)—R123 vs 
R345—The nodules belonging in the R3 set make up 
a 37.4% of the dataset that cannot be ignored as they 
lie close to the decision boundary. These nodules show 
biomarker similarities to nodules belonging in R12 
and R45. We use a K-Nearest Neighbors algorithm to 
identify nodules that have closest biomarker features 
to those nodules that belong in the “Malignant” and 
“Benign” class. These nodules are then identified 
according to their closeness. The value of K is empiri-
cally determined to be 21. The distance metric is the 
Euclidean distance. Nodules belonging to sets R1 and 
R2 and a subset of nodules in set R3 are grouped in a 
set R123 and are labeled as 0 (“Benign”). R345 con-
sists of the remaining nodules in the set R3, and all 
nodules in R4 and R5. This superset is given the label 
of 1 (“Malignant”).

As illustrated in Fig. 2, features representing the nod-
ules are used to train various models in two branches. Both 
branches consist of the experiments to train the following:

1. A random forest and logistic regression model on bio-
markers only

2. A 3D CNN on nodule images and a Random Forest on 
the deep image features extracted from the 3D CNN.

3. A Random Forest on combination of deep image features 
and biomarkers.

4. A Random Forest on combination of deep image features 
and volumetric radiomics.

5. A Random Forest on combination of deep image fea-
tures, biomarkers and volumetric radiomics.

The first branch on the left performs these experiments 
using the fully-supervised method. The second branch per-
forms these experiments using the semi-supervised method. 
These two branches are independent and each experiment 
results in a ROC AUC value that is used for comparison 
between the supervised and semi-supervised methods.

Steps to Find Best K—Illustrated in Fig. 3

1. Create data Distribution A by grouping the R1, R2 
nodules and R4, R5 nodules. Hold out the nodules that 
belong to R3.

2. Split Distribution A into a train and validation set with 
a random 80:20 split.

3. Train and validate KNN with values of K ranging from 1 
to 51 in steps of 2. In simple terms, we select a value of 
K that is an odd number in the 1–51 range and train the 
KNN on the training set with that K value. We evaluate 
the trained KNN model on the validation dataset and 

Fig. 2  Overview of all the approaches taken in all experiments
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record it. Totally, we have 26 values of K for which the 
KNN is trained and validated. We select the value of K 
that gives the best validation accuracy.

4. Steps 2 and 3 are repeated 1000 times, and the train and 
validation accuracy are recorded for each run. We end up 
with 1000 best validation accuracies and the correspond-
ing K values that led to that accuracy.

5. The value of K that has the highest accuracy and also 
the highest frequency in the 1000 runs is selected as the 
optimal K value for the KNN.

All the experiments follow two classification techniques:

1. Fully Supervised—When a model employs this tech-
nique, the train set and test set are derived from data 
distribution A with a random seed to perform the split. 
Both the train and test sets include nodules that belong 
to either R12 or R45. Nodules that have a malignancy 
of 3 are not included in this dataset.

2. Semi Supervised—When a model employs a semi-
supervised strategy, a train and test set is derived from 

Fig. 3  KNN-Best K selection 
process

653Journal of Digital Imaging (2021) 34:647–666



1 3

distribution B with a random seed for splitting. The 
R3 nodules in the train set undergo a KNN pseudo-
labeling step to classify them into the Benign (R12) or 
Malignant (R45) class based on the Euclidean distance 
of descriptive biomarkers. Since a portion of the R3 
nodules in the train set get classified into the benign 
class and the remaining get classified into the malignant 
class, we refer to that split as R123 vs R345. The R3 
nodules are removed from the test set in order to maintain 
consistency and fairness while comparing the model’s 
performance with the fully supervised technique.

Convolutional Neural Network Architecture

For experiments involving CNN image classification, we 
make use of the following CNN model as shown in Fig. 4, 
the 3-D Lung volume is passed through the first layer of 
CNN with the filter of size (3 * 3 * 3), and the output of the 
first layer is of the shape (32,32,16,32). It is then passed on 
to the next layer of convolution which gives us an output of 
the shape (32,32,16,32). The kernel size for all the convo-
lutional layers are (3,3,3). The regularizers are used with 
a regularization factor of 0.01. Also, activation function 
after each conv layer is relu, and the maxpool layer has a 
pool size of (2,2,2). After the 2nd layer of convolution, it 
is then passed on to the 3rd layer for max-pooling which 
gives us an output of the shape (16,16,8,32). After the 
image is down-sampled in the max-pooling layer, it is then 
passed on to 2 more convolution layers which make up the 
4th and 5th layers of the model. This 4th layer gives us 
output of shape (16,16,8,64), and the 5th layer gives us an 
output of (16,16,8,64) which is then passed on to the next 
layer for max-pooling. The next max-pooling layer returns 

a down-sampled output of (8,8,4,64). The next convolution 
layer takes the down-sampled image as input and returns 
the output image of shape (8,8,4,128) and is then passed 
on to the next convolution layer which returns an output of 
shape (4,4,2,128) and is passed on to the next max-pooling 
layer. This max-pooling layer (Layer 9) returns an out-
put of shape (8,8,4,128) and is then passed on to another 
set of two convolution layers. The 10th convolution layer 
further performs convolution over this image and returns 
an output of shape (4,4,2,256) which is passed on to the 
11th convolution layer as input and further returns an out-
put image of shape (4,4,2,256). This same action is later 
performed on another set of 1 max-pooling layer and 2 
consecutive convolution layers. The 12th layer which is the 
max-pooling layer performs down-sampling on the image 
which return an output of shape (2,2,1,256) and is fed as 
input to the 13th layer which performs convolution, passes 
it to the 14th layer for convolution and finally returns an 
output of shape (2,2,1,512). The final 3 layers are fully 
connected dense layers with 1024 neurons, 64 neurons, 
and 1 neuron respectively.

Experimental Design

We perform 5 experiments in order to evaluate the perfor-
mance of the combination of nodule malignancy classifica-
tion using CNNs, biomarkers, and volumetric radiomics as 
follows:

1. Experiment 1—Classification using biomarkers only
2. Experiment 2—Classification using images only

Fig. 4  Malignet architecture
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3. Experiment 3—Classification using images + biomark-
ers

4. Experiment 4—Classification using images + volumetric 
radiomics

5. Experiment 5—Classification using Images + biomark-
ers + volumetric radiomics

Our evaluation criteria are the area under curve (AUC) 
of the receiver operating curve (ROC). For each model 
ROC curves are presented by varying the prediction 
threshold between 0 and 1 and plotting sensitivity against 
1—specificity. AUC varies from 0 to 1 (higher is better) 
and is defined as the integral of sensitivity with respect to 
1-specificity over the domain of the ROC curve. For each 
comparison of models we calculate p value of the difference 
in AUC using a two-tailed Student’s t test in order to 
determine statistical significance of one classification model 
versus another. We consider this difference to be significant 
if the p value is smaller than our ɑ-value of 0.05.

Experiment 1—Classification Using Biomarkers 
Only

A logistic regression and a random forest model are trained 
using the fully supervised method. The train and test set are 
derived from distribution A. The split ratio is 80:20. The 
grouped malignancy suspicion score (R12 “Benign” and 
R45 “Malignant”) are taken as labels.

An additional set of logistic regression and random for-
est models are trained using the semi-supervised method. 
The train and test sets are derived from distribution B. The 
split ratio here is 80:20 as well. The R3 nodules in the train 
set are given pseudo labels as “malignant” or ”benign“ 
using KNN. The train set contains nodules from R12 and 
pseudo labels from R3, which forms the R123 group with 
the label ”Benign“ and nodules from R45 and the remainder 
of the pseudo-labeled R3 group that forms R345 with the 
label ”Malignant“ as described above. The R3 nodules are 
removed from the test set explicitly.

These models are trained on the biomarker features 
only. These are subtlety, internal structure, calcification, 
sphericity, margin, lobulation, speculation, and texture. 
We measure the receiver operating characteristic area 
under the curve (ROC AUC) on the test set for the fully 
supervised models and the semi supervised models inde-
pendently. The process of creating train and test sets and 
training all the models using both type of supervision 
methods is repeated 1000 times for robust results. The 
AUC values are recorded for every iteration on both mod-
els and the average AUC is calculated and the average 
ROC is plotted. Figure 5 illustrates the entire process for 
both methods completely.

Experiment 2—Classification Using Images Only

We employ a ten-layer 3D CNN model and a 3D CNN + Ran-
dom Forest fusion model using the fully supervised method 
and the semi-supervised method independently. For the fully 
supervised method, the train and test sets are created from 
distribution A with an 80:20 split as done in the previous 
experiments. 3D Bounding Boxes that encapsulate the vox-
els representing the nodule in the center of the box are used 
to train the 10-layer 3D CNN. The bounding boxes from 
the test set are then used to obtain the predictions from the 
trained model. Using these predictions, the ROC AUC value 
is calculated. We use this trained model for training the 3D 
CNN + RF fusion model.

We extract the feature vectors of the bounding boxes from 
the second to last dense layer for each row in the train and 
test set. These are single dimension feature vectors with a 
length of 64. Using the reference of the train set and test set, 
we assign the original labels from the dataset to the feature 
vectors and obtain a train and test set for the random forest. 
After training the random forest on these feature vectors, we 
calculate the ROC AUC values and plot them.

The same approach is applied when the semi-supervised 
method is used. Train and test sets are derived from distri-
bution B with a random split of 80:20. The only difference 
is that KNN with K = 21 is used to classify the R3 nodules 
from the train set into benign and malignant classes. R3 nod-
ules are dropped from the test set.

The fully supervised and semi-supervised implementa-
tions of the 3D CNN and 3D CNN + Random forest models 
are trained and tested 30 times to obtain robust results. The 
number 30 is decided as a sufficient number of iterations to 
calculate statistical significance between the average AUCs 
between models. This decision is also attributed to the limita-
tions in computing power and the amount of time one CNN 
model takes to train. The trained CNN model, train, and test 
sets for both the supervised and semi-supervised method are 
saved in each iteration. This experiment design is illustrated 
in Fig. 6.

Experiment 3—Classification Using 
Images + Biomarkers

A 3D CNN + Random Forest model is employed in this experi-
ment. The 3D CNN model trained on the bounding boxes in 
experiment 2 is loaded on each of the 30 iterations here to extract 
the feature vectors on the loaded train and test set for the fully 
supervised method. We append the biomarker features to these 
image features for the corresponding rows in the train and test 
set. Since the image features have a length of 64 and the bio-
markers have a length of 8, we repeat the biomarker features 
eight times before combining these features. Finally, we have a 
combined feature vector for a nodule of length 128 (64 image 
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Fig. 5  Training and testing 
process for the fully supervised 
and semi-supervised method 
for experiment 1. Feature f here 
refers to biomarkers
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Fig. 6  Training and testing 
strategy for the fully supervised 
and semi-supervised methods 
for experiment 2
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features + [8 biomarker features × 8]). A random forest is trained 
on these features, and the ROC AUC is calculated on the test set 
that contains the same features.

We follow the same suit of feature augmentation, train-
ing, and testing when the 3D CNN + Random forest model is 
trained using the semi-supervised approach. We use the same 
KNN classification techniques for R3 nodules in the train set 
and remove the R3 nodules from the test set. ROC AUC values 
for each iteration are recorded, and the average is calculated. 
As illustrated in Fig. 7, the variable f is biomarker features.

Experiment 4—Classification Using 
Images + Volumetric Radiomic Features

This experiment is similar to experiment 3, but the only differ-
ence is that instead of appending the biomarkers to the image 
feature vector, we append the maximum diameter of the nod-
ule in the axial plane, the surface area of the nodule, and the 
volume of the nodule. These features are extracted using the 
pylidc library developed by Hancock et. al [2]. Since we have 
an image feature vector length of 64 and the radiomics feature 
vector length of 3, we append these features 21 times to the 
image feature vector to get a single feature vector of length 
127. Just as in experiment 3, we train a random forest on the 
feature vector dataset and calculate the ROC AUC and plot the 
ROC curve as well as its average ROC AUC. As illustrated in 
Fig. 7, the variable f is volumetric radiomics.

Experiment 5—Classification Using 
Images + Biomarkers + Volumetric Radiomics

This experiment also follows the same strategy of training 
as in experiments 3 and 4. The difference here is that we 
append both the biomarker and the radiomic features to the 
image feature vector. The biomarker and radiomic features 
together form a vector of length 11. This is appended 6 times 
so that our final feature vector will be of length 130. As 
illustrated in Fig. 7, the variable f is the combination of bio-
markers and volumetric radiomics.

Results

We describe the results experiment-wise in this section and 
finally compare all the results.

Experiment 1—Biomarkers Only

For the fully supervised models (R12 vs R45), we observe 
an average ROC AUC of 0.9165 for logistic regression and 
0.9339 for random forest. For the semi-supervised mod-
els (R123 vs R345), we observe an average ROC AUC of 
0.9200 for logistic regression and 0.9396 for random forest. 

The distribution of the AUC’s for both these models are 
illustrated in Fig. 8. The ROC curves comparing these mod-
els for both the distributions are illustrated in Fig. 9.

The random forest model performs better than the 
logistic regression model irrespective of the method 
of supervision used for training. We also observe 
an improvement in both the models when the semi-
supervised method is used. We run T tests to test the 
statistical significance of the differences in model 
performance between random forest and logistic 
regression, as well as the difference in performance 
between ful ly supervised and semi-supervised 
techniques. Our first alternate hypothesis is that the 
random forest model has a higher average AUC compared 
with the logistic regression model irrespective of the 
method of supervision. The P value we get is < 0.0001, 
and this proves that the random forest is statistically 
significant when it comes to lowering the false positive 
rates while maintaining high true positive rates compared 
with a logistic regression model. Our second alternate 
hypothesis is that the semi-supervised implementation 
of both the RF and LR models has a higher average AUC 
compared with their fully-supervised counterparts. Once 
again, our T test results support this hypothesis. The P 
value observed is < 0.0001. The best performing model 
is that semi-supervised Random Forest model with an 
average AUC of 0.9396.

Experiment 2—Classification Using Images Only

The average ROC AUC we observe for the fully supervised 
3D CNN is 0.7894. The average AUC increases to 0.7927 
when a CNN + Random Forest classifier is used. For the 
semi-supervised models, the 3D CNN classifier achieves an 
average AUC of 0.8004, and the CNN + Random Forest clas-
sifier achieves an average AUC of 0.8072. We notice a higher 
AUC value for the semi-supervised models compared with 
the fully supervised ones. On performing T tests to estab-
lish the statistical significance of this observation, we get a 
P < 0.05. The semi-supervised models perform better than 
the fully-supervised models. However, the addition of the 
random forest to the 3D CNN does not have any statistical 
significance when only image features are used for classifi-
cation. We observe a change in this behavior in experiments 
3, 4, and 5.

Experiment 3—Classification Using 
Images + Biomarkers

The average ROC AUC on the fully supervised 3D 
CNN + Random Forest model is 0.8652. This is a signifi-
cant improvement compared with the AUCs in experiment 
2. The AUC on the semi-supervised 3D CNN + Random 
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Fig. 7  General training and test-
ing strategy for the supervised 
and semi-supervised models for 
experiments 3–5. The variable 
”f“ takes the value of the non-
image features
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Forest is 0.8647. These results are statistically significant 
when compared with the models that use only the images 
for the classification. However, the method of supervision 
does not seem to have a significant effect on how the mod-
els perform in this case.

Experiment 4—Classification Using 
Images + Volumetric Radiomic Features

The average ROC AUC on the fully supervised 3D CNN + Ran-
dom Forest model is 0.8194, and the AUC on semi-supervised 

Fig. 8   The violin plots illustrate 
the distribution of the logis-
tic regression model and the 
random forest model over 1000 
training sessions. Every training 
step uses a unique set of points 
in the 80:20 training and testing 
split

Fig. 9   The average ROC curves 
for experiment 1 are plotted 
here. The ROC curves for fully-
supervised models are plotted 
as a dotted line and the ROC 
curves for semi-supervised 
models are plotted as a solid 
line
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3D CNN + Random Forest model is 0.8361. Here, the semi-
supervised model performs statistically better than the fully 
supervised model. The P value after performing the T test 
is < 0.0001.

Experiment 5—Classification Using 
Images + Biomarkers + Volumetric Radiomic 
Features

The average ROC AUC on the fully supervised 3D 
CNN + Random Forest model is 0.8659, and the AUC on the 
semi-supervised 3D CNN + Random Forest model is 0.8674.

Figure 10 illustrates the distribution of the AUC val-
ues for each of the 30 runs for experiments 2, 3, 4, and 5 
for the fully supervised models (R12 vs R45). Similarly, 
Fig. 11 illustrates the distribution of the AUC values for 
the semi-supervised models (R123 vs R345). Figures 12 
and 13 are plots of the ROC curve for experiments 2–5 for 
fully supervised and semi-supervised models respectively. 
Table 1 summarizes the ROC AUC results for all the experi-
ments. We discuss these results in the following subsection.

Observation

We observe that when only biomarkers are used, a non-
linear model like the random forest is significantly bet-
ter compared with the linear model. We also observe that 
the semi-supervised implementations of the models in all 
the experiments improve the AUC to a certain degree; 

specifically when models use biomarkers, images only, 
and when models use the combination of images and volu-
metric radiomics. This behavior can be attributed to the 
underlying meaningful relationship between the features 
of the nodules to the malignancy values. By quantifying 
this relationship using semi-supervised methods, we can 
increase the amount of data the models can train on. This 
is a novel approach in the field of lung nodule malignancy 
classification as per our findings.

To clearly observe the best performing combination 
of features, we must present the best performing mod-
els in the individual experiments in descending order of 
their average AUC values and perform t tests between the 
models to prove the statistical significance of that order. 
On performing these tests, we summarize the results in 
Table 2 and discuss them.

Most existing methods make use of only one class of fea-
tures (biomarkers/volumetric radiomics/image features) for 
pulmonary nodule malignancy estimation. Our results show 
that the relationship between the features used to categorize 
the nodule malignancy suspicion can be made more mean-
ingful when they are combined. The use of a combination of 
non-image features using the semi-supervised technique gives 
the best overall performance. The popular deep learning clas-
sification techniques that rely on images only can be signifi-
cantly improved when non-image features like biomarkers and 
volumetric features are combined with them.

Nodules that may be classified as inconclusive by a 
human radiologist often have features that are similar to 

Fig. 10  Violin plots representing the distribution of the AUC scores 
for 30 iterations of each experiment. We see that the AUC scores for 
the model that uses image + biomarkers in training and the model that 

uses image + biomarkers + volumetric radiomic features have compet-
itive AUC distributions. This plot shows the fully supervised models
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Fig. 11  The ROC curves for experiments 2–5 for fully supervised models

Fig. 12  The violin plots represent the distribution of the AUC scores for each of the experiments over 30 iterations of each experiment. This plot 
is for the semi-supervised models
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Fig. 13  The ROC curves for experiments 2–5 for semi-supervised models (R123 vs. R345)

Table 1  Results for all experiments. Rows highlighted in bold show best performing models that have statistical improvement compared with 
other models in their respective experiments. Rows in italics are not statistically different from each other

Experiments Models Fully supervised 
(R12 vs R45) ROC 
AUC 

Semi-supervised 
(R123 vs R345) ROC 
AUC 

1 – Classification using biomarkers only Logistic Regression 0.9165 0.9201
Random Forest 0.9339 0.9396

2 – Classification using images only CNN 0.7894 0.8004
CNN + Random Forest 0.7927 0.8072

3 – Classification using images + biomarkers CNN + Random Forest (Biomarkers) 0.8651 0.8646
4—Classification using omages + volumetric 

radiomics
CNN + Random Forest (Radiomic features) 0.8194 0.8361

5—Classification using images + biomarkers + volu-
metric radiomics

CNN + Random Forest (Combined bio-
marker and radiomic features)

0.8659 0.8674
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nodules that are either malignant or benign. Using semi-
supervised methods, our algorithm can provide a second 
opinion to the radiologist about these nodules and has the 
potential to reduce the false positive rates.

Conclusion

The aim of this research is to develop a hybrid lung nodule 
malignancy suspicion classification algorithm and effectively 
reduce the false-positive rates. Features that radiologists use to 
provide an opinion about the nodule malignancy are biomarkers 
and radiomic features. CADx systems are being used by human 
annotators to reduce the false-positive rates and provide a second 
opinion to the nodule classifications. Traditional methods for the 
computed aided diagnosis systems make use of a specific class 
of features for classification. These are either image-based, bio-
markers, or radiomics. CNN’s have been powerful when work-
ing with images. However, they require a large amount of data 
to learn the representation of the object. Conventional methods 
that use non-image features perform well for many tasks with 
relatively small sample sizes, but they are not able to fully reflect 
the unique characteristics of the nodule.

We approach this problem by combining the image-based 
features with biomarkers and volumetric radiomic features. 
Additionally, we use a semi-supervised method that includes 
nodules that have an intermediate malignancy label. As per our 
knowledge, this approach has not been explored and is novel 
to the lung nodule classification field. We investigated four 
models—Logistic regression, Random Forest, 3D CNN, and 
CNN + Random Forest, with three feature combinations that 
include the supervised and semi-supervised implementations. 
Our results show that the combination of features gives a better 
AUC score compared with models that use image features alone. 
Semi-supervised implementations of these models improve the 
achieved AUC values. This effect is attributed to the increase in 
the meaningful training data and establishing meaningful rela-
tionships between the combination of features and malignancy.

An unexpected result of our analysis was that the random 
forest model using biomarkers only outperformed the proposed 
hybrid model combining biomarkers, 3D CNNs, volumetric 

radiomics, and semi-supervised learning. Although this result 
would suggest that descriptive biomarkers alone are a superior 
feature for malignancy estimation, it is not clear to what extent 
this result might be influenced by cognitive bias as the malig-
nancy estimates and biomarkers were ultimately recorded 
by the same radiologist panel and may be influenced by one 
another [14]. In future work we wish to further investigate 
potential sources of bias in the LIDC-IDRI through analysis of 
the 96 patients with additional pathology information.

Discussion and Future Work
We believe our results are competitive with the current state 

of the art models for similar tasks of nodule level malignancy 
estimation. However, it is important to note that minor 
differences in the evaluation criteria of different investigators 
using LIDC-IDRI for malignancy estimation make it difficult 
to directly compare the AUC of one published study versus 
another to determine state of the art. We can achieve significant 
improvement when compared with the models that use CNN’s 
with images only as their features [3–5, 7]. However, certain 
studies like Causey et al. [12] report an AUC of 0.99 when 
radiomic and deep image features are combined although this 
AUC is for the task of patient-level malignancy, not a nodule 
level malignancy and thus not directly comparable. Our 
evaluation metrics are most similar to those of Hancock and 
Magnan [2] that report AUC of 0.916 using Biomarkers only 
and 0.932 combining biomarkers + volumetric features; these 
results compare to our AUC of 0.9396 for biomarkers only and 
0.9555 for biomarkers + volumetric features.

A potential challenge with the use of the LIDC-IDRI is that 
the malignancy estimates provided by a four radiologist panel 
are subject to information bias due to variations in clinical pro-
cesses and expertise. Furthermore, as the malignancy estimates 
are created by the same panel of radiologists that record bio-
markers, there is a possibility of cognitive bias in the event that 
the identification of descriptive biomarkers was influenced by 
the overall malignancy estimates [14]. Despite these potential 
sources of bias, LIDC-IDRI is a highly valuable resource used 
by many investigators to better predict malignancy suspicion 
levels using descriptive biomarkers, radiomic, deep image fea-
tures, and combinations thereof [17]. A promising approach to 
potentially reduce this bias was investigated by Kang et al. [16] 

Table 2  Best performing models that are statistically significantly 
rated in descending order of their average AUC values. Models that 
are grouped in one cell show that there is no statistical difference 

between them but both of them independently are better performing 
that the model in the row below them

Features Model Average AUC 

Biomarkers only Semi-supervised Random Forest 0.9396
Images + biomarkers + volumetric features and images + bio-

markers
Semi-supervised 3D CNN + RF and fully supervised 3D 

CNN + RF
~ 0.8658

Images + volumetric features Semi-supervised CNN + RF 0.8361
Images only Semi-supervised CNN + RF 0.8072
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that attempted to correlate malignancy suspicion with pathology 
levels using a subset of 157 patients with pathology data. How-
ever, of these 157 patients, only 96 have both pathology data as 
well as malignancy suspicion levels available simultaneously. 
Furthermore, the pathology and malignancy estimates use dif-
ferent nodule identifiers thereby making it difficult to identify 
linking variables. In future work, we intend to incorporate the 
approach of Kang et al. [16] in order to correlate our results to 
the subset of the LIDC-IDRI dataset for which both malignancy 
suspicion and pathology data are available, thereby decoupling 
the biomarkers from malignancy estimates of LIDC-IDRI over 
these 96 patients.

In future work we would also like to evaluate the influence of 
other semi-supervised learning techniques in place of KNN. The 
use of more sophisticated classifiers that group the inconclusive 
nodules into pseudo-labels based on all of the available features 
rather than just the biomarkers for the semi-supervised step has 
the potential to further improve the accuracy of this step.

State-of-the-art CNN models like Alexnet, VGG-Net, and 
LeNet can be modified to accept 3D images. These models can 
be used in place of the ten layer CNN to improve the CNN com-
ponent of our work. Additionally, the spatial locality feature of 
the nodule is shown to provide discriminating information when 
it comes to the malignancy classification task. Global views or 

multi-view CNN’s have the potential to improve the overall 
image classification task. Combining biomarker and radiomic 
features with this has the potential to reduce the false-positive 
rates further.

Appendix

The random forest model is tuned for each of the experiments to 
obtain optimal classification accuracy. For this we use a random 
search cross validation approach. We define a grid of hyperpa-
rameter ranges for the maximum number of features considered 
for splitting a node, number of trees in the forest, maximum 
number of levels in each decision tree, minimum number of 
data points placed in the node before the node is split, minimum 
number of data points allowed in a leaf node, and the method 
of sampling data points. We use a threefold cross-validation 
method with every random sample of parameters. This process 
is iterated 100 times for each fold, and the model is compared 
with all the possible outcomes. The parameters of the best per-
forming model are then extracted for the training process in the 
experiments 1–5 for each dataset distribution. Tables 3 and 4 
consist of the random forest hyperparameters for each of the 
experiments.

Table 3  Random Forest hyperparameters for experiments 1–5 for data distribution R12 vs R45

Experiment Number of 
estimators

Maximum 
depth

Maximum features Minimum sam-
ple per leaf

Minimum 
samples per 
split

Exp 1: Biomarkers only 1000 10 Square root of number of features 1 5
Exp 2: Images only 200 10 Square root of number of features 4 2
Exp 3: Images + biomarkers 800 10 Square root of number of features 2 5
Exp 4: Images + volumetric radiomics 400 100 Square root of number of features 4 10
Exp 5: Images + biomarkers + volumetric 

radiomics
300 100 Square root of number of features 2 2

Table 4  Random Forest hyperparameters for experiments 1–5 for data distribution R123 vs R345

Experiment Number of 
estimators

Maximum 
depth

Maximum features Minimum sam-
ple per leaf

Minimum 
samples per 
split

Exp 1: Biomarkers only 200 100 Square root of number of features 1 5
Exp 2: Images only 200 10 Square root of number of features 4 2
Exp 3: Images + biomarkers 600 10 Square root of number of features 2 5
Exp 4: Images + volumetric radiomics 200 10 Square root of number of features 4 2
Exp 5: Images + biomarkers + volumetric 

radiomics
500 110 Square root of number of features 1 2
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