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Millimeter-wave pulsed heating  
in vitro: cell mortality and heat 
shock response
Rosa Orlacchio1,2*, Yann Le Page3, Yves Le Dréan3, Rémy Le Guével4, Ronan Sauleau1, 
Stanislav Alekseev5 & Maxim Zhadobov1

Millimeter wave (MMW)-induced heating represents a promising alternative for non-invasive 
hyperthermia of superficial skin cancer, such as melanoma. Pulsed MMW-induced heating of tumors 
allows for reaching high peak temperatures without overheating surrounding tissues. Herein, for 
the first time, we evaluate apoptotic and heat shock responses of melanoma cells exposed in vitro to 
continuous (CW) or pulsed-wave (PW) amplitude-modulated MMW at 58.4 GHz with the same average 
temperature rise. Using an ad hoc exposure system, we generated 90 min pulse train with 1.5 s pulse 
duration, period of 20 s, amplitude of 10 °C, and steady-state temperature at the level of cells of 49.2 °C. 
The activation of Caspase-3 and phosphorylation of HSP27 were investigated using fluorescence 
microscopy to monitor the spatial variation of cellular response. Our results demonstrate that, under 
the considered exposure conditions, Caspase-3 activation was almost 5 times greater following PW 
exposure compared to CW. The relationship between the PW-induced cellular response and SAR-
dependent temperature rise was non-linear. Phosphorylation of HSP27 was 58% stronger for PW 
compared to CW. It exhibits a plateau for the peak temperature ranging from 47.7 to 49.2 °C. Our results 
provide an insight into understanding of the cellular response to MMW-induced pulsed heating.

Most of the chemical reaction rates behind cellular processes are transient and temperature sensitive (empirical 
relationship is provided by the Arrhenius law). Depending on parameters and conditions of heating, two mecha-
nisms are at the origin of cellular responses including i) inactivation of protein functions and enzymatic activity, 
and ii) activation of signaling pathways1. Protein and enzymatic inactivation is responsible for heat cytotoxic-
ity2,3 and radio or chemo sensitization4 of the cells as responses to a severe heat shock (usually >43 °C), while 
induction of thermotolerance5 is the dominant activating response occurring when cells are exposed to sublethal 
temperatures, typically ranging from 39 to 42 °C.

It has been recently demonstrated that hyperthermic temperatures (i.e. 43 °C to 45 °C) are able to trigger both 
the extrinsic and intrinsic apoptotic pathways in melanoma cells6. In particular, it was shown that incubation of 
melanoma cells at 45 °C for 2 h induced activation of caspases-3,-6, and -7 up to 24 h (−3) and 72 h (−6, −7) post 
exposure. Caspases belong to a family of protease enzymes playing essential roles in programmed cell death; they 
are synthesized as inactive precursor molecules (pro-caspases) and are converted by proteolytic cleavage to active 
enzymes. The activation of caspases is also a marker of cellular damage in tissues.

Thermotolerance is due to existence of protein quality control response, which is one of the most conserved 
cytoprotective mechanisms in evolution7. In case of heat shock, cells overexpress chaperones and heat shock 
proteins (HSPs) that protect cellular proteins from misfolding and aggregation. HSPs, such as HSP27, have been 
identified as key determinants of cell survival because they also modulate apoptosis by directly interacting with 
components of the apoptotic machinery8. These proteins are the key factors in response to cellular stress and they 
are involved in many pathologies such as cancer or neurodegenerative diseases9. Their ability to bind to client 
proteins depends on their level of phosphorylation induced by heat shock response.

It was demonstrated that pulsed electromagnetically-induced heating can lead to stronger damage in cells 
compared to continuous heating10, allowing, in the case of thermo-oncological therapies, to decrease the 
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treatment duration, reducing patient discomfort, and to eliminate or reduce the influence of blood perfusion as 
well as thermotolerance11,12. However, most of the studies dealing with pulsed heating have been performed to 
analyze the thermal damage threshold mainly in relation to ablation at temperatures exceeding the lethal thresh-
old13,14. As the interest to pulsed thermal treatment of tumors is increasing, the study of the cellular response 
both in terms of heat induced damage and activation of cellular repair processes mediated by HSP induction is 
of importance.

Microwave (MW) frequencies have been exploited for invasive and non-invasive thermal treatments, mainly 
in the Industrial Scientific Medical (ISM) bands around 434 MHz, 915 MHz, 2.45 GHz, and 5.8 GHz15–17. The fea-
sibility of using MW up to 18 GHz (e.g. 9.2 GHz18, 10 GHz19, 14.5 GHz20, and 18 GHz21) for tissue ablation with 
minimized invasiveness and collateral damages has been discussed in several studies. Furthermore, it has been 
recently demonstrated that the 20–100 GHz range can be employed for spatially-accurate focusing of heat inside 
the skin by varying frequency and exposure beam size, as well as by enforcing air convection to reduce overheat-
ing of skin surface shifting the maximum heating towards deeper skin layers22. The results suggested that the 
lower part of the millimeter-wave (MMW) range is an attractive alternative for non-invasive thermal treatment 
of skin cancer such as spreading melanoma.

The main objective of this study is to compare the responses of malignant melanoma cells to continuous and 
pulse-modulated MMW-induced heating. First, heat pulses were locally generated at the cellular level in vitro 
using an ad hoc MMW exposure system. Second, Caspase-3 (Casp-3) cleaved activation was evaluated in order to 
detect the effective heat damage in cells for the continuous and pulsed heating with the same average temperature 
rise. Third, the heat shock response was quantified by following the phosphorylation of HSP27. The fluorescence 
microscopy image analysis was used to analyze the cellular responses.

Materials and Methods
Exposure setup and electromagnetic dosimetry.  Cells cultured in a standard 12-well tissue cul-
ture plate (TCP in Fig. 1a) made of polystyrene (353072, Microtest 96, Becton Dickinson, Franklin Lakes, NJ) 
were exposed from the bottom by an open-ended rectangular WR15 waveguide (WG) antenna (aperture size 
3.81 × 1.905 mm2) located 5 mm from the plate inside a MEMMERT UNE400 incubator (Memmert, Schwabach, 
Germany) (Fig. 1a). A cell monolayer was located at the bottom of the well and covered by 2 ml of the culture 
medium. The antenna was fed by a set of standard V-band WG. Customized high-power generator (QuinStar 
Technology, Torrance, CA) operating at 58.4 GHz with an output power up to 3.7 W was used as a narrowband 
source in continuous-wave (CW) or pulsed-wave (PW) amplitude modulation regimes. Programmable pulse 
generator HMP 4040 (Hameg Instruments, Hampshire, UK) provided control voltage and current enabling 
amplitude modulation of the MMW radiation. The input power of the open-ended WG was systematically meas-
ured before experiments using V-band Agilent V8486A power meter (Agilent Technologies, Santa Clara, CA). To 
avoid the overheating of cells and compensate for a rapid temperature rise during the first minutes of exposure, 
the temperature of the incubator was set to 32 °C to obtain during the CW and PW exposures the desired average 
steady-state temperature of 42.3 °C, with the maximum peak temperature of PW exposure about 49 °C. To com-
pute the electromagnetic power loss inside the well we used the numerical model illustrated in Fig. 1a (left). Only 
the antenna and one well of the TCP were simulated to reduce the computational volume represented for each 
simulation by about 30 million mesh cells. As power absorption within the exposed well is local and the specific 
absorption rate (SAR) is mainly concentrated at the bottom of the culture medium close to the well axis, the con-
tribution of reflections from the neighboring empty wells to SAR distribution is negligible. As demonstrated in23, 
the effect of a thin monolayer (with a thickness of the order of several µm) on the absorbed power and resulting 
heating is negligible (less than 1%). Therefore the presence of a cell monolayer was neglected in simulations.

Electromagnetic properties of materials considered in modeling are given in Table 1 at 58.4 GHz. Complex 
permittivity of polystyrene was determined using a free-space technique with a transmission/reflection 
quasi-optical setup and ABmm millimeter-wave vector network analyzer24. Electromagnetic properties of dis-
tilled water and culture medium were measured using an open-ended coaxial probe DAK-1.2E (SPEAG, Zurich, 

Figure 1.  (a) Outline of the exposure setup. Cells located at the bottom of a well of a 12-well TCP were exposed 
by an open-ended WG inside the incubator at 32 °C (center). CAD model of the antenna and exposed well were 
used for computing SAR (left). Continuous wave and pulsed signals were generated at 58.4 GHz by a customized 
MMW generator controlled by an electromagnetic pulse generator. The temperature was monitored using a TC 
through a dedicated interface (right). (b) Computed SAR in the cell monolayer normalized to the antenna input 
power of 1W. White ellipses indicate the locations of TC sensors in temperature measurements.
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Switzerland) and were found to be the same at the considered frequency within the measurement uncertainty 
(roughly ± 5%). Therefore the complex permittivity of the culture medium at higher temperatures was extrapo-
lated using the model proposed by Ellison25. In electromagnetic computations, the permittivity, conductivity, and 
mass density were considered as temperature independent. As demonstrated in23, variations of these parameters 
due to the temperature increase by 10 °C result in the maximum change of peak SAR by only 1.5%.

SAR at the bottom of the culture medium was computed using the finite-difference time-domain (FDTD) 
method. Electromagnetic simulations were carried out using the FDTD solver implemented in SEMCAD X 
(SPEAG, Zurich, Switzerland). Non-uniform adaptive three dimensional meshing was used to carefully account 
for elevated SAR gradients close to the bottom of the exposed liquid. All simulations were performed using a 
mesh with a cell size ranging from 5 µm (in liquid) up to 250 µm (in free space). Maximum grading ratio was set 
to 1.2. Perfectly matched layers (PML) absorbing boundary conditions were used. Minimal distance between the 
culture plate and boundaries was set to λ0/4. Note that the thermocouple (TC) was not included in simulations 
as its effect on heating is negligible26,27. Figure 1b shows SAR distribution in the cell monolayer. It was retrieved 
based on SAR computed in the culture medium by applying a correction factor extracted from23.

Local temperature monitoring.  Electromagnetic power dissipated in the cells and culture medium 
resulted in heating. Temperature was measured using a K type TC probe with the leads diameter of 75 µm 
(RS Components, Corby, UK). To record temperature we used Thermocouple Reference design (Microchip 
Technology, Chandler, AZ) with a sampling interval of 156 ms. As shown in Figure 1a, the tip of the TC was 
aligned with the exposure beam axis with its leads lying on the bottom of the well perpendicular to the E- plane. 
Such an orientation of TC prevents induction of currents in TC and related possible artefacts26–32. Temperature 
measurements were performed in separate experiments (culture medium only, without cells) in order to exclude 
any possible contamination as well as cell damage due to the presence of the TC. Each measurement was repeated 
3 times.

Cell culture and exposure protocol.  The human malignant melanoma A375 cells were purchased from 
American Type Culture Collection (ATCC, Molsheim, France). These cells were cultured in Dulbecco’s modified 
Eagle medium (Gibco/Life Technologies, Carlsbad, CA) supplemented with 8% fetal calf serum (FCS), 1% anti-
biotics, and 1% L-glutamine, in a humidified incubator at 37 °C and 5% CO2. The medium was renewed every 
2 days and the cells that reached 70 to 80% confluence were grown as monolayer cultures or passaged. To avoid 
any problem of senescence or drift of the cellular population, the experiments were conducted at earlier passages 
(between 4 and 10). For exposure, cells were seeded in 3 wells of 12-well tissue culture plate at a density of 30 
000 cells per well. One well was exposed, one well was used as a negative control, and the third well was used as a 
positive control, which served as technical verification for detection of apoptosis or heat shock response (data not 
shown). Cells were treated with 100 µM of Antimycin A (Sigma-Aldrich, Saint-Quentin Fallavier, France) or with 
5 µM of MG132 (Sigma-Aldrich) to detect Casp-3 activation or HSP27 phosphorylation, respectively. Two days 
after plating, the medium was replaced by a medium without sodium bicarbonate containing 4.6 mM of Hepes 
(Thermo Fisher Scientific, Waltham, MA) to maintain constant pH in the non-gassed incubator33. Then, the plate 
with cells was transferred to a standard incubator with exposure facilities. Before exposure, cells were incubated 
for 1 h at 32 °C. Heat shock response may appear after a certain delay following the exposure34, therefore cells 
were kept at 37 °C for 6 hours after exposure. Then, cells were fixed before proceeding to immunochemistry. Sham 
exposures were performed under identical experimental conditions, but with the generator switched off.

Immunocytochemistry (ICC) and fluorescence analysis.  The ICC and fluorescence analysis proto-
col was described in detail by Haas et al.35. Briefly, 6 hours after exposure, cells were fixed with 4% paraformalde-
hyde for 20 min at room temperature, washed twice with phosphate-buffered saline (PBS), and permeabilized for 
10 min with 0.25% Triton X-100 in PBS. Unspecific binding of antibodies was blocked by incubating cells during 
20 min in 1% bovine serum albumin (BSA, MP Biomedicals, Santa Ana, CA), 0.1% gelatin from cold water fish 
skin (Sigma-Aldrich, St Louis, MO), and 0.1% Triton X-100 in PBS. Cells were then incubated overnight, at 4 °C, 
with primary antibodies at 1:500 and 1:200 dilutions, respectively for cleaved Casp-3 (Cleaved Caspase-3 (Asp175), 
ref 96645, Cell Signaling Technology, Danvers, MA) and phosphorylated HSP27 (Phospho-HSP27 (Ser82), ref 
2406, Cell Signaling Technology, Danvers, MA). After three successive washes using PBS supplemented with 0.1% 
Tween 20, cells were incubated 1 hour with secondary antibodies at 1:1000 dilution and Hoechst 33342 (10 µg/mL, 
Sigma-Aldrich) for nuclei counterstaining. Pictures of cells were taken and fluorescence of each cell was quantified 
using a Cellomics ArrayScan VTI HCS Reader (Thermo Fisher Scientific) at ImPACcell technological platform 
(Biosit, University of Rennes 1, Rennes, France). For each well, 121 pictures were taken following a square spiral 
from the center of the well covering a 30.25 mm² area (i.e. each picture had a 0.5 mm side and 0.25 mm² area). 
Distance equal to 0 mm was assigned to the picture taken in the center of the well aligned to the open-ended WG 
axis. All the cells in this picture were considered located at 0 mm from the center. Then, the distance from the center 

Materials ε σ (S/m)

Background (air) 1 0

Antenna (perfect electric conductor) — ∞

Tissue culture plate (polystyrene) 2.56 0.008

Distilled water at 37 °C 16.86 80.76

Table 1.  Relative permittivity and electrical conductivity of materials used in simulations.
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was calculated for each picture. Each picture contained an average number of about 100 cells allowing consistent 
average of the fluorescence value of the cells at each distance considered in the analysis.

Calculation of the cumulative equivalent minutes (CEM43 °C).  The cumulative equivalent minutes 
at 43 °C (CEM43 °C) were calculated using the following formula36:

∑= −CEM C t R43
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where n represents the number of intervals in which the duration of the exposure has been derived, ti is the i-th 
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43 °C is the reference temperature, and R is related to the temperature dependence of the rate of cell death. The 
parameter R used in this study is taken from37, derived from human skin cells in vitro:
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In order to take into account the fast temperature variations during the pulse exposure, the averaging interval 
was set to 0.3 s.

Statistical analysis.  Three (n = 3) tissue culture plates were exposed or sham-exposed for each experimen-
tal condition. Statistical analyses were performed using SigmaPlot Statistics. The non-parametric Mann-Whitney 
Rank Sum test was used for the statistical comparisons of the data. For all tests, a p value < 0.05 was considered 
statistically significant. Results are presented as mean ± SEM (Standard Error of the Mean).

Results
Electromagnetic and thermal waveforms.  Cells were exposed in vitro to CW or PW electromagnetic 
field at 58.4 GHz. Square-wave amplitude modulation was used to create electromagnetic pulses with the dura-
tion of 1.5 s. The peak power of PW exposure at the open-ended waveguide input was set to 3.7 W to generate 
thermal pulses with a peak amplitude of 10 °C in the center of the well (Fig. 2a). This power corresponds to a SAR 
level of 73.6 kW/kg in the cell monolayer and a temperature rise rate of 6.7 °C/s. The period of 20 s was selected 
to maintain the average PW heating (mean PW in Fig. 2a) below 43 °C (42.3 ± 0.31 °C). The latter was set to 
minimize the activation of HSPs that can have a protective action and reduce cell killing. At these conditions, 
the peak steady-state temperatures reached during PW exposure (48–49 °C) were high enough to destroy mela-
noma cells while retaining the average temperature at 42.3 °C. The average temperature was calculated by using a 
moving average filter with 75 s span. The power of CW exposure was adjusted to generate the same heating as the 
average temperature rise during the PW heating. It was equal to 250 mW corresponding to 4.9 kW/kg in terms 
of SAR. The exposure duration was set to 90 min corresponding to 270 pulses. The cells were exposed at steady-
state temperature (41.6 < T ≤ 42.3 °C) for about 1 hour. This represents a typical duration employed in moderate 
hyperthermic oncological therapies38,39. Figure 2b,c show temperature rise measured at the bottom of the well 
at different distances from the well axis along y (E-plane in Fig. 1b). The corresponding SAR for PW and CW 
exposures was equal to 47.1, 20.6, 8.8, 4.4 kW/kg, and 3.1, 1.4, 0.6, 0.3 kW/kg for 2.5, 5, 7.5, 10 mm, respectively. 
ΔT profile for the peak temperature induced by PW exposure is similar to that of SAR (Fig. 2d), the maximum 
relative deviation is 25% at d = 2.5 mm.

CEM43 °C calculated for CW exposure was 23.9 ± 9.7 min. CEM43 °C delivered by pulsed heating was 
502.67 ± 128.42 min, about 21 times greater than that delivered by continuous heating with the same average 
temperature. Values, reported as mean ± standard deviation over three temperature measurements, are repre-
sentative of the thermal dose in the center of the well bottom, corresponding to the highest temperature induced 
in the cell monolayer. The CEM43 °C value equal to 502.67 min can be reached at 45.5 °C at continuous heating.

MMW-induced thermal pulses induce stronger apoptosis in malignant melanoma cells com-
pared to continuous heating with the same average temperature rise.  Several in vitro and in 
vivo studies identified apoptosis as the key event responsible for induction of the cell death in response to ther-
mal stress40,41. Apoptosis can be measured by using specific cleaved Casp-3 antibody. The Casp-3 is an effector 
protease, involved in the initiation of the programmed cell death signaling, and its activation is a hallmark of 
apoptosis42. It was found that the best way to assess the relative apoptotic activity in high-content fluorescence 
microscopy analysis is to calculate the percentage of cells above a certain threshold of activate Casp-3 labeling43. 
Therefore, we quantified Casp-3 activation as an indicator of apoptotic cells.

Figure 3a illustrates the distribution of apoptotic cells according to the detection of the Casp-3 activation 
following PW, CW, and sham exposures. It shows that the thermal pulses induce apoptosis, while CW heating 
with the same average temperature rise (Fig. 2a) does not induce any noticeable effect. Apoptosis triggering was 
almost 5 times greater for PW compared to CW in the area up to 1.8 mm from the well axis (Fig. 3b). For dis-
tances exceeding 1.8 mm (SAR, ΔT [PW max], and ΔT [CW] decrease by a factor of 1.3, 1.2, and 1.0 in regard to 
the peak values on the axis, respectively) this effect disappeared (apoptotic cells ratio decreased to 1.5%, and the 
difference between PW and CW inductions becomes statistically non-significant).

Interestingly, for PW, the decrease of apoptotic cells with distance from the well axis (Fig. 3c) was faster com-
pared to the SAR and the thermal pulse amplitude drop (Fig. 2d). The percentage of apoptotic cells due to PW 
exposure was reduced by almost 7 times from 0 mm to 3.5 mm, while the SAR and the thermal pulse amplitude 
drop were only around 50%. This non-linear dependence of apoptotic cellular response on the thermal pulse 
amplitude may be explained by sensitivity of the melanoma cells to the properties of thermal pulses (e.g. duration, 
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amplitude, period, temperature rise rate, and fast on/off temperature change) and/or by existence of a threshold 
in the capacity of cells to respond to thermal stress, such as limits in HSP regulation (see next sub-section). At the 
same time, the reduction of apoptotic cells by about 2.6 times from 0 mm to 3.5 mm for CW exposure was nearly 
proportional to the SAR and temperature drop, suggesting that the threshold was not reached.

These results suggest that, under the considered exposure conditions, PW exposure results in 5-fold stronger 
activation of Casp-3 compared to CW exposure with the same average heating.The relationship between the PW 
induced cellular response and SAR-dependent temperature rise is non-linear.

MMW-induced thermal pulses induce stronger phosphorylation of HSP27 compared to contin-
uous heating with the same average temperature rise.  HSP expression in cells may correlate with 
healing or tissue damage. The small HSP27 can act as a molecular chaperone and protect cells against heat shock 

Figure 2.  Temperature measured at the bottom of the exposed well. (a) Temperature dynamics in the center 
of the well bottom for PW and CW exposures. The subplots on the top illustrate the zoom for 1–2 min and 
89–90 min intervals. (b) Temperature dynamics at different distances from the center of the well bottom in the 
lateral direction for 90 min of exposure (the locations of TC sensors are schematically illustrated in Fig. 1b). (c) 
Corresponding steady-state temperature rise after 90 min of exposure. (d) Normalized SAR along the E-plane 
and temperature rise ΔT (defined as the difference between the steady-state temperature at considered location 
and at 10 mm). Error bars indicate the SEM for three independent measurements.
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and oxidative stress when overexpressed44. In particular, physiological stimuli (such as redox signaling, cytokines, 
and growth factors) and various forms of stress (e.g. heat shock) dramatically increase the phosphorylation of 
HSP2745. In this study, HSP27 was used as a marker of heat-induced cellular stress. Figure 4a illustrates the distri-
bution of the fluorescence intensity of cells following PW, CW, and sham exposures. Both PW and CW exposures 
induce phosphorylation of HSP27. The phosphorylation due to PW exposure was stronger than the one induced 
by CW at the same average temperature rise (Fig. 4b), i.e., 10.1 and 6.4-fold induction in respect to sham for PW 
and CW, respectively for d < 1.8 mm, and 4.3 and 2.2-fold induction for 1.8 mm < d < 3.5 mm.

For the PW exposure, in contrast to the activation of the apoptotic pathway, which rapidly decreases with 
distance from the well axis, the reduction of the phosphorylation of HSP27 with distance was much slower, i.e., it 
decays by a factor of 2.7 from 0 mm to 3.5 mm (Fig. 4c). It is interesting to note that the variation of phosphoryl-
ation of HSP27 in the cells exposed to PW has a plateau between 0 and 1.8 mm from the center (cellular response 
decreased only by 1.1 times), which is absent in the cells exposed to CW regime (Fig. 4c). This plateau probably 
corresponds to the phosphorylation of all HSP27 proteins present in cells. We have previously demonstrated 
that apoptosis drastically increases when this plateau is reached (Fig. 3c), which is consistent with the fact that 
refolding system is saturated. For the distances exceeding 1.8 mm, the phosphorylation of HSP27 was reduced by 
a factor of 2.6, similarly to the corresponding decrease of number apoptotic cells in the same region (factor 2.4). 
Although HSPs protect cells against lethal thermal injury, their induction and related thermotolerance indicate 
that significant injury has already occurred at cellular level46. Indeed, the highest level of phosphorylation of 
HSP27 induced by heat pulses (Fig. 4) is correlated to the strongest cellular death (Fig. 3), compared to cellular 
response after the exposure to CW. Our data suggest that when cells are exposed to temperature pulses reaching 
a maximum peak temperature exceeding 47.7 °C, they are not able to cope with the thermal stress fully activating 
repair processes, resulting in initiation of an apoptotic pathway mediated by Casp-3.

The reduction with distance of HSP27 phosphorylation induced by the CW exposure was steeper compared to the 
corresponding cellular apoptosis, i.e., heat shock response after CW exposure was reduced by about 4.2 times between 0 
and 3.5 mm. The absence of the apoptotic response following CW heating may be related to the fact that cells exposed to 
continuous non-lethal temperatures <43 °C may initiate the cellular self-repair mechanism mediated by the induction 
of molecular chaperones (i.e. HSPs) preventing cells from protein denaturation and apoptosis47 (Fig. 3).

Figure 3.  Percentage of apoptotic cells after PW and CW exposure with the same average temperature rise. 
(a) Spatial distribution of apoptotic cells for (a) PW, (b) CW, and (c) sham exposures. (b) Apoptotic response 
analyzed cell-by-cell 6 h post exposure shown as mean values (n = 3) ± SEM normalized to the sham. The data 
are averaged over the areas around the center of the well (i.e. 0–1.8 mm denotes the data averaged over the 
area with the radius of 1.8 mm, and 1.8–3.5 denotes the data averaged over 1.8 mm to 3.5 mm from the center). 
Asterisk (*) indicates statistical significance at p < 0.05. (c) The same data shown for the averaging with higher 
spatial resolution.
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Our results suggest that, under the considered exposure conditions, both PW and CW exposures induce 
phosphorylation of HSP27. PW exposure results in 58% stronger phosphorylation of HSP27 compared to CW 
exposure with the same average heating. HSP27 phosphorylation induced by PW exhibits a plateau for the peak 
temperature ranging from 47.7 and 49.2 °C (the corresponding average temperature rise is between 42.2 and 
42.4 °C).

Discussion
Different parts of the microwave spectrum have been employed as a heating source in thermal therapies. Recently 
it has been demonstrated that the 20–100 GHz range can be employed for spatially-accurate focusing of heat 
inside skin by varying the frequency and exposure beam size, as well as by enforcing the air convection to reduce 
the overheating of skin surface shifting the maximum heating towards deeper skin layers22. Note that higher spa-
tial resolution can be achieved in this band compared to lower MW frequencies and locally higher temperature 
elevations and gradients can be induced due to the increased transmission at the air/tissue interface and more 
localized absorption. This makes promising application of MMW for non-invasive thermal treatment of skin 
cancer such as spreading melanoma. Furthermore, in contrast to CW heating, which characterizes conventional 
hyperthermia, PW exposure may induce heat pulses with high peak temperatures confined to small areas of 
interest (typically from tenths of mm to several mm for MMW), eluding the injury of surrounding healthy tissues.

Induction of cell death as a response to hyperthermia in malignant melanoma cells was investigated in several 
studies. In particular, in vitro studies performed on melanoma cells have demonstrated a variety of effects for tem-
peratures ranging from 41 to 48 °C including the reduction of cell viability in a time and temperature-dependent 
manner48, activation of an apoptotic pathway6 or the endoplasmic reticulum (ER) stress, and ER-mediated apop-
tosis49. However, the above-mentioned studies exploited the cytotoxic effect of heat delivered in a continuous 
manner. For the best of our knowledge, the hyperthermic response of melanoma cells, following the exposure to 
pulsed MMW-induced heating, has never been investigated so far.

In this study, we compared the spatial distribution of the cellular response in vitro following the exposure to 
CW and PW MMW-induced heating using an experimental approach based on fluorescence microscopy image 
analysis, analyzing cell-by-cell the cellular response. The reliability of our experimental protocol is confirmed by 
the very small baseline cellular apoptosis (<1%, Fig. 3) and phosphorylation of HSP27 (Fig. 4) that did not show 

Figure 4.  Phosphorylation of HSP27 after PW and CW exposure with the same average temperature rise. 
(a) Spatial distribution of the normalized intensity of the HSP27 phosphorylation for (a) PW, (b) CW, and (c) 
sham exposures. (b) Phosphorylation of HSP27 analyzed cell-by-cell 6 h post exposure shown as mean values 
(n = 3) ± SEM normalized to the sham. The data are averaged over the areas around the center of the well (i.e. 
0–1.8 mm denotes the data averaged over the area with the radius of 1.8 mm, and 1.8–3.5 denotes the data 
averaged over 1.8 mm to 3.5 mm from the center). Asterisk (*) indicates statistical significance at p < 0.05. (c) 
The same data shown for the averaging with higher spatial resolution.
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any dependence on the distance from the well axis. Heat cytotoxicity was determined via activation of the Casp-3, 
which is a marker of the cell’s entry point into the apoptotic signaling pathway. The results were correlated with 
induction of the HSP27 phosphorylation. Different cellular responses for CW and PW MMW-induced heating 
with the same average temperature dynamics were analyzed in detail on A375 malignant melanoma cell line. The 
analysis of the effects of exposure to MMW-induced heating on different cell lines constitutes one of the perspec-
tives of a future study.

The CW exposure results in a mild heat shock induction, which generates a thermotolerance response through 
HSP27 phosphorylation (Fig. 4), which in turn inhibits the activation of the Casp-3 (Fig. 3). This is in agreement 
with previous reports50–54 demonstrating that induction of HSP27 may interact with the apoptotic machinery, 
exercising anti-apoptotic activity, by following different paths. Numerous studies evidenced that HSP27 spe-
cifically interferes with the mitochondrial (i.e. intrinsic) pathway of Caspase-dependent cell death34,55–57. For 
example, Pandey et al.34, showed that HSP27 functions as an intracellular inhibitor of Casp-3 activation acting 
downstream to mitochondrial release of cytochrome c, Apaf-1, and Casp-9 activation. In addition, phospho-
rylated dimers of HSP27 may also inhibit an extrinsic pathway of cellular apoptosis58. Our study suggests that 
moderate temperature below 43 °C is not sufficient to induce the cellular death of malignant melanoma cells, thus 
being not suitable for the thermo-oncological treatment of superficial melanoma.

In contrast to the CW exposure, a train (90 min) of short (1.5 s) heat pulses induces cellular damage as shown 
by the activation of the Casp-3 (Fig. 3), in spite of the higher phosphorylation of HSP27 (Fig. 4). Several stud-
ies showed that small HSP exhibits temperature-dependent chaperone like-activity preventing the aggrega-
tion of stressed proteins59. In particular, it has been demonstrated by previous studies that HSP27 undergoes 
thermally induced self-association60, leading to increased oligomeric size, which correlates with increase in its 
chaperone-like activity61. For instance, Garolla and Mauk61 evaluated the chaperone activity of HSP27 as its ability 
to inhibit dithiothretoil-induced insulin aggregation as a function of the temperature, in the 20–48 °C tempera-
ture interval. Their results showed that HSP27 ability to protect cells increases with the temperature, exhibiting 
a sharp increase in the 34–43 °C range. At higher temperature, i.e., 43–48 °C, chaperone activity increases only 
slightly exhibiting an apparent plateau. These results are consistent with the outcomes of the present study. The 
analysis of the dependence of the phosphorylation of HSP27 after PW exposure on the distances from the center 
showed that, in the region 0–1.8 mm, the phosphorylation of HSP27 reached the maximal level exhibiting a pla-
teau (Fig. 4c). This region corresponds to the peak temperature rise of 47.7–49.2 °C (Fig. 2b). These results suggest 
that the amplitude of thermal pulses plays an important role in inducing apoptosis in cells. Cells become more 
vulnerable to heat damage at peak temperatures within the 47–49 °C interval. At these temperatures, in spite of 
the maximum chaperon activation, the cell protection mechanism based on activation of HSP27 phosphorylation 
and other heat shock proteins does not cope with increasing heat damage of cells. Previous studies evidenced 
that, depending on the intensity of the stress, occurrence of phosphorylation induces the dissociation of large 
non-phosphorylated HSP2744. As long as significant amounts of large HSP27 oligomers could be formed, in vitro 
chaperone properties preventing thermal aggregation are detected. However, overexpression of phosphorylation 
of HSP27 down-regulates its chaperone activity by decreasing oligomerization of the protein and its consequent 
ability to trap and refold the thermally stressed proteins44. These observations are consistent with the results of 
our study, demonstrating that greater phosphorylation of HSP27, probably associated with lower oligomerization 
of the proteins, results in a decrease of its chaperone-like activity as evidenced by the increase of the number of 
cells undergoing apoptosis.

In order to quantify the thermal dose delivered to the exposed cells, we calculated the cumulative equiva-
lent minutes (CEM43 °C). In our experiments, the thermal dose delivered by pulsed heating (502.7 min) was 21 
times greater than that delivered by CW heating (23.9 min). To obtain the dose 502.7 min for CW exposure the 
steady-state temperature should be 45.5 °C. At pulsed heating, the temperatures in pulses are higher. The main 
contribution to the achievement of the high level of CEM43 °C during pulsed heating is related to temperatures 
in the interval between 47 and 49 °C. As shown in this study, these temperatures are more effective in inducing 
apoptosis. Nevertheless, we cannot exclude that CW exposure at the same dose (502.7 min; 45.5 °C) could induce 
a similar effect. A comparative study of the effects of PW and CW exposures at the same thermal dose on the cell 
damage is out of the scope of this study but constitutes one of its perspectives. In spite of the high thermal dose, 
heat pulses produce relatively low average temperature elevation. We hypothesize that this will prevent in tumors 
and surrounding tissues secondary long-lasting thermally-activated processes (for example, elevation of blood 
flow) as well as overheating of healthy tissues. We also hypothesize that this will make pulsed heating beneficial in 
application for inducing the cell damage.

A heat pulse is characterized not only by minimal, mean, and peak temperature but also by other parameters, 
such as the temperature rise rate. While not providing direct evidence in terms of cellular stress, several studies 
suggested that temperature rise could lead to changes at the cellular level. For instance, it was demonstrated that 
the transient heating (i.e. warm-up phase) up to several °C at 75 GHz leaded to changes in the membrane poten-
tial and consequently in the firing rate of neurons12,62. These changes were dependent on the temperature rise 
rate. Another group demonstrated that temperature increase at 10 °C/s rate caused a temporary cessation in the 
firing of the pacemaker neurons63. Furthermore, it was reported that the viability of liver cancer cells exposed at 
100 MHz depends on the temperature rise rate64. In this case, the cell viability was unaffected by temperature rise 
rates below 10 °C/s and decreased to 90% for the temperature rise rate of 50 °C/s. Note that the effect was shown 
to be frequency dependent, and the cell mortality threshold shifted towards lower temperature rise rates when 
increasing the frequency to 2.45 GHz. The temperature rise rate of pulses used in our study is 6.7 °C/s, and we 
cannot exclude that the cell damage also depends on it. The effects of the amplitude of the pulse and temperature 
rise rate cannot be easily discriminated. With increasing the distance from the center of a well the amplitude of 
the thermal pulses decreases (Fig. 2) accompanied with decreasing the temperature rise rate. One of the possible 
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ways to get an insight into the role of the temperature rise rate is to apply the temperature pulses of different dura-
tion and shape. This constitutes one of the perspectives of this work.

This study paves the way towards destruction of melanoma cells at low average heating by means of 
amplitude-modulated MMW. It demonstrates that the MMW-induced heat pulses, with duration of 1.5 s, induce 
cellular injury in the exposed cells, in contrast to continuous heating with the same average temperature rise. 
Optimization of the pulse shape, in particular in terms of its amplitude, rise time, duration, as well as duty cycle, 
represents a challenging problem for future studies in order to achieve the strongest cellular apoptosis in the 
minimally invasive way.

Data availability
All data generated or analysed during this study are available from the corresponding author on reasonable 
request.
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