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Abstract: Hexavalent chromium (Cr (VI)) ion, as highly toxic environmental pollution, severely
endangers the ecological environment and public health. Herein, a fluorescent nanosensor (PFO-
DPC) was constructed by combining semiconducting polymer dots with diphenylcarbazide (DPC)
for sensing Cr (VI) ion in aqueous solution and living cells. DPC and poly (styrene-co-maleic
anhydride) (PSMA) polymer mixed with polyfluorene (PFO) were utilized for selectively indicating
Cr (VI) ion and improving the efficiency of detection, respectively. The presence of Cr (VI) ion
effectively turned off the blue and green fluorescence of PFO-DPC in the aqueous environment, and
the fluorescence quenching efficiency exhibited a good linear relationship between the range of 0.0
to 2.31 nM (R2 = 0.983) with a limit of detection (LOD) of 0.16 nM. The mechanism of fluorescence
quenching could possibly be attributed to the internal filtration effect (IFE). Additionally, PFO-DPC
showed a satisfactory performance in monitoring intracellular Cr (VI) ion. Our results indicate that
the sensor is promising in various applications.

Keywords: hexavalent chromium; fluorescence sensing; Pdots; diphenylcarbazide

1. Introduction

Hexavalent chromium (Cr (VI)) ion is one of the toxic heavy metal ions and is usually
produced as a pollutant in various industries including tanning, electroplating, mining,
etc. [1] As it enters nature environments, Cr (VI) ion intends to remain, migrate, and
accumulate in aquatics environments or soil and would be hardly biodegraded, resulting
in a negative effect on ecological security and public health [2]. Moreover, the ingestion
of Cr (VI) ion may cause some severe diseases such as chronic ulcers, diarrhea and renal
failure [3]. Therefore, the United States Environmental Protection Agency (US EPA) and
World Health Organization (WHO) recommend that the concentration of Cr (VI) ion
in drinking water should be less than 0.1 µg/mL and 16 µg/L, respectively [4,5]. In
recent years, various methods were developed to detect Cr (VI) ion, such as plasma mass
spectrometry (ICP-MS) [6], X-ray fluorescence [7], voltammetry [8], immunoassay-based
detection [9], etc. However, these methods required complex pretreatment procedures,
expensive and complicated equipment, time-consumption detecting processes or highly
trained operators. Hence, it is a very significant research topic to design efficient, rapid,
facile and sensitive assay methods to detect Cr (VI) ion.

Fluorescence assay has attracted much attention due to its convenience, rapid de-
tection process and relative cost-effectiveness [10,11]. Some reports have focused on the
fluorescent methods of Cr (VI) ion detection using different fluorescent materials such as
carbon dots [12,13], metal organic frameworks [14], organic complexes [15] or boron carbon
oxynitride [16]. However, there are a few reports about the detection of Cr (VI) ion using
semiconducting polymer dots (Pdots) as fluorescent probes. Pdots exhibit high absorption

Nanomaterials 2022, 12, 2663. https://doi.org/10.3390/nano12152663 https://www.mdpi.com/journal/nanomaterials

https://doi.org/10.3390/nano12152663
https://doi.org/10.3390/nano12152663
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com
https://orcid.org/0000-0003-4657-992X
https://orcid.org/0000-0002-3194-9273
https://doi.org/10.3390/nano12152663
https://www.mdpi.com/journal/nanomaterials
https://www.mdpi.com/article/10.3390/nano12152663?type=check_update&version=1


Nanomaterials 2022, 12, 2663 2 of 9

cross sections, good photostability and particularly fluorescence brightness that can be
magnitudes higher than that of organic dyes and tens of times greater than that of quantum
dots [17,18]. Thus, fluorescent sensors based on Pdots have been greatly designed and pre-
pared [19,20]. Moreover, the low toxicity and remarkable biological compatibility of Pdots
have attracted researchers to utilize them in biomedical fields such as drug delivery [21–23],
bioimaging [24,25] and biosensing [26,27]. Diphenylcarbazide (DPC) is frequently reported
as a Cr (VI) ion indicator, which is based on the reduction of Cr (VI) ion to Cr (III) ion while
DPC is oxidized to diphenylcarbazone (DPCA) at the same time, and then Cr (III) ion and
DPCA would form a purple-colored complex. The typical DPC method is the colorimetric
method [28,29], and the combination of DPC reagent and the other method has been also
explored. Recently, Zhi et al. reported a Rayleigh scattering spectral probe consisting of
DPC and liquid crystal trans for Cr (VI) ion detection in aqueous solution [30]. However,
to our knowledge, the DPC reagent has been barely utilized to construct fluorescent probes
for sensing Cr (VI) ion.

In this work, a fluorescent nanosensor PFO-DPC based on highly bright Pdots was
reported for the detection of Cr (VI) ion. As shown in Scheme 1, PFO-DPC was synthesized
using poly (9,9-dioctylfluorene-2,7-diyl) (PFO) polymer, copolymer poly (styrene-co-maleic
anhydride) (PSMA) and diphenylcarbazide (DPC) molecules. PFO is an excellent light-
emitting polymer due to its highly efficient photoluminescence, great solubility, good
chemical and thermal stability and tunable properties through copolymerization [31,32].
PSMA was utilized to generate carboxyl groups on the PFO-DPC surface, which could
improve the water solubility of PFO-DPC and capture metal ions through chelation [33].
Furthermore, DPC dopped in the Pdots could specifically recognize Cr (VI) ion, in which
Cr (VI) ion selectively bound to DPC to form a purple complex and turned off the bright
fluorescence of PFO-DPC, which may be subject to the internal filter effect (IFE). The
developed PFO-DPC offered the merits of sensitivity, selectivity, visualization and stability.
Moreover, PFO-DPC also showed good performance in intracellular Cr (VI) ion detection,
substantially expanding the application value of the sensor.

Scheme 1. Schematic diagram of preparation of PFO-DPC and fluorescent detection for Cr (VI) ion
with PFO-DPC.

2. Materials and Methods
2.1. Materials and Apparatus

Poly (9,9-dioctylfluorene-2,7-diyl) (PFO) and poly (styrene-co-maleic anhydride) (PSMA)
were purchased from Sigma-Aldrich. Tetrahydrofuran (THF; anhydrous, ≥99.9%, inhibitor-
free), diphenylcarbazide (DPC), K2Cr2O7, NaCl, MgCl2, KCl, CaCl2, FeCl3 6H2O, CuCl2
2H2O, NiCl2, KMnO4, acetic acid, boric acid, phosphoric acid, HCl and NaOH were
obtained from Sinopharm Chemical Reagent Co., Ltd. (Shangai, China).
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The apparatus used in the work included a transmission electron microscope (Talos
F200X G2, Thermo Fisher, Waltam, MA, USA); dynamic light scattering system (DLS,
Malvern Zetasizer Nano ZS, Malvern, United Kingdom); U-3900 ultraviolet–visible (UV–
vis) spectrophotometer (Hitachi, Japan); F-7000 fluorescence spectrophotometer (Hitachi,
Japan) and Laser Scanning Confocal Microscopy (Carl Zeiss, Germany).

2.2. Synthesis of PFO-DPC

PFO-DPC was synthesized by the nanoprecipitation method. The polymers PFO and
PSMA were dissolved in anhydrous THF with a PFO concentration of 1 mg/mL and PSMA
concentration of 1 mg/mL. Then, 0.5 mL PFO solution, 0.5 mL PSMA solution, 0.5 mL
DPC solution (4.1 mM) and 3.5 mL anhydrous THF were mixed, and the mixture was
homogenized by sonication. Next, 5 mL of the resulting homogeneous solution was quickly
injected into 10 mL of cold ultrapure water under high sonication power. Finally, the THF
in the solution mixture was removed by bubbling nitrogen on a hot plate at 100 ◦C for
60 min followed by filtration through a 0.22 µm syringe filter to remove aggregates.

2.3. Fluorescence Spectra Detection Experiments

The fluorescent spectra of PFO-DPC in different pHs were obtained in Britton–Robinson
buffer (BR) buffer (0.04 M phosphoric acid, 0.04 M boric acid and 0.04 M acetic acid) and
pH values were adjusted by using NaOH and HCl. The detection of Cr (VI) ion was
performed in BR buffer solution (pH = 7.0). A total of 100 µL of PFO-DPC (50 µg/mL)
solutions and 900 µL Cr (VI) ion samples with different concentrations were added into
5 mL polypropylene centrifuge tubes. After mixing for 15 min, their fluorescence spectra
were acquired at an excitation wavelength of 380 nm. The selectivity of PFO-DPC toward
Cr (VI) ion was investigated by adding other metal ions (Na+, Mg2+, K+, Ca2+, Fe3+, Cu2+,
Ni2+ and MnO4

-) at 5.0 nM into the PFO-DPC solution in the presence and absence of
Cr (VI) ion, and then fluorescence spectra were obtained as described above. Fluorescent
stability was evaluated by recording the change in fluorescence intensity PFO-DPC within
two weeks.

2.4. Cell Culture and Imaging

HeLa cells were used for fluorescent imaging and the HeLa cells were provided by
Nantong University. The HeLa cells were incubated in RPMI-1640 medium supplemented
with 1% penicillin–streptomycin solution, 10% fetal bovine serum (FBS) at 37 ◦C in a
5:95 CO2-air incubator (100% humidity). The cells were cultured for three days and then
incubated with PFO-DPC (5 µg/mL) for 60 min at 37 ◦C in an incubator followed by
washing with PBS three times and bathing in PBS buffer. Next, the cells were further
treated with Cr (VI) ion at different concentrations for 15 min at 37 ◦C. After removing the
culture medium and washing with PBS several times, the confocal fluorescence images of
HeLa cells were taken by Carl Zeiss Confocal LSM710 at room temperature.

3. Results and Discussion
3.1. Characterization of PFO-DPC

PFO-DPC consisted of PFO polymer, copolymer PSMA and DPC molecules. The
doped DPC, as the specifical indicator of Cr (VI) ion, could form a purple complex in the
presence of Cr (VI) ion. The incorporation of PSMA benefited the sensing efficiency by
enhancing the water solubility of PFO-DPC, improving contact between the sensor and
metal ions and capturing Cr (VI) ion through chelation [34].

As shown in Figure 1a, PFO-DPC exhibited intensive absorption in the region of 330–
440 nm. Slightly different from PFO polymer diluted in organic solvent like tetrahydrofuran
(THF), PFO-DPC had an extra absorption band at 430 nm assigned to the β phase of PFO
polymer. The α phase of PFO is disordered and randomly oriented, whereas the β phase is
ordered and flat in conformation [32,35]. The formation of the β phase of PFO reflected
the compact structure of PFO-DPC. The TEM image (Figure 1b) shows that PFO-DPC was
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monodispersed and nearly spherical. Moreover, according to the DLS analysis (Figure 1c),
PFO-DPC exhibited a polydispersity index (PDI) of 0.178 with a mean diameter of 27 nm,
indicating the small size and narrow monodispersed particle size distribution of the sensor.
The characteristics of monodispersedness and small size endowed PFO-DPC with good
water solubility and potential application in the biosensing field.

Figure 1. Fluorescence spectra and absorption spectra: (a) TEM image (b) and particle size distribu-
tion diagram (c) of PFO-DPC.

3.2. Sensitivity of Cr (VI) Ion Detection

The effect of pH on fluorescence intensity and quenching efficiency was investigated
by exploring PFO-DPC at different pH values. In the pH range 5.0–9.0, the fluorescence
intensity first decreased (pH 5.0–7.0) and then kept stable (pH 7.0–9.0) (Figure 2a,b). Because
the fluorescence intensity remained almost unchanged from pH 7.0 to pH 9.0, the solution
at low pH might cause a repulsion effect between Cr (VI) ion and PFO-DPC. In addition,
because the design of this fluorescent probe aimed to apply for determination of Cr (VI)
ion in the water environment and even the physiological environment, pH 7.0 was selected
for the fluorescence detection of Cr (VI) ion.

Figure 2c showed that the introduction of Cr (VI) ion could bring a remarkable fluores-
cence quenching of over 95% of the primaeval fluorescence intensity. Moreover, Figure 2d
indicated a good linear relationship was obtained between the fluorescence intensity of PFO-
DPC and Cr (VI) ion concentration in the range from 0.0 to 2.31 nM (y = −204.0x + 479.5,
R2 = 0.983). Moreover, the low detection limit (LOD) was 0.16 nM. The quenching effect of
PFO-DPC could be directly caught by the naked eye in Figure 2f. Under the UV light, the
fluorescence intensity of PFO-DPC obviously decreased with the incremental concentration
of Cr (VI) ion, while no obvious color change was observed under the visible light.

The possible mechanism of Cr (VI) ion detection was also discussed. Figure 2e showed
that as the concentration of Cr (VI) ion increased, the UV–vis spectra of PFO-DPC increased
in absorbance intensity and a broad band at 350 nm occurred, which is attributed to the ab-
sorption spectra of Cr (VI) ion [36]. No significant changes (red shift or blue shift) occurred
in the absorption spectra of PFO-DPC after adding Cr (VI) ion at different concentrations,
indicating no new substance was produced in the mixture of PFO-DPC and Cr (VI) ion.
Thus, static quenching as well as photoinduced electron transfer (PET) were not responsible
for the fluorescence quenching. As shown in Figure 1a, the absorption spectra of PFO-DPC
exhibited three bands peaked at 380 nm, 400 nm and 440 nm. The incremental Cr (VI) ion
concentration led to the broad band at 440 nm increasing in absorbance intensity (Figure 2e),
which overlapped with the emission band of PFO-DPC. Furthermore, Cr (VI) ion could
absorb the excitation light at 380 nm. Therefore, the fluorescence quenching was possibly
ascribed to IFE.
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Figure 2. (a) Fluorescence spectra of PFO-DPC in different pH. (b) Effect of pH on the fluorescence
intensity of PFO-DPC. (c) Fluorescence spectra of PFO-DPC at various Cr (VI) ion concentrations
(0–2.31 nM). (d) Linear relationship between fluorescence intensity of PFO-DPC (emission 440 nm)
and Cr (VI) ion concentrations. (e) UV–vis absorption spectra of PFO-DPC in different concentrations
of Cr (VI) ion. (f) Naked eye photograph of PFO-DPC under the UV light (top) and visible light
(bottom) with various concentrations of Cr (VI) ion.

3.3. Selectivity and Stability of PFO-DPC

Due to the specific reaction between Cr (VI) ion and DPC, a great selectivity of PFO-
DPC was anticipated. To further evaluate the selectivity of PFO-DPC for Cr (VI) ion, the
fluorescence responses to representative metal ions in aqueous solution (Na+, Mg2+, K+,
Ca2+, Fe3+, Cu2+, Ni2+ and MnO4

−) at 5.0 nM were examined. As shown in Figure 3a,b,
only Cr (VI) ion (2.31 nM) effectively quenched the fluorescence of PFO-DPC, and the
existence of other metal ions barely affected the quenching effect of Cr (VI) ion even at
more than two-fold concentration of Cr (VI) ion (Figure 3c,d), indicating a high selectivity
of the fluorescence sensor toward Cr (VI) ion.

The stability of fluorescence sensors is a significant factor to evaluate their practical
value. Therefore, the initial and final fluorescence intensity and particle diameter of PFO-
DPC within two weeks were recorded. As shown in Figure 3e, the fluorescence intensity
of PFO-DPC only slightly decreased after two weeks of storage time. At the same time,
PFO-DPC did not severely aggregate or decompose during the storage time (Figure 3f).
These results proved the high stability of PFO-DPC.
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Figure 3. Fluorescence spectra of PFO-DPC with various metal ions in the absence (a) and presence
(c) of Cr (VI) ion. Fluorescence response of PFO-DPC (emission 440 nm) with various metal ions
in the absence (b) and presence (d) of Cr (VI) ion. The fluorescent stability of PFO-DPC (e). The
structural stability of PFO-DPC (f).

3.4. Cell Imaging

The properties of small size, high stability and great selectivity render PFO-DPC
suitable for biological application. Therefore, the responses of PFO-DPC in living cells were
investigated. HeLa cells were incubated with 5 µg/mL PFO-DPC in RPMI-1640 medium
supplemented with 10% fetal bovine serum (FBS) and 1% penicillin–streptomycin solution
at 37 ◦C with 5% CO2 and 100% humidity. Then, the cells were washed with PBS buffer to
remove the remaining PFO-DPC. The confocal fluorescent images were obtained in green
channel. As shown in Figure 4a, a robust fluorescence signal caused by PFO-DPC could be
observed in the intracellular compartments of living cells, indicating that the fluorescent
sensor was greatly cell-permeable and kept the PL characteristic even in an intracellular
environment. Furthermore, upon the addition of incremental Cr (VI) ion concentration,
the intracellular fluorescence intensity of PFO-DPC gradually weakened and almost com-
pletely quenched with 1.54 nM Cr (VI) ion (Figure 4). The results demonstrated that the
fluorescence quenching effect of PFO-DPC internalized by living cells could effectively
visualize and determine the intracellular Cr (VI) ion at various concentrations.
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Figure 4. Confocal fluorescent images of HeLa cells after incubating with PFO-DPC and continuous
exposure of exogenous Cr (VI) ion source treatment (0.00 nM (a), 0.38 nM (b), 0.77 nM (c), 1.15 nM
(d) and 1.54 nM (e)). Scare bar = 10 µm.

4. Conclusions

In summary, a fluorescence nanosensor PFO-DPC with DPC as a target indicator
was developed for the sensitive and selective detection of Cr (VI) ion. PFO-DPC with
good aqueous dispersity displayed a highly efficient fluorescence quenching effect toward
to Cr (VI) ion in a water environment, and the IFE dominated in the possible detection
mechanism. The high selectivity and stability properties of PFO-DPC enabled the sensor to
be useful in different cases. In addition, PFO-DPC was practical for the intracellular assays.
As evidenced by confocal imaging, PFO-DPC could detect Cr (VI) ion sensitively based
on the quenching effect in living cells. Accordingly, we believe that PFO-DPC holds great
promise for the detection of Cr (VI) ion in various fields.
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