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ABSTRACT

In nephrology, a great deal of information is measured repeatedly in patients over time, often alongside data on events of
clinical interest. In this introductory article we discuss how these two types of data can be simultaneously analysed using
the joint model (JM) framework, illustrated by clinical examples from nephrology. As classical survival analysis and linear
mixed models form the two main components of the JM framework, we will also briefly revisit these techniques.
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INTRODUCTION

In nephrology, a great deal of information, ranging from lab
results to blood pressure, is measured repeatedly in patients
over time during observational studies, clinical trials or simply
as patients undergo routine monitoring. Often, data on events
of clinical interest, such as dialysis initiation or mortality are
collected alongside this longitudinal data. The joint model (JM)
framework was developed for application in two main scenarios
in which both types of data are available. The first scenario,
commonly found in nephrology research, involves investigating
whether a longitudinal variable is related to an event of clinical
interest. As we will reveal below, traditional models analysing

time-to-event data and longitudinal data separately may be in-
adequate for answering such questions. In those cases, model-
ling both types of data simultaneously is desirable and allows
for the characterization of their relationship. The second sce-
nario in which JMs are often applied concerns research ques-
tions where the primary interest lies in establishing the
trajectory of a longitudinal variable measured over time. In
these longitudinal studies, missing values may be introduced
when patients drop out of the study, potentially leading to bi-
ased estimates. In such cases, JMs can be applied to correct the
longitudinal trajectory for dropout. Below we present examples
describing the use of JMs in both scenarios.
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JMs have been extensively studied in the technical statistical
literature and are still a field of ongoing research. In the past,
JMs were seldom utilized in clinical research due to their com-
plexity and the computational power required to run this type
of model. Over recent years, however, due to advancements in
computational power and the development of user-friendly
software, JMs have gained in popularity, leading to their appli-
cation in various fields of clinical research [1–3]. Nonetheless,
the technique has not yet been fully embraced by the nephrol-
ogy community, and although extensive statistical theory
exists, little has been published on the application and interpre-
tation of JMs in the nephrology domain. For these reasons, the
aim of this article is to provide an introduction to joint model-
ling, illustrated by clinical examples from nephrology. As classi-
cal survival analysis and linear mixed models form the two
main components of the JM, we will also briefly revisit these
techniques.

The JM

The JM generally consists of two components or ‘submodels’:
one to model the survival outcome and the other to model the
longitudinal outcome. The JM estimates the two submodels
jointly. This allows for characterization of the relationship be-
tween both types of data and brings the uncertainty in estimat-
ing each submodel together, thus ensuring such uncertainty is
properly accounted for in the analysis. Below we describe the
most commonly used models for analysing longitudinal and
survival data and how these models are combined in the JM. We
also explain why using conventional survival models may be
unsuitable for the analysis of longitudinal data and argue why
JMs should be used instead.

The Cox proportional hazards model

The Cox proportional hazards model is the most popular regres-
sion technique for survival analysis. This type of model is used to
estimate the effect of a given variable on the risk, or ‘hazard’, of
encountering an event of clinical interest within a defined time
frame. The term ‘survival’ in this sense does not necessarily entail
mortality, but may form any outcome of interest, such as the time
to dialysis initiation, hospitalization or a decrease in estimated
glomerular filtration rate (eGFR) by 50%. Cox regression can be ap-
plied to study the effect of two main types of variables on survival,
specifically, time-invariant variables and time-varying variables.
As these names imply, the value of a time-invariant variable does
not change over time (e.g. patient sex), whereas the value of time-
varying variables may change over time (e.g. eGFR). The effect of a
longitudinally measured variable on a survival outcome may
therefore be investigated by including it as a time-varying variable
in the survival model [4]. Although this approach allows for esti-
mation of the effect of the longitudinal variable on the survival
outcome, it is not the optimal choice for several reasons [5]. First,
the time-varying Cox model assumes that the longitudinal meas-
urements are measured without error, accepting only ‘exogenous’
variables. An exogenous, or external, variable implies that its
value is not affected by other variables in the model and that its
future value is not affected by the survival outcome (e.g. patient
age, outdoor temperature, environmental factors or calendar
date). Most biological variables studied in the field of nephrology,
such as eGFR, blood pressure and biomarkers, are ‘endogenous’ or
internal by nature. The value of an endogenous variable is gener-
ated by the patient, measured with error (due to biological varia-
tion), and is only observable when the subject is alive. Second, it is

not typically possible in nephrology to measure the longitudinal
variable at all event times (e.g. at death or initiation of dialysis), as
patients are often measured at intervals. Consequently, we do not
know the exact underlying value of the variable between meas-
urements or at the time of the event. Several methods are avail-
able to interpolate the underlying value. A common solution is to
carry the last known value forward, creating a step-like function
of the trajectory of the longitudinal variable, which may not accu-
rately reflect the true trajectory followed over time. Such a method
may introduce bias, especially when visit dates are infrequent or
irregular [6]. JMs were developed to overcome the above-
mentioned limitations when studying the effect of a longitudinal
variable on survival, and provided the JM is correctly specified,
have been demonstrated to increase efficiency and reduce bias in
comparison with the Cox model [7]. As a side note, although Cox
regression is the most popular survival submodel, it deserves
mention that parametric (and flexible parametric) models may
also be used in the joint modelling framework.

The linear mixed-effects model

When individuals are followed over time, certain variables may
change as they are measured repeatedly in the same individual.
In some situations, these time-varying variables are measured
at different times for each individual. As the value of these re-
peated measurements are usually related with each other
within a patient, this should be accounted for. Linear mixed
models are often applied to take this correlation into account
[8]. The term ‘mixed’ in linear mixed models refers to the inclu-
sion of both ‘fixed’ and ‘random’ effects (variables) in the model.
A ‘fixed effect’ is a covariate that is assumed to have a constant
mean effect across all individuals in a population, whereas a
‘random effect’ covariate allows the effect to vary in each indi-
vidual. These random effects are used to model the correlated
measurements within each individual. A linear mixed model
may be seen as an extension of simple linear regression, con-
sisting of an intercept and slope to model the effect of a given
variable on the outcome. The linear mixed model adds random
effects to this equation, which allows each individual to have
his or her own intercept and/or slope. For example, if we were
to study the trajectory of eGFR over time, a simple linear regres-
sion model would provide a single intercept and a slope for
time, describing the mean linear trajectory of eGFR in a given
population, whereas a linear mixed model would provide the
eGFR trajectory over time for each individual through the ran-
dom effects, as well as the population average eGFR trajectory
through the fixed effect. These models rely on the assumption
that the relationship, in this example between eGFR and time,
forms a straight line (i.e. the linearity assumption). If this is not
the case, then various data transformation or the inclusion of
splines (described below) must be explored to model the trajec-
tory appropriately. Linear mixed models can be used to model a
continuous outcome and the analogous generalized linear
mixed model can be used for a dichotomous outcome [9].

The JM

The JM generally consists of the above submodels, bringing both
the survival submodel (modelling the survival outcome) and the
linear mixed-effects submodel (modelling the longitudinal out-
come) together, allowing us to characterize the relationship be-
tween both outcomes. Using the most popular approach, this is
achieved through the so-called shared random effects [10].
Simply put, the random effects (i.e. individual trajectories) from
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the linear mixed model are included (i.e. shared) in the survival
model, thus capturing the relationship between the longitudinal
outcome and the survival outcome on an individual level. It is
important to note that this relationship works in both direc-
tions; the survival outcome can be used to inform the longitudi-
nal trajectory on dropout due to the event and, vice versa, the
longitudinal variable can be linked to survival, allowing one to
associate the longitudinal variable with the event of interest. As
we demonstrate in the examples below, joint modelling can
therefore benefit the analyses of both longitudinal and survival
outcomes, providing insights into both.

APPLYING JMS TO ASSOCIATE A
LONGITUDINAL VARIABLE WITH THE RISK OF
AN EVENT

In our first scenario, we describe how JMs can be applied when
researchers are interested in associating a longitudinal variable
with the risk of an event. As described above, simply including a
longitudinal variable as a time-varying covariate in a Cox model
is subject to limitations and may warrant the use of JMs. In this
scenario, the outcome of the longitudinal submodel is incorpo-
rated as a covariate in the survival submodel, allowing for the
estimation of its effect on the event of interest. Examples of po-
tential research questions include determining the association
between blood pressure trajectory and the risk of mortality or
the association between eGFR measured over time and the risk
of dialysis initiation. JMs may be used to answer aetiological re-
search questions (i.e. to determine the association between an
exposure and an outcome), but they are also valuable in the pre-
diction setting, as we demonstrate in the example below. Lastly,
JMs can be applied in the mediation analysis framework to esti-
mate the indirect effect of a longitudinal mediator on a time-to-
event outcome [11, 12].

JMs and prediction

In nephrology, prediction models are considered essential for
facilitating decision-making and informing patients about their
prognosis. For practical reasons, prediction models typically use
measurements taken at baseline to predict the outcome of in-
terest, thus utilizing only a small fraction of the information
available. As described above, JMs allow for the inclusion of all
available longitudinal measurements in the form of a linear
mixed submodel. Compared with models using a single baseline
measurement, the inclusion of this additional information may
better reflect disease progression and improve prediction accu-
racy for two reasons. First, predictions using longitudinally
updated values are calculated in closer proximity in time to the
date of the event. Second, as the JM uses multiple measure-
ments, estimates will be less prone to error compared with a
single measurement, especially if the longitudinal variable is
noisy [13].

An additional property of JMs is their ability to associate a
longitudinal variable with the risk of event on an individual
level [14], allowing for personalized prediction. JMs use the lon-
gitudinal information captured at each follow-up visit to predict
the outcome for each individual [15]. This is achieved using ran-
dom effects, which are unique for each individual. Furthermore,
it may be of interest to update the predicted prognosis of an in-
dividual as new measurements become available. By adding
this new information to previous measurements, JMs are capa-
ble of updating the risk of an event occurring in the future, thus

allowing for ‘dynamic’ and individualized predictions of sur-
vival during follow-up [16].

When modelling a longitudinal variable over time, its trajec-
tory may not necessarily be linear. For instance, it has been dem-
onstrated that eGFR trajectories often do not follow a linear path
[17, 18]. The so-called splines may be included in linear mixed
models to allow for such non-linear trajectories and are therefore
ideal for modelling volatile trajectories for variables that do not
follow a linear course over time. Splines may be included in both
the fixed and random effects of the mixed model and are readily
available in most software packages. In the setting of personal-
ized prediction, including splines in the random effects provides
a great deal of flexibility when modelling individual trajectories
and may result in the improvement of prediction accuracy.
Besides splines (fractional), polynomials can also be used to deal
with non-linearity in the longitudinal model [19].

In prediction studies using JMs, several methods, or ‘param-
eterizations’, exist to associate the longitudinal outcome with
the survival outcome in the JM. The simplest method is to asso-
ciate the expected longitudinal value at a given point in time
with the event of interest. However, other methods are also
available, which may improve prediction accuracy compared
with using only the current value. For instance, the slope of the
trajectory, reflecting speed and direction, may also be used to
associate the longitudinal variable with the outcome. Other
parameterizations include using the area under the trajectory
as a summary measure for the cumulative exposure up to a
given point in time or even a combination of the above.
Depending on the relationship between the longitudinal vari-
able and the event of interest, these parameterizations may add
predictive value to the model [20].

Example 1: predicting mortality using troponin T

As we outline above, JMs provide an interesting tool in the de-
velopment of prediction models. JMs enable individualized and
dynamic prediction with updated survival probabilities at each
new patient visit, allowing for dynamic changes in treatment
decisions as patients progress. Moreover, the addition of splines
to the random effects offers flexibility when modelling non-lin-
ear predictors over time. In the following example we will dem-
onstrate how to use the JM to dynamically predict survival
using troponin T (TnT) measured over time in a cohort of 174
(936 measurements) CKD Stages 4 and 5 patients from the
European QUALity Study on treatment in advanced chronic kid-
ney disease (EQUAL) study. As a caveat, in this example we
greatly simplify the development of prediction models, as
methods regarding the choice of predictors (external), valida-
tion and measures of discrimination fall out of scope.

The linear mixed submodel

We first use a linear mixed model to establish the trajectory of
TnT over time for each individual as well as for the population
as a whole. To fulfil the linearity assumption, we log-transform
TnT before entering this variable as the outcome in our model.
We then add the time variable as a fixed effect to model the
population average trajectory of TnT. We also include a random
intercept and random slope for time in order to provide each in-
dividual with his/her own TnT trajectory. Other covariates may
also be added to aid the prediction of the TnT trajectory, but for
the sake of simplicity, we will disregard this for now. As TnT of-
ten follows a non-linear evolution, we introduce splines to the
fixed and random effects for time. Figure 1 illustrates the final
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mixed model describing the population average and individual
trajectories for TnT.

The Cox proportional hazards submodel

As our primary interest is the prediction of patient survival,
mortality is modelled as the time-to-event outcome in the Cox
model. Patients were censored at 5 years or when they were lost
to follow-up. As we wish to achieve the highest possible predic-
tive accuracy for mortality, we also add other established pre-
dictors for mortality in our population. In this example, we add
the predictors patient age, sex, having had a previous myocar-
dial infarction, pre-existing diabetes mellitus and baseline
eGFR. Note that these predictors are time invariant; their values
do not change over time. If we wish to add additional endoge-
nous time-varying predictors, then one should do so by adding
additional outcomes to our linear mixed submodel (i.e. multi-
variate linear mixed models).

The JM

The JM combines both the linear mixed model and the Cox
model, allowing for estimation of the effect of TnT on mortality.
Although TnT measured over time was the outcome in the lin-
ear mixed model, it now enters the JM as a predictor for mortal-
ity alongside the other predictors from the Cox submodel. In
this example we will limit the model by linking the current
value of TnT to mortality, but as mentioned previously, other

parameterizations, such as the slope or the history of the TnT
trajectory, may improve prediction compared with the TnT
value alone. The standardized coefficients of the JM are
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FIGURE 1: This figure depicts each TnT measurement (black dots) and the population (black line) and patient trajectories (red lines) of TnT over time. Non-linear indi-

vidual trajectories are visible as a result of the inclusion of splines in the random slope for time.

Table 1. The coefficients from the JM are presented below. TnT,
which was the first outcome in the linear mixed submodel, now
enters the survival submodel as a covariate (given in bold type),
allowing for the estimation of the effect of TnT on mortality

JM

Standardized
coefficients

(95% CI) P-value

Linear mixed submodel
Intercept 3.66 (3.55–3.77) <0.0001
Time (per month) 0.02 (0.01–0.02) <0.0001

Cox regression submodel
Patient age (per SD) 0.33 (0.06–0.6) 0.02
Sex (male versus female) 0.87 (0.30–1.43) 0.003
Diabetes mellitus (yes versus no) 0,23 (�0,32–0,76) 0.42
Myocardial infarction
(yes versus no)

�0.92 (�1.57 to �0.22) 0.02

Baseline eGFR (per SD) 0.23 (�0.08–0.57) 0.15
Log TnT (per SD) 1.36 (1.03–1.71) <0.001

Keeping in mind that we log-transformed TnT and that the coefficients in the

survival submodel represent the log hazard, we can calculate that a doubling in

TnT levels results in an 2.6-fold increased risk of death (21.36 ¼ 2.6). In compari-

son, men have a 2.4-fold increased risk of death in this model (e0.87).
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presented in Table 1, suggesting a strong association between
the level of TnT and mortality. Keeping in mind that we
log-transformed TnT and that the coefficients in the survival
submodel represent the log-hazard, we can calculate that a dou-
bling in TnT levels results in a 2.6-fold increased risk of death
(21.36¼ 2.6).

Dynamic prediction

In Figure 2, we illustrate how JMs can be applied to dynamically
predict the survival probability in an individual using TnT

measured over time. The sequence of figures shows how the JM
updates the TnT trajectory as new TnT measurements become
available, as well as the patient’s survival probability. In these
figures, TnT levels tend to rise over time, resulting in a decline
in the 12-month survival probability as the patient progresses.

APPLYING JMS TO DEAL WITH INFORMATIVE
CENSORING

JMs are often applied in research questions where the primary
interest lies in establishing the ‘true’ trajectory of the

FIGURE 2: Dynamic prediction of mortality using TnT in a single patient. On the left-hand side of the plot, each asterisk represents a measurements of TnT and the

line represents the TnT trajectory modelled over time. On the right-hand side of the plot, the JM updates the survival probability as new TnT measurements become

available. Here we present the predicted survival (and 95% CIs) 12 months after the baseline measurement and 12 months after the third and fifth TnT measurement.

The survival probability in this patient declines visibly as TnT levels increase over time.
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FIGURE 3: In the linear mixed model, the population mean eGFR trajectory (black) reflects the fixed effect for time, whereas the individual eGFR trajectories (red) reflect

the random intercept and random slope for time.
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longitudinal variable. In longitudinal studies where patients are
followed over time and repeated measurements are available,
missing values may be introduced when patients drop out of
the study. In studies where these values are missing
(completely) at random, the linear mixed model may be used to
obtain unbiased estimates [21]. However, when the rate of
dropout is related to the level of the longitudinal variable,
dropout is deemed ‘informative’ and is also known as informa-
tive censoring [22–24]. This type of missing data is also referred
to as ‘not missing at random’ or non-ignorable missingness. For
instance, if one wishes to model the eGFR trajectory in a given
population, then missing eGFR values will be introduced over
time as patients drop out of the cohort due to death. As the level
of renal function is related to this event, dropout is more likely
to be in patients with a lower eGFR value and dropout is there-
fore deemed informative. Failure to take this into account may
lead to biased estimates, especially when comparing groups
with different rates of dropout. In such cases, JMs can address
this issue by using the survival component to inform the longi-
tudinal process of missingness. In other words, JMs are able to
correct a longitudinal trajectory for informative dropout. We de-
scribe such an approach in the example below.

Example 2: eGFR decline in CKD patients with
concomitant chronic heart failure

In this example we will use JMs to establish the eGFR trajectory
in CKD patients with concomitant chronic heart failure (CHF).
As CKD patients with CHF may have a high mortality risk, esti-
mation of the eGFR trajectory may be biased by informative cen-
soring caused by dropout due to death. We will therefore apply
JMs to inform the eGFR trajectory on missingness caused by
mortality, producing mortality-corrected eGFR trajectories for
our population. In this example, we included 290 patients with
CHF, with a total of 1237 measurements, derived from the
EQUAL study, an observational European cohort of CKD 4 and 5
patients not on dialysis. To illustrate the magnitude of the effect
that dropout may have on the trajectory, we will compare the
eGFR trajectory obtained from the ‘naı̈ve’ linear mixed model
with that obtained from the JM.

The linear mixed submodel

We first model the trajectory of eGFR over time in our popula-
tion using a linear mixed model. An important assumption of
the linear mixed model is that the error residuals are normally
distributed. To fulfil this assumption, we perform a log-
transformation on eGFR before it enters our model as the out-
come. Next, we model the population mean trajectory of eGFR
over time by adding the time variable as a fixed effect (covari-
ate). We also include a random intercept and a random slope
for time to provide each individual with his/her own intercept
and slope for their eGFR trajectory. The final linear mixed model
is presented in Figure 3 and depicts the population average
eGFR trajectory (reflecting the fixed effect for time) and the indi-
vidual eGFR trajectories (reflecting the random intercepts and
slopes for time).

The Cox proportional hazards submodel

As we wish to adjust for dropout caused by mortality, we model
the risk of death in the Cox proportional hazards submodel as
the time-to-event outcome. Patients were censored when they
were lost to follow-up or if they were still alive at 5 years. As we
were solely interested in using the distribution of mortality in
our population to inform the eGFR trajectory, no other covari-
ates were included in this model. In such cases, the Cox model
simplifies to a Kaplan–Meier curve.

The JM

The JM combines both the linear mixed submodel and the Cox
submodel as described above into a single model. By combining
the two, we allow the survival submodel to inform the eGFR tra-
jectory on missingness caused by mortality. In other words, JM
corrects the eGFR trajectory for informative dropout due to

death. In Figure 4, we compare the ‘naı̈ve’ trajectory from the
linear mixed model and the death-corrected eGFR trajectory
from the JM, demonstrating how the JM affects the estimation
of the eGFR trajectory by correcting for dropout. The JM shows a
slower decline in eGFR after correction for mortality compared
with the unadjusted naı̈ve mixed model slope. The JM provides
a coefficient (�0.49) for the effect of the current value of eGFR at
any time point for the risk of death in the survival submodel.
Although in this example we chose to associate eGFR with sur-
vival using the current value of eGFR at any given time point,
other parameterizations, such as eGFR slope, could also have
been used. Keeping in mind that we log-transformed eGFR and
that the coefficient represents the log-hazard, we can calculate
that a doubling in eGFR levels results in a 29% decreased risk of
death (hazard ratio 2�0.49¼ 0.71). As the JM reflects the eGFR tra-
jectory in the hypothetical situation that none of the patients
died, this resulted in a slower mean decline after correction for
dropout due to death.

AVAILABLE SOFTWARE FOR JMS

Multiple software solutions are available for the implementa-
tion of JMs. R-packages include joineR [25], joineRML [26] and
JM, which takes a frequentist approach to JMs [20], whereas
JMBayes can handle multiple longitudinal variables [27, 28]. In
Stata (StatCorp, College Station, TX, USA), merlin [29] and the
stjm command can be used [30], and for SAS users (SAS
Institute, Cary, NC, USA). the JMFit macro is freely available [31].
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FIGURE 4: This figure shows the population mean trajectory of eGFR over time.

The trajectory is less steep after correcting for mortality in the JM (red line) com-

pared with that from the naı̈ve linear mixed model (blue line), reflecting the

higher mean eGFR in patients that died earlier in the follow-up.
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CONCLUSION

In this introductory article, we describe the conditions in which
conventional analysis techniques are inadequate for character-
izing the relationship between survival data and longitudinal
data, necessitating the use of JMs. In the prediction setting, we
demonstrate the flexibility offered by JMs in the modelling of
longitudinal predictors and illustrate how researchers can im-
plement JMs for the purposes of dynamic and individualized
prognostics. Additionally, we show that JMs are invaluable in
studies that focus on establishing the trajectory of a longitudi-
nal outcome where informative censoring poses a risk.
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