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chemoradiotherapy in locally advanced rectal cancer: a 
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Background: Predicting the response to neoadjuvant chemoradiotherapy (nCRT) before initiating 
treatment is essential for tailoring therapeutic strategies and monitoring prognosis in locally advanced rectal 
cancer (LARC). In this study, we aimed to develop and validate radiomic-based models to predict clinical 
and pathological complete responses (cCR and pCR, respectively) by incorporating the Shapley Additive 
exPlanations (SHAP) method for model interpretation.
Methods: A total of 285 patients with complete pretreatment clinical characteristics and T1-weighted 
(T1W) and T2-weighted (T2W) magnetic resonance imaging (MRI) at 3 centers were retrospectively 
recruited. The features of tumor lesions were extracted by PyRadiomics and selected using least absolute 
shrinkage and selection operator (LASSO) algorithm. The selected features were used to build multilayer 
perceptron (MLP) models alone or combined with clinical features. Area under the receiver operating 
characteristic curve (AUC), decision curve, and calibration curve were applied to evaluate performance of 
models. The SHAP method was adopted to explain the prediction models.
Results: The radiomic-based models all showed better performances than clinical models. The clinical-
radiomic models showed the best differentiation on cCR and pCR with mean AUCs of 0.718 and 0.810 

4634

https://crossmark.crossref.org/dialog/?doi=10.21037/qims-24-7


Wang et al. SHAP-explained MRI radiomics in LARC patients after nCRT4618

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(7):4617-4634 | https://dx.doi.org/10.21037/qims-24-7

Introduction

Colorectal cancer (CRC) ranks among the most prevalent 
cancers worldwide, accounting for 10.0% of all cancer 
cases and 9.4% of cancer-related deaths globally (1). It 
was projected that in 2023, there would be approximately 
153,020 new cases and 52,550 deaths from CRC in 
the United States (2). Locally advanced rectal cancers 
(LARCs) represent nearly 30% of diagnosed cases (2). 
Neoadjuvant chemoradiotherapy (nCRT) followed by 
radical surgery including total mesorectal excision (TME) 
is an integral part of the standard treatment for LARCs, 
significantly improving patient prognosis (3). Moreover, 
for patients who achieve a pathological complete response 
(pCR) following neoadjuvant therapy, a “watch-and-
wait” nonoperative approach can reduce surgery-related 
morbidity and functional complications (4,5). However, 
current assessment of clinical complete response (cCR) 
primarily relies on post-treatment magnetic resonance 
imaging (MRI), which classifies patients after treatment and 
leaves out some patients who could achieve cCR with more 
appropriate preoperative treatment. Therefore, it is crucial 
to predict the response to nCRT prior to treatment in order 
to administer more effective treatments and achieve cCR. 
Although cCR indicates a favorable response to nCRT, it 
does not necessarily guarantee a true pCR, as local regrowth 
rates within 2 years of follow-up range from 7% to 33% (6). 
Therefore, differentiating pCR from cCR is of paramount 
importance.

Clinicians currently evaluate response to nCRT 
based on pathological tumor regression grade (TRG) 
and downstaging after treatment, but there are limited 
clinical features available before treatment that can predict 
tumor response (7). Pathological tissue assessment using 

sequencing and organoid technology has the potential 
to identify good response and bad response patients, but 
its clinical application is hindered by invasiveness and 
additional costs (8-10). Therefore, there is an urgent 
need for an accessible, cost-effective, non-invasive, and 
accurate method to predict the response to nCRT and 
guide the treatment of LARC patients. Radiomics, which 
is based on the analysis of medical images, represents a 
promising tool for response prediction. Numerous studies 
have demonstrated the efficacy of radiomics based on pre-
treatment medical images in predicting the response to 
chemo(radio)therapy in various cancers (11-15). Although 
some studies involving rectal cancer have shown promising 
results, their clinical applications have been limited by 
small sample sizes, single-center settings, unclear internal 
mechanisms, or unexplained features of the developed 
models (16-19).

In this study, we aimed to develop and validate 
multicenter prediction models that incorporate pre-
treatment MRI radiomic features and clinical characteristics 
for predicting cCR and further identifying pCR from 
cCR. Additionally, we employed the SHapley Additive 
exPlanations (SHAP) method to interpret our models, 
which can elucidate the importance of features in the 
prediction model and their contributions to individual 
predictions (20). We present this article in accordance with 
the TRIPOD reporting checklist (available at https://qims.
amegroups.com/article/view/10.21037/qims-24-7/rc).

Methods

Patient cohort

This retrospective study was conducted at 3 centers affiliated 

in the validation set, respectively. The decision curves of the clinical-radiomic models showed its values in 
clinical application. The SHAP method powerfully interpreted the prediction models both at a holistic and 
individual levels.
Conclusions: Our study highlights that the radiomic-based prediction models have more excellent abilities 
than clinical models and can effectively predict treatment response and optimize therapeutic strategies for 
patients with LARCs.
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to the First Affiliated Hospital, Zhejiang University 
School of Medicine (Qingchun Center, Yuhang Center, 
and Zhijiang Center) to investigate a cohort of patients 
with LARC. The study period ranged from January 2014 
to November 2022. The inclusion criteria for the study 
were as follows: (I) patients with confirmed LARCs based 
on pre-nCRT MRI scans, with clinical stage T3 or higher, 
positive nodal status, or both; (II) patients who underwent 
the standard treatment protocol of long-course radiation 
therapy (RT), which comprised 50.4 Gy of radiation 
delivered in 28 fractions (45 Gy in 25 fractions to the pelvic 
area and 5.4 Gy in 3 fractions to the tumor bed), along 
with concurrent oral chemotherapy using capecitabine at  
825 mg/m2 twice daily; (III) the interval between MRI 
examination and the initiation of nCRT was less than 
2 weeks; (IV) surgery was performed approximately  
6 weeks after completing nCRT, and all patients underwent 
postoperative pathologic examination; (V) pre-nCRT 
MRI data, including T1-weighted imaging (T1WI) and 
T2-weighted imaging (T2WI), were available for all 
included patients. Patients were excluded if they met any 
of the following criteria: (I) history of previous recurrent 
rectal cancer or metastatic rectal cancer; (II) incomplete 
nCRT, absence of surgery or surgery conducted in other 
hospitals; (III) detection of mucinous adenocarcinoma 
during postoperative pathologic examination; (IV) presence 
of poor-quality images or incomplete imaging data. 
After applying these criteria, a total of 285 patients were 
included in the study. Among them, 241 patients from 
the Qingchun Center were designated as the training set, 
whereas 44 patients from the other centers formed the 
external validation set. The retrospective research was 
approved by the Ethics Committee of the First Affiliated 
Hospital, Zhejiang University School of Medicine (No. 
IIT2020-1305) and was conducted in accordance with 
the Declaration of Helsinki (as revised in 2013). The 
requirement for informed consent was waived by the Ethics 
Committee because no identifying detail of the participants 
was included in this research. 

Clinical characteristics 

The clinical characteristics of the included patients 
encompassed various factors, such as age, sex, pre-treatment 
serum tumor marker levels [carcinoembryonic antigen 
(CEA), carbohydrate antigen 199 (CA199)], systemic 
immune inflammation index (SII, calculated as the product 
of platelet count and neutrophil-to-lymphocyte ratio), 

as well as MRI-predicted tumor invasion parameters, 
including tumor-node-metastasis (TNM) stage, extramural 
vascular invasion (EMVI), and circumferential resection 
margin (CRM). Additionally, the tumor location was also 
considered as part of the clinical profile of the patients.

Assessment of response

Based on the post-treatment MRI and endoscopic results, 
cCR was defined as the presence of scars and telangiectasias 
and the absence of any irregularity, mass, ulceration, or 
stenosis in endoscopy, and the magnetic resonance tumor 
regression grade (mrTRG) of 0. The presence of lesion in 
endoscopic or mrTRG of 1–3 were regarded as non-cCR. 
The pathological tumor regression was categorized into 
4 grades according to the 8th edition of American Joint 
Committee on Cancer (AJCC) Cancer Staging Manual (21). 
Grade 0 was considered as pCR, indicating the absence of 
viable tumor cells. Grades 1–3 were collectively considered 
as non-pathological complete response (non-pCR), 
indicating varying degrees of residual tumor cells.

MRI protocol

MRI was performed with a 1.5T scanner at Qingchun 
center (GE Signa Excite 1.5T; GE Healthcare, Chicago, IL, 
USA), and 3.0T scanners at Yuhang center (GE Architect 
3.0T) and Zhijiang center (GE Architect 3.0T). The 
imaging protocols included T1-weighted (T1W) and T2-
weighted (T2W) turbo spin-echo sequence in the axial 
planes. Details of MRI characteristics at the 3 centers are 
shown in Table S1. 

Tumor segmentation

The regions of interest (ROIs) encompassing the entire area 
of rectal cancer were manually delineated in axial T1W and 
T2W MRIs for each patient by 2 experienced radiologists 
with more than 5 years of expertise in rectal cancer 
radiotherapy. This delineation process was performed 
independently using MITK [version 2021.10; German 
Cancer research Center (DKFZ), Heidelberg, Germany]. 
To ensure objectivity, the radiologists remained unaware 
of the pathological reports during the delineation. The 
ROIs were meticulously defined, taking care to exclude the 
normal rectal wall and mucosal edema from the analysis. A 
visual representation of the ROI delineation can be seen in 
Figure 1.

https://cdn.amegroups.cn/static/public/QIMS-24-7-Supplementary.pdf
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In cases where there were discrepancies in the manual 
tumor segmentations between the 2 radiologists, a senior 
radiologist with over 10 years of experience in rectal cancer 
radiotherapy conducted a final validation. This senior 
radiologist also remained unaware of the pathological 
reports to maintain unbiased assessment and ensure the 
accuracy and consistency of the ROIs.

Radiomic feature extraction

Radiomic features were extracted respectively from 
original and filtered images, including wavelet, Laplacian 

of Gaussian (sigma: 2.0, 3.0, 4.0, 5.0), square, squareroot, 
logarithm, and exponential by PyRadiomics package 
(version 3.0.1) (22). In order to reduce the disparity among 
different MR system vendors and acquisition protocols, 
normalization of the MRI signal intensities for images, 
discretization with fixed bin width values of 5, and voxel 
size resampling by 3×3×3 mm3 were performed before 
feature extraction. Finally, 1,731 features, respectively 
extracted from each T1WI and T2WI (shown in Table 1),  
were as follows: (I) shape and size features: n=14; (II) 
first-order statistics: n=18; (III) texture features including 
grey-level co-occurrence matrix (GLCM), grey-level run 
length matrix (GLRLM), grey-level size zone matrix, 
grey-level dependence matrix (GLDM), neighboring gray 
tone difference matrix (NGTDM): n=73; and (IV) filter-
derived features: filter ‘wavelet’: n=8×91=728; filter ‘LoG’: 
n=4×91=364; other filter (‘square’, ‘squareroot’, ‘logarithm’, 
‘exponential’): n=91×4=364. Subsequently, we used z-score 
normalization to remove potential batch effects between 
different centers. 

Feature selection and radiomic model construction

Firstly, the radiomic features with good interobserver 
reproducibility [intraclass correlation coefficient (ICC) 
≥0.75] were included. Then, we used the least absolute 
shrinkage and selection operator (LASSO) regression to 
selected features, which can remove unimportant variables 
by shrinking the coefficient estimates toward zero. In order 
to identify the best features, we used a 5-fold cross-validation 
in LASSO regression and then scrambled the data of training 
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3D shape
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Figure 1 Study workflow. ROI, region of interest; T2W, T2-weighted; T1W, T1-weighted; MSE, mean square error; coef, coefficient; 
ROC, receiver operating characteristic; TPR, true positive rate.

Table 1 Imaging features extracted from each T1-weighted and 
T2-weighted MRI by PyRadiomics

Type of feature Number (total =1,731)

Shape and size feature 14

First-order statistics 18

Texture feature 73

Filter-derived feature

Wavelet 8×91=728

LoG 4×91=364

Square 91

Squareroot 91

Logarithm 91

Exponential 91

MRI, magnetic resonance imaging
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set and repeated LASSO regression. After 100 repetitions 
of above steps, we only selected the features which appeared 
more than 80 time to build multilayer perceptron (MLP) 
models. The construction of MLP models involved 5-fold 
cross-validation to determine the best performance via 
GridsearchCV package. Finally, the external validation set 
was used to assess the predictive performance of models 
for response to nCRT. The predictive models of cCR were 
based on the entire dataset and predictive models of pCR 
were built on population that showed cCR.

Statistical analyses

To identify clinical characteristics related to cCR and 
pCR, we used independent-samples t-test and Mann–
Whitney test to analyze variables between the training 
and external validation set, and univariate and multivariate 
logistic regression to analyze continuous and categorical 
variables between different group patients in the training 
set. Variables with P≤0.05 were picked out as candidates 
for further model construction. Evaluation of the models 
included discrimination, calibration, and clinical usefulness. 
The area under the receiver operating characteristic curve 
(AUC) was used to evaluate the discrimination ability of 
models. The Delong test was performed to compare the 
AUC values among different models. Accuracy, positive 
predictive value (PPV), and negative predictive value (NPV) 
were calculated to quantify the discrimination ability of 
the prediction models. Calibration curves were used to 
evaluate the consistency between the predicted and actual 
cCR or pCR rates. Decision curve analysis (DCA) was 
performed to calculate net benefit (NB) of models in the 
range of threshold and identify optimal models (23). The 
SHAP method was used to explain the features’ effects 
on prediction models and explore relationship of selected 
features and response to nCRT. A 2-tailed P value <0.05 
was considered statistically significant.

The analyses of clinical characteristics were performed 
using the software SPSS 25.0 (IBM Corp., Armonk, NY, 
USA). The model construction and assessment were 
performed using Python version 3.7.0. Code availability: 
the code can be provided upon request.

Results

Patient characteristics

Patients whose endoscopic results were no lesion and 

post-MRI assessment were mrTRG0 were grouped 
into cCR and others were regarded as non-cCR. Of 509 
patients with LARCs, 285 who matched the inclusion 
criteria were selected as the training set (n=241; mean age, 
62.58±10.11 years) and external validation set (n=44; mean 
age 61.16±10.03 years). The patient selection flow chart is 
shown in Figure 2. Among patients with LARC in training 
set, 77.54% were male patients and 53.33% were located in 
middle rectum (Table 2). Most patients were T3 (68.07%) 
or T4 (31.58%) and involved lymph node (94.04%). EMVI 
and CRM were 63.86% and 50.18% among patients, 
respectively. Lateral lymph node involvement appeared 
in 40.35% of patients, and CEA and CA199 increased in 
46.67% and 14.39%, respectively. Besides, comparison 
of the characteristics of the training set and external 
validation set, only EMVI showed difference (P=0.04). 
Among cCR patients, only sex and pathological response 
showed difference in the training and external validation 
set (P=0.03 and P=0.04, respectively; Table 3). Further, 
the clinical pretreatment characteristics of the training 
sets were analyzed by univariate and multivariate logistic 
regression to ascertain predictive characteristics. EMVI was 
significantly associated with cCR (P=0.001; Table S2) in the 
whole population and T stage was significantly associated 
with pCR (P=0.050; Table S3) in the cCR population.

Feature selection and model construction

T2W and T1W features were selected via LASSO 
regression respectively. Finally, 3 T2W features and 2 T1W 
features were identified and used to construct a radiomic 
model for cCR (Table S4). The only significant clinical 
characteristic (EMVI) was used together to build prediction 
model for cCR alone and combined with radiomic features. 
Furthermore, the selected clinical and radiomic features 
were used together to build a clinical-radiomic model. For 
prediction models of pCR, 2 T2W features and 2 T1W 
features were identified and used to construct radiomic 
model for pCR. The only significant clinical characteristic 
(T stage) was used together to build prediction model 
for pCR alone and combined with radiomic features. All 
models were built by the MLP classifier and the grid-search 
method was used to definite the optimal parameters. 

Performance of prediction models for cCR and pCR

For prediction models for cCR, the accuracy, PPV, and 
NPV were 69.71%, 0.00%, and 100.00% for the clinical 

https://cdn.amegroups.cn/static/public/QIMS-24-7-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-24-7-Supplementary.pdf
https://cdn.amegroups.cn/static/public/QIMS-24-7-Supplementary.pdf


Wang et al. SHAP-explained MRI radiomics in LARC patients after nCRT4622

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(7):4617-4634 | https://dx.doi.org/10.21037/qims-24-7

model, 77.59%, 34.25%, and 96.43% for the radiomic 
model, and 94.19%, 50.68%, and 88.10% for the clinical-
radiomic model in the training set. In the external validation 
set, the accuracy, PPV, and NPV were 77.27%, 0.00%, 
and 100.00% for the clinical model, 79.55%, 10.00%, and 
100.00% for the radiomic model, and 77.27%, 20.00%, 
and 94.12% for the clinical-radiomic model (Table 4). The 
AUC values of the clinical, radiomic, and clinical-radiomic 
models were 0.613 [95% confidence interval (CI): 0.575–
0.653], 0.763 (95% CI: 0.720–0.806), and 0.831 (95% CI: 
0.799–0.867), respectively, in the training set (Figure 3A) 
and 0.565 (95% CI: 0.524–0.615), 0.715 (95% CI: 0.667–
0.757), and 0.718 (95% CI: 0.664–0.767), respectively, 
in the external validation set (Figure 3B). However, the 
AUC values did not show significant difference in both 
the clinical model (P=0.15) and radiomic model (P=0.97) 
compared with the clinical-radiomic model in the external 
validation set. DCA demonstrated that the clinical-radiomic 
model could achieve more benefit than a treat-all or treat-
none approach, and the clinical-radiomic model had higher 
NB than the other 2 models (Figure 3C,3D). The calibration 
curves of radiomic and clinical-radiomic model showed that 

these 2 models could identify actual cCR patients in the 
training and external validation sets (Figure 3E,3F). 

For distinguishing pCR from cCR, the accuracy, PPV, 
and NPV were 64.38%, 0.00%, and 100.00% for the 
clinical model, 94.52%, 96.15%, and 93.62% for the 
radiomic model, and 97.26%, 96.15%, and 97.87% for the 
clinical-radiomic model, respectively, in the training set. 
In the external validation set, the accuracy, PPV, and NPV 
were 30.00%, 0.00%, and 100.00% for the clinical model, 
50.00%, 28.57%, and 100.00% for the radiomic model and 
50.00%, 28.57%, and 100.00% the clinical-radiomic model, 
respectively (Table 3). The AUC values of the clinical, 
radiomic, and clinical-radiomic models were 0.613 (95% CI: 
0.579–0.645), 0.979 (95% CI: 0.963–0.988), and 0.970 (95% 
CI: 0.957–0.986), respectively, in the training set (Figure 4A) 
and 0.381 (95% CI: 0.334–0.414), 0.762 (95% CI: 0.726–
0.810), and 0.810 (95% CI: 0.775–0.847) in the external 
validation set, respectively (Figure 4B). The high AUC value 
and relatively low accuracy may be mainly caused by limited 
and unbalanced samples of pCR. The AUC values did 
not show significant difference in both the clinical model 
(P=0.13) and radiomic model (P=0.76) compared with 

509 patients with LARC received nCRT from 
January 2014 to November 2022 

(n=416 in training set; n=93 in test set)

Training set = Qingchun center
(n=241)

Non-cCR =168 cCR =73 Non-cCR =34 cCR =10

Non-pCR =47 Non-pCR =3 pCR =7pCR =26

Test set = Yuhang and Zhijiang 
centers (n=44)

Excluded patients:
• The interval between MRI examination and nCRT is 

more than 2 weeks (n=46)
• Without complete medical imaging or low quality 

imaging (n=51)
• Incomplete neoadjuvant chemoradiotherapy, 

absence of surgery or surgery conducted in other 
hospitals (n=104)

• Mucinous adenocarcinoma (n=23)

Figure 2 Patient inclusion. LARC, locally advanced rectal cancer; nCRT, neoadjuvant chemoradiotherapy; MRI, magnetic resonance 
imaging; cCR, clinical complete response; pCR, pathological complete response.



Quantitative Imaging in Medicine and Surgery, Vol 14, No 7 July 2024 4623

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(7):4617-4634 | https://dx.doi.org/10.21037/qims-24-7

Table 2 The clinical baseline characteristics between training and external validation set in the whole population

Characteristics Total (n=285) Training set (n=241) External validation set (n=44) P value

Age (mean ± SD, years) 62.36±10.10 62.58±10.11 61.16±10.03 0.83

Sex (percentages) 0.41

Male 221 (77.54) 189 (78.42) 32 (72.73)

Female 64 (22.46) 52 (21.58) 12 (27.27)

Treatment response (percentages) 0.29

cCR 83 (29.12) 73 (30.29) 10 (22.73)

Non-cCR 202 (70.88) 168 (69.71) 34 (77.27)

Location of tumor (percentages) 0.53

Low 87 (30.53) 70 (29.05) 17 (38.64)

Middle 152 (53.33) 129 (53.52) 23 (52.27)

High 46 (16.14) 42 (17.43) 4 (9.09)

T stage (percentages) 0.94

T2 1 (0.35) 1 (0.41) 0 (0.00)

T3 194 (68.07) 164 (68.05) 30 (68.18)

T4 90 (31.58) 76 (31.54) 14 (31.82)

N stage (percentages) 0.48

N0 17 (5.96) 14 (5.81) 3 (6.82)

N1 151 (52.98) 131 (54.36) 20 (45.45)

N2 102 (35.79) 83 (34.44) 19 (43.18)

N3 15 (5.26) 13 (5.39) 2 (4.55)

EMVI* (percentages) 0.04

+ 182 (63.86) 160 (66.39) 22 (50.00)

− 103 (36.14) 81 (33.61) 22 (50.00)

CRM (percentages) 0.53

+ 143 (50.18) 119 (49.38) 24 (54.55)

− 142 (49.82) 122 (50.62) 20 (45.45)

Lateral lymph node (percentages) 0.94

+ 115 (40.35) 97 (40.25) 18 (40.91)

− 170 (59.65) 144 (59.75) 26 (59.09)

CEA (ng/mL) (percentages) 0.25

≤5 152 (53.33) 125 (51.87) 27 (61.36)

>5 133 (46.67) 116 (48.13) 17 (38.64)

CA199 (U/mL) (percentages) 0.54

≤37 244 (85.61) 205 (85.06) 39 (88.64)

>37 41 (14.39) 36 (14.94) 5 (11.36)

SII (mean ± SD) 690.98±442.26 690.30±452.37 694.72±386.90 0.95

*, P≤0.05, which is considered a statistically significant difference. SD, standard deviation; cCR, clinical complete response; EMVI, 
extramural vascular invasion; CRM, circumferential resection margin; CEA, carcinoembryonic antigen; CA199, carbohydrate antigen 199; 
SII, systemic immune-inflammation index. 
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Table 3 The clinical baseline characteristics between training and external validation set in the cCR population

Characteristics Total (n=83) Training set (n=73) External validation set (n=10) P value

Age (mean ± SD, years) 61.33±11.13 62.03±10.97 56.80±11.41 0.17

Sex* (percentages) 0.03

Male 64 (77.11) 59 (80.82) 5 (50.00)

Female 19 (22.89) 14 (19.18) 5 (50.00)

Pathological response* (percentages) 0.04

pCR 33 (39.76) 26 (35.62) 7 (70.00)

Non-pCR 50 (60.24) 47 (64.38) 3 (30.00)

Location of tumor (percentages) 0.63

Low 25 (30.12) 21 (28.77) 4 (40.00)

Middle 45 (54.22) 40 (54.79) 5 (50.00)

High 13 (15.66) 12 (16.44) 1 (10.00)

T stage (percentages) 0.12

T3 59 (71.08) 54 (73.97) 5 (50.00)

T4 24 (28.92) 19 (26.03) 5 (50.00)

N stage (percentages) 0.71

N0 4 (4.82) 4 (5.48) 0 (0.00)

N1 46 (55.42) 40 (54.79) 6 (60.00)

N2 32 (38.55) 27 (36.99) 3 (30.00)

N3 3 (3.61) 2 (2.74) 1 (10.00)

EMVI (percentages) 0.53

+ 41 (49.40) 37 (50.68) 4 (40.00)

− 42 (50.60) 36 (49.32) 6 (60.00)

CRM (percentages) 0.43

+ 32 (38.55) 27 (36.99) 5 (50.00)

− 51 (61.45) 46 (63.01) 5 (50.00)

Lateral lymph node (percentages) 0.95

+ 34 (40.96) 30 (41.10) 4 (40.00)

− 49 (59.04) 43 (58.90) 6 (60.00)

CEA (ng/mL) (percentages) 0.56

≤5 47 (56.63) 44 (60.27) 3 (30.00)

>5 36 (43.37) 29 (39.73) 7 (70.00)

CA199 (U/mL) (percentages) 0.17

≤37 61 (73.49) 61 (83.56) 0 (0.00)

>37 22 (26.51) 12 (16.44) 10 (100.00)

SII (mean ± SD) 655.23±279.43 624.92±254.79 847.29±386.68 0.11

*, P≤0.05, which is considered statistically significant difference. cCR, clinical complete response; SD, standard deviation; pCR, 
pathological complete response; EMVI, extramural vascular invasion; CRM, circumferential resection margin; CEA, carcinoembryonic 
antigen; CA199, carbohydrate antigen 199; SII, systemic immune-inflammation index.
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Table 4 Performances of models in predicting response to nCRT 

Model
Training set External validation set

AUC (95% CI) Accuracy PPV NPV AUC (95% CI) Accuracy PPV NPV

cCR

Clinical model 0.613 (0.575–0.653) 69.71% 0.00% 100.00% 0.565 (0.524–0.615) 77.27% 0.00% 100.00%

Radiomic model 0.763 (0.720–0.806) 77.59% 34.25% 96.43% 0.715 (0.667–0.757) 79.55% 10.00% 100.00%

Clinical-radiomic model 0.831 (0.799–0.867) 94.19% 50.68% 88.10% 0.718 (0.664–0.767) 77.27% 20.00% 94.12%

pCR

Clinical model 0.613 (0.579–0.645) 64.38% 0.00% 100.00% 0.381 (0.334–0.414) 30.00% 0.00% 100.00%

Radiomic model 0.979 (0.963–0.988) 94.52% 96.15% 93.62% 0.762 (0.726–0.810) 50.00% 28.57% 100.00%

Clinical-radiomic model 0.970 (0.957–0.986) 97.26% 96.15% 97.87% 0.810 (0.775–0.847) 50.00% 28.57% 100.00%

nCRT, neoadjuvant chemoradiotherapy; AUC, area under the receiver operating characteristic curve; CI, confidence interval; PPV, positive 
predictive value; NPV, negative predictive value; cCR, clinical complete response; pCR, pathological complete response.

clinical-radiomic model in external validation set. DCA 
demonstrated that the radiomic model and clinical-radiomic 
model could achieve more benefit than a treat-all or treat-
none approach when the threshold probability was more 
than 64.2% (Figure 4C,4D). However, the calibration curves 
of the clinical-radiomic model showed that the models 
could effectively identify actual pCR patients in the training 
set, but did not perform well in the external validation set 
(Figure 4E,4F), which may be caused by limited number of 
pCR samples in the external validation set.

Explanation of prediction models for cCR and pCR

The relationships of the response to nCRT and features, 
which were used to construct the best predictive model 
(clinical-radiomic models), were analyzed by SHAP 
algorithm. In the prediction model of cCR, we identified 
that EMVI and T1_wavelet-LLL_glrlm_RunEntropy were 
negatively related to cCR, but T2_exponential_gldm_Sma
llDependenceLowGrayLevelEmphasis and T2_log-sigma-
2-0-mm-3D_glszm_GrayLevelNonUniformityNormaliz
ed were positively related to cCR (Figure 5A). The most 
important features in the clinical-radiomic model were T1_
wavelet-LLL_glrlm_RunEntropy (Figure 5B). Besides, we 
also showed how to interpret the assessment of a single 
patient on response to nCRT in the model. In assessment 
of patient 1, the SHAP value was higher than base value, 
which indicated that this patient was a cCR individual, 
and the arrows of features exhibited their contribution to 
assessment of cCR quantitatively (Figure 5C). The value of 

feature 3 (T1_wavelet-LLL_glrlm_RunEntropy) was −4.54 
in this patient and positively contributed to the SHAP 
value. For patient 2, a non-cCR individual, the SHAP value 
was obviously lower than base value and the value of feature 
3 was 1.26, which decreased the SHAP value. 

For the prediction model of pCR, T1_wavelet-
LLL_f i r s torder_Range  was  the  mos t  impor tant 
feature to evaluate pCR and T2_wavelet-HLL_glszm_
SizeZoneNonUniformity was the least important feature 
(Figure 6A,6B). In patient 1, who reached pCR after nCRT, 
the value of feature 4 (T2_wavelet-HHL_firstorder_
Skewness) was 0.87 and made a negative effect on computing 
the SHAP value, but the value of feature 3 (T2_wavelet-
HLL_glszm_SizeZoneNonUniformity) was 0.65 and made 
a positive effect on computing the SHAP value (Figure 6C). 
In patient 2, who did not reach pCR after nCRT, the value 
of feature 4 (T2_wavelet-HHL_firstorder_Skewness) was 
−1.49 and increased the SHAP value. 

Discussion

Clinical characteristics and MRI have been regularly 
used to evaluate the condition of patients with LARCs 
and develop treatment plans. Numerous studies have 
demonstrated that factors such as EMVI and T stage are 
associated with the response to nCRT in individuals with 
CRC (24-26). However, prediction models solely based 
on clinical characteristics have shown poor performance 
in discriminating patients with a good response, according 
to several studies focusing on therapeutic effect evaluation 
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Figure 3 The performance of prediction models for cCR. ROC, receiver operating characteristic; TPR, true positive rate; FPR, false 
positive rate; DCA, decision curve analysis; cCR, complete clinical response.

(27-29). The underlying reason for these outcomes may 
lie in the nature of the rough qualitative assessment of the 
tumor. For instance, the evaluation of T stage is based on 
the degree of tumor invasion in the rectum, and higher 
T stages have been associated with a poorer response 
(30-32). However, a considerable number of patients 
with LARCs are at T3 stage, and the traditional T stage 

system is inadequate in predicting the response among this 
population. Meanwhile, several studies have demonstrated 
that tumor size is related to the response to nCRT, with 
tumors smaller than 3 cm being more likely to achieve 
pCR regardless of their pretreatment clinical stage (30,33). 
Although some studies have suggested that the difference 
in mean tumor size between patients with and without pCR 



Quantitative Imaging in Medicine and Surgery, Vol 14, No 7 July 2024 4627

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(7):4617-4634 | https://dx.doi.org/10.21037/qims-24-7

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0 0.2 0.4 0.6 0.8 1.0
FPR

0.0 0.2 0.4 0.6 0.8 1.0
Threshold probability

0.0 0.2 0.4 0.6 0.8 1.0
Threshold probability

0.0 0.2 0.4 0.6 0.8 1.0
Model predicted probability

0.0 0.2 0.4 0.6 0.8 1.0
Model predicted probability

1.0

0.8

0.6

0.4

0.2

0.0

TP
R

1.0

0.8

0.6

0.4

0.2

0.0

TP
R

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 p
ro

ba
bi

lit
y 

of
 p

C
R

1.0

0.8

0.6

0.4

0.2

0.0

Tr
ue

 p
ro

ba
bi

lit
y 

of
 p

C
R

0.5

0.4

0.3

0.2

0.1

0.0

−0.1

N
et

 b
en

ef
it

0.8

0.6

0.4

0.2

0.0

N
et

 b
en

ef
it

Calibration curve of training set

DCA of training set

ROC of training set

Calibration curve of external validation set

DCA of external validation set

ROC of external validation set

Clinical model: 0.613
Radiomic model: 0.979
Clinical-radiomic model: 0.970

Clinical model: 0.381

Radiomic model: 0.762

Clinical-radiomic model: 0.810

Clinical model
Treat all
Radiomic model
Clinical-radiomic model
Treat none

Clinical model
Treat all
Radiomic model
Clinical-radiomic model
Treat none

Perfectly calibrated
Clinical model
Radiomic model
Clinical-radiomic model

Perfectly calibrated
Clinical model
Radiomic model
Clinical-radiomic model

A B

C D

E F

Figure 4 The performance of prediction models for pCR. ROC, receiver operating characteristic; TPR, true positive rate; FPR, false 
positive rate; DCA, decision curve analysis; pCR, pathological complete response.

is minor (34,35), a quantitative assessment of the lesion is 
crucial for precisely judging the response to treatment.

In contrast to the poor performance of clinical models, 
radiomic-based models have demonstrated promising 
abilities in identifying patients with a good response in 
multiple studies (36-40), with several of them involving 
features extracted from pretreatment MRI (37,38,40). For 

instance, Liu et al. developed a powerful radiomics model 
combining pre-treatment and post-treatment data to predict 
pCR, achieving an impressive AUC of 0.9756; however, their 
study was limited to a single center and did not discuss the 
performance of only pretreatment-MRI based models (37).  
Song et al. successfully developed and validated a robust 
radiomic-based model to predict the response using a large-
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Figure 5 SHAP summary plots of clinical-radiomic model in cCR prediction. (A) The feature relevance and combined features attributions 
to the model’s predictive performance. (B) The rank of features according to their importance of the model’s predictive performance. (C) 
The SHAP force plots explained how the clinical-radiomic model discriminates the treatment response of 2 patients. Patient 1 is cCR and 
patient 2 is non-cCR. The data shown in this figure are kept two decimals after Z-score normalization. 3D, three-dimensional; EMVI, 
extramural vascular invasion; cCR, clinical complete response; SHAP, Shapley Additive exPlanations.

scale multicenter dataset based solely on pretreatment T2 
MRI and discovered that the protocol of pretreatment was 
strongly associated with response to therapy, but they also 
overlooked the effects of pretreatment MRI on assisting 
on decision of preoperative treatment (40). To summarize, 
many previous studies have ignored the importance 
of pretreatment MRI on making therapy protocol. In 
addition, a great number of these studies mainly focused on 
identifying pCR patients, overlooking the clinical reality that 
patients who achieve cCR are often candidates for “watch-
and-wait” management due to the safety of the therapy 
regimen and the challenges of proving pCR. 

To confirm the value of pretreatment MRI in decision-
making of preoperative protocol and achieving clinical 
application of radiomics on assessment on response 
to treatment, our study firstly set cCR as one of the 

endpoints and demonstrated that the radiomic-based 
model outperformed the clinical model, particularly in 
identifying cCR patients. The external validation results 
further confirmed the powerful predictive capability of 
radiomics in assessing the response to nCRT in LARC 
patients, especially when combined with clinical prognostic 
factors. Moreover, previous research has indicated that the 
achievement of cCR is related to the choice of therapeutic 
regimen (41,42) and our study suggests that radiomics could 
assist oncologists in selecting more intensive treatments 
among non-cCR patients to potentially achieve more 
cCR. Furthermore, we validated the ability of radiomics to 
differentiate pCR patients among cCR patients based on 
pre-treatment MRIs, considering the minor lesions often 
observed on post-treatment MRI. The radiomic-based 
models displayed strong performance in differentiating pCR 
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Figure 6 SHAP summary plots of clinical-radiomic model in pCR prediction. (A) The feature relevance and combined features attributions 
to the model’s predictive performance. (B) The rank of feature according to their importance of the model’s predictive performance. (C) 
The SHAP force plots explained how the clinical-radiomic model discriminates the treatment response of two patients. Patient 1 is pCR 
and patient 2 is non-pCR. The data shown in this figure are kept two decimals after Z-score normalization. pCR, pathological complete 
response; SHAP, Shapley Additive exPlanations.

patients among cCR patients, highlighting the potential 
of radiomics as a useful tool for assisting oncologists in 
identifying patients who would benefit from a “watch-
and-wait” strategy. Importantly, radiomic-based models 
offer several advantages, including non-invasiveness, non-
tissue-destructiveness, cost-effectiveness, ease of use, and 
compatibility with existing clinical workflows (43). These 
features make radiomics a promising and practical tool in 
the field of oncology.

With the advancement of radiomics, more complex 
models, such as support vector machines (SVM) and 
neural networks, have been increasingly utilized to predict 
treatment outcomes and assess patients, showing promising 
performance (44-47). However, the "black-box" nature of 
these models presents challenges in understanding how 

factors contribute to predictions and limits their application 
in the clinical setting (48,49). To address this issue, SHAP 
method has emerged as a valuable approach for interpreting 
models and has been widely employed in radiomics studies 
(50-52). According to the results of SHAP analysis, we 
found that T1_wavelet-LLL_glrlm_RunEntropy was the 
most important feature for differentiating cCR patients 
from non-cCR patients, followed by the features of T1_
wavelet-HHL_gldm_DependenceEntropy and T2_
exponential_gldm_SmallDependenceLowGrayLevelEmpha
sis. However, the GLDM and GLRLM were both radiomic 
features reflecting tissue heterogeneity by quantifying the 
frequency of occurrence of pairs of pixels with the same gray 
value and a specified spatial relationship in an image (53),  
and they evaluated the heterogeneity in a different way, 
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which may reflect different information of tumor internal 
heterogeneity. For predicting pCR among cCR patients, 
we found that T1_wavelet-LLL_firstorder_Range and 
T2_wavelet-HHL_firstorder_Skewness were the 2 most 
important features and both negatively contributed to pCR, 
supporting the association between heterogeneity and 
response to treatment. 

Numerous studies  have demonstrated that  the 
heterogeneity of tumor cell populations is strongly linked to 
the response to treatment (54,55) and several studies have 
established the relationship between radiomic features and 
tumor cell population heterogeneity (56,57). Our SHAP 
analysis findings not only confirm the association between 
tumor heterogeneity and the outcomes of nCRT, but also 
highlight the varying contributions of different radiomic 
features, reflecting different aspects of tumor heterogeneity, 
in assessing the treatment response. This insight could 
potentially lead to a better understanding of treatment 
outcomes and assist in refining treatment strategies tailored 
to individual patients. 

The present study had several limitations that should 
be considered. Firstly, we only collected radiomic features 
from T1W and T2W imaging, and did not include 
diffusion-weighted imaging (DWI) due to significant 
variations between centers (58). Meanwhile, other MR 
sequences with useful information about treatment response 
(59-61), such as dynamic contrast-enhanced MR were not 
used in this study. Future radiomic models incorporating 
more comprehensive medical imaging modalities should be 
explored to enhance predictive capabilities. Secondly, the 
number of patients achieving pCR was relatively low due 
to the strict requirements for complete multiparametric 
MRI with high quality. Moreover, patients with cCR on 
nonsurgical management were not included in our study, 
which might have affected the representation of the cCR 
group. Future studies with larger sample sizes and more 
diverse patient populations are warranted to validate our 
findings. Thirdly, it is important to acknowledge that this 
study was retrospective in nature. To establish more robust 
evidence, prospective studies should be designed and 
conducted in the future. Lastly, the biological interpretation 
of radiomic features was based on previous research 
and the SHAP analysis. Although this analysis provided 
valuable insights into feature importance and associations, 
rigorous verification through combined radiomic research 
with pathological examination and advanced sequencing 
technology is highly encouraged. Addressing these 

limitations in future research will further enhance the 
clinical utility and reliability of radiomics in guiding 
personalized treatment strategies for LARC patients.

Conclusions

Our study demonstrated that the clinical-radiomic model 
based on pretreatment features effectively assessed the 
treatment response to nCRT both in the training and 
external validation sets. The utilization of pretreatment 
radiomic features appeared to capture tumor internal 
heterogeneity to some extent, enabling the identification 
of patients with cCR and facilitating the tailoring of more 
appropriate therapy protocols for patients with non-cCR. 
Additionally, radiomics was shown to be a promising tool 
for supporting oncologists in identifying “watch-and-
wait” patients among those with cCR. Moreover, the 
integration of radiomics with the SHAP method allowed for 
a better understanding of the factors influencing treatment 
response, providing radiation oncologists with valuable 
insights to personalize nCRT in a targeted manner. Overall, 
our study highlights the potential of radiomics in the field 
of oncology, offering a non-invasive and effective approach 
to predict treatment response and optimize therapeutic 
strategies for patients with LARCs. 
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