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A B S T R A C T   

Accurate delineation of Gross Tumor Volume (GTV) is crucial for radiotherapy. Deep learning- 
driven GTV segmentation technologies excel in rapidly and accurately delineating GTV, 
providing a basis for radiologists in formulating radiation plans. The existing 2D and 3D seg
mentation models of GTV based on deep learning are limited by the loss of spatial features and 
anisotropy respectively, and are both affected by the variability of tumor characteristics, blurred 
boundaries, and background interference. All these factors seriously affect the segmentation 
performance. To address the above issues, a Layer-Volume Parallel Attention (LVPA)-UNet model 
based on 2D-3D architecture has been proposed in this study, in which three strategies are 
introduced. Firstly, 2D and 3D workflows are introduced in the LVPA-UNet. They work in parallel 
and can guide each other. Both the fine features of each slice of 2D MRI and the 3D anatomical 
structure and spatial features of the tumor can be extracted by them. Secondly, parallel multi- 
branch depth-wise strip convolutions adapt the model to tumors of varying shapes and sizes 
within slices and volumetric spaces, and achieve refined processing of blurred boundaries. Lastly, 
a Layer-Channel Attention mechanism is proposed to adaptively adjust the weights of slices and 
channels according to their different tumor information, and then to highlight slices and channels 
with tumor. The experiments by LVPA-UNet on 1010 nasopharyngeal carcinoma (NPC) MRI 
datasets from three centers show a DSC of 0.7907, precision of 0.7929, recall of 0.8025, and 
HD95 of 1.8702 mm, outperforming eight typical models. Compared to the baseline model, it 
improves DSC by 2.14 %, precision by 2.96 %, and recall by 1.01 %, while reducing HD95 by 
0.5434 mm. Consequently, while ensuring the efficiency of segmentation through deep learning, 
LVPA-UNet is able to provide superior GTV delineation results for radiotherapy and offer tech
nical support for precision medicine.   
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1. Introduction 

Intensity-modulated radiation Therapy (IMRT) employs high-energy rays or particle beams to target and eradicate cancer cells 
while avoiding the surrounding normal tissues to minimize damage [1]. Therefore, identifying and delineating Gross Tumor Volume 
(GTV) rapidly and accurately is a prerequisite for a good tumor radiotherapy plan formulation, effective dose delivery, and efficient 
and precise treatment. When the delineated GTV is smaller or larger than its actual size, under-treatment of tumor cells or damage of 
normal cells may occur by the corresponding biased radiation plan [2]. Currently, GTV delineation in MRIs is a predominantly manual, 
slice-by-slice process conducted by radiation oncologists, which is time-consuming and several hours may be needed for one complex 
case. It is difficult to achieve a consistent boundary judgment among radiation oncologists of varying expertise levels [3], which brings 
certain obstacles to the accurate formulation of the IMRT plan. In this situation, there is an urgent need for intelligent GTV seg
mentation methods, where machines replace humans to achieve precise and consistent delineation of GTV. 

In recent years, deep learning technology has achieved significant breakthroughs and applications across various fields, including 
industry [4,5], agriculture [6], psychology [7,8], and medicine [9,10]. Especially in the medical field, deep learning technology 
provides intelligent and precise solutions for GTV segmentation. This technology is capable of learning the features of the image in 
depth, automatically identifying the boundary between tumor and normal tissue, and thus accurately locating and segmenting the 
GTV, which provides strong support for the formulation of the IMRT plan. 

Existing deep learning-based GTV segmentation methods can be categorized into three types: The first approach deconstructs 3D 
images into a series of slices and employs 2D neural networks for precise segmentation by recognizing and differentiating minor 
structures and lesions. Subsequently, the segmented 2D slices are reassembled into cohesive 3D images [11–13]. However, due to the 
lack of spatial correlation between slices in the 2D network segmentation process, this might lead to an incoherent understanding of 
the 3D anatomical structure and loss of critical 3D spatial feature information, potentially causing inconsistencies in the predicted 
tumor areas across different slices. The second method employs 3D neural networks to segment 3D images directly [14–24], which is 
effective in maintaining continuity between slices and overall spatial correlation, providing a comprehensive perception of volumetric 
spatial features. However, this method might lean towards learning incorrect volumetric structural information due to the resolution 
difference between the x, y, and z axes in MRIs (image anisotropy), overlooking important details within slices and causing distortion 
in segmentation results [25,26]. The third approach utilizes hybrid 2D-3D networks, combining the capabilities of 2D networks to 
focus on fine details within slices with the advantages of 3D networks in understanding the overall spatial structures [26–28], 
effectively solving the issue of spatial feature loss encountered with the use of only the 2D networks, as well as the issue of the 3D 
networks in dealing with the anisotropy of the images [29]. 

Nonetheless, hybrid 2D-3D networks still share common issues with 2D and 3D networks, including: (a) Tumors exhibit significant 
variabilities in shapes and sizes, and the differences in gray level with surrounding tissues are not distinct, resulting in their boundaries 
appearing blurred in images. If the receptive fields of the networks are not wide enough, they may not be able to accurately capture the 
complete shape, structure, and boundary information of the tumors, and especially perform poorly when dealing with tumor scenes 
with slim edges or blurred boundaries. (b) In MRIs, tumors occupy a small spatial proportion, and the networks, while extracting large 
amounts of irrelevant background information, might overshadow critical semantic features of tumors, affecting the ability to 
differentiate details between tumors and normal tissues. In such cases, attention mechanisms that target specific regions become the 
key to addressing this issue [30,31]. 

To address the issues of the existing methods, this study proposes the Layer-Volume Parallel Attention (LVPA)-UNet network, 
which fully harnesses the strengths of hybrid 2D-3D networks. Built upon the classic UNet architecture, LVPA-UNet incorporates an 
LVPA module at each stage of the encoder, employing three strategies to accurately capture key tumor characteristics. Firstly, this 
study extends the multi-scale convolutional attention (MSCA) module [32] and proposes an integrated 2D-3D parallel workflow 
strategy that combines parallel Layer MSCA (L-MSCA) and Volume MSCA (V-MSCA). This parallel strategy facilitates collaboration 
between feature extraction processes across different dimensions, effectively extracting the anatomical structure information of tumors 
within slices and their volumetric spaces. It addresses issues of segmentation inconsistency between slices and morphological 
distortion, caused by the loss of spatial features and anisotropy, respectively. Secondly, for the modular design of L-MSCA and V-MSCA, 
2D and 3D multi-branch depth-wise strip convolutions are respectively implemented. This design significantly expands the model’s 
receptive field, enabling it to adapt to variations in tumor shape and size within slices and volumetric spaces, and enhances its ability to 
identify and process blurred boundaries. Thirdly, leveraging the concept of the dual attention mechanism [31,33], the Layer-Channel 
Attention module is proposed to focus on slices and channels that are closely related to tumors, while effectively suppressing back
ground noise and interfering signals from lesion-free tissues, thus enhancing the detailed differentiation between tumors and normal 
tissues. The contributions of this study are as follows.  

(a) Based on the hybrid 2D-3D architecture, this study proposes an LVPA-UNet to realize GTV segmentation, which can assist 
radiation therapists in formulating more accurate radiation dose distribution plans.  

(b) For each stage of the encoder, this paper introduces three innovative strategies: 2D-3D parallel workflows, parallel multi-branch 
depth-wise strip convolutions, and Layer-Channel Attention—to address the issues that 2D, 3D, or hybrid 2D-3D networks face, 
including spatial feature loss, anisotropy, variable tumor characteristics, blurred boundaries, and background interference in 
MRIs. By integrating these three strategies, a significant improvement in the overall performance of the network is achieved.  

(c) In a performance comparison conducted on 1010 stage II NPC T1-weighted MRIs, LVPA-UNet outperforms eight typical models, 
showcasing its superior effectiveness in GTV segmentation. 
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2. Methodology 

The purpose of this study is to develop and evaluate a novel model for predicting GTV in MRIs. A dataset comprising 1010 cases of 
stage II NPC from three research institutions has been gathered to train, validate, and test the proposed model LVPA-UNet, which is an 
end-to-end deep learning network designed specifically for GTV segmentation. The LVPA-UNet’s performance improvement is 
confirmed by comparing it with typical models and through ablation experiments. 

2.1. The overall architecture of LVPA-UNet 

Fig. 1 shows the network architecture of the proposed LVPA-UNet. The input to LVPA-UNet is a 3D T1-weighted MRI, denoted as 
X = RC×D×H×W, where X comprises D slices of 2D spatial resolution H× W. Given that the input modality is solely T1-weighted, the 
channel number C is 1. Based on the UNet architecture, LVPA-UNet primarily comprises an encoder and a decoder. The encoder 
comprises multiple stages, each leveraging the LVPA module to generate high-level information through the integration of three 
advanced mechanisms. Specifically, these encoder enhancements include parallel 2D and 3D workflows to improve both 2D slice 
details and 3D spatial information, L-MSCA and V-MSCA [32] composed of parallel multi-branch depth-wise strip convolutions to 
expand the receptive field with a heightened focus on boundary processing and variable tumors, and Layer-Channel Attention module 
to increase attention on tumor-related slices and channels. Within the decoder module, each stage employs a skip connection to fuse 
information from corresponding stages in the encoder and decoder, progressively generating the segmentation map. The final 
high-resolution segmentation result is formed by combining maps from adjacent stages. 

Fig. 1. The overall architecture of the proposed LVPA-UNet. 
Abbreviation: CNN = convolution neural network; L-M = L-MSCA module; V-M = V-MSCA module; LVPA = Layer-Volume Parallel Attention. 
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2.2. Network encoder 

The encoder of LVPA-UNet consists of four stages, each encompassing an LVPA module that is designed to integrate information 
from 2D slices with 3D volumetric space and adaptively perceive highly correlated slices and channels with tumors. In constructing the 
encoder, specific considerations are given to the feature dimensions at each stage: (a) The Stem block [32,34] is incorporated with the 
intent to preserve detailed features at the original resolution as much as possible. Instead of simply halving D, H, and W, they are 
tailored to be consistent with the size of the input MRI. (b) Considering that the dataset in this study suffers from anisotropy, with D 
averaging of only 33.01 layers, it’s imperative to minimize the loss of depth-related feature information due to a substantial reduction 
in D. Hence, in stage I, D is maintained to be consistent with the input image. (c) From stage II to stage IV, before the extraction of 
features by the LVPA module in each stage, overlapping patch embedding operations are configured to reduce resolution while 
extracting more enriched semantic features. 

2.3. The architecture of the LVPA module 

As depicted in Fig. 2, the LVPA module is a composite built from a stack of parallel L-MSCA, V-MSCA, Layer-Channel Attention, and 
auxiliary modules. 

2.3.1. The overview of L (V)-MSCA module 
At the core of the LVPA module, inspired by Ref. [32], an innovative approach is taken to handle 3D images. This marked the 

inception of Layer MSCA (L-MSCA) and Volume MSCA (V-MSCA). As illustrated in Fig. 2(A and B), both L-MSCA and V-MSCA adopt 
similar architectural designs, encompassing four key components: (a) a 5 × 5 × 5 depth-wise convolution serving as the conduit for 
local information aggregation; (b) multi-branch depth-wise strip convolutions engineered to capture semantic features of tumor at 
multiple scales and different shapes, thus expanding the receptive field; (c) a 1 × 1 × 1 convolution to fuse information across different 
channel; and (d) a subsequent application of the output from the aforementioned stages as attention weights, through multiplication 
with the L (V)-MSCA module’s input, effectuating a re-weighting of the input features for both L-MSCA and V-MSCA. 

As shown in Fig. 2(C), the introduction of L-MSCA and V-MSCA integrates two key strategies of this study. The parallel approach 

Fig. 2. The architecture of the proposed LVPA module in detail. (A) denotes the L-MSCA, (B) denotes the V-MSCA, and (C) denotes the L-MSCA and 
V-MSCA are parallel in the yellow region of the LVPA module and then subsequently fused by Conv 1 × 1 × 1. 
Abbreviation: Conv = convolution; DWConv = depth-wise convolution; FFN = feedforward neural network; GELU = gaussian error linear unit. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.) 
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fosters cooperation between 2D and 3D feature extraction processes, effectively extracting anatomical information within slices and 
their volumetric spaces, overcoming the loss of spatial features and the distortion caused by image anisotropy; the design of parallel 
multi-branch depth-wise strip convolutions expands the model’s receptive field, adapting to the variability of tumor characteristics and 
enhancing the capability to handle ambiguous boundaries. Detailed descriptions of the L(V)-MSCA design are provided in sections 
2.3.2 and 2.3.3. 

2.3.2. L-MSCA module 
In the pursuit of robust segmentation from MRI data, one must account for the inherent anisotropy within the data. For instance, it 

is not uncommon to observe a glaring presence of a tumor in one slice and its complete absence in an adjacent one. This discontinuity 
poses a conundrum: an excessive reliance on 3D modules in segmentation networks could inadvertently sway the model toward 
volumetric information, at the peril of overshadowing crucial intra-slice features. Thus, there is a palpable necessity to devise a 2D- 
centric module that deftly captures the nuances within slices. 

The L-MSCA module is improved based on [32], both modules for processing 2D images. However, what demands attention in the 
context of the NPC dataset is that NPC GTV generally occupies a minuscule fraction of the image and exhibits gray levels not 
significantly divergent from surrounding tissues, compounded by blurred boundaries. Thus, when constructing the L-MSCA module, it 
is necessary to give it a finer processing capability and slightly different corresponding parameters. 

Fig. 2(A) delineates the structure of the L-MSCA module. For an input feature map F ∈ RC×D×H×W, the module first applies a 5× 5×
5 depth-wise convolution (DWConv) to assimilate local information. This operation can be succinctly expressed as: 

Z2D
1 = DW5×5×5(F) (1)  

where DW5×5×5 symbolizes the 5 × 5 × 5 DWConv operation. 
Subsequently, the feature maps Z2D

1 are processed through an ensemble of three parallel depth-wise strip convolution branches 
coupled with an additional identity branch. Within these three branches, pairs of depth-wise strip convolutions are deployed, with 
convolutional pairs specifically configured as 3 × 3 and 3× 3, 1 × 5 and 5× 1, as well as 1 × 7 and 7× 1. The rationale behind utilizing 
pairs with larger kernels in strip convolutions is to optimize for flat or elongated targets, such as the heterogeneously shaped NPC GTV. 
This design also enables the inclusion of more information about the surrounding areas of tumors with variable shapes, thereby 
optimizing the handling of their ambiguous boundaries. Furthermore, employing 1 × N and N × 1 convolution sizes emulates the 
performance of N × N convolutions, thereby achieving a broader receptive field with minimal computational overhead. Lastly, to 
counterbalance any deficiencies that depth-wise strip convolutions may exhibit in block object scenarios, a complementary branch 
with a pair of 3 × 3 DWConvs is integrated. Taken together, this architecture, boasting four parallel branches, is exquisitely tailored to 
the context like NPC GTV, ensuring the rich excavation of multiscale and morphologically diverse information within the slices. The 
process is succinctly encapsulated in the following equation: 

Z2D
2 = DW[3×3]

(
Z2D

1

)
+ DW[5×1]

(
Z2D

1

)
+ DW[7×1]

(
Z2D

1

)
+ Z2D

1 (2)  

where DW[N×M] represents a pair of DWConvs, with strip convolution kernel sizes set at N × M and M× N. 
Finally, the feature maps from the four branches are amalgamated, serving as attention weights that undergo a Hadamard product 

with F to reweigh the input features. This series of operations can be articulated as: 

Z2D
out = Conv1×1×1

(
Z2D

2

)
⊗ F (3)  

where Z2D
out denotes the output of the L-MSCA module, Conv1×1×1 represents a 1 × 1 × 1 convolution, and ⊗ symbolizes the Hadamard 

product. 

2.3.3. V-MSCA module 
As shown in Fig. 2(B), V-MSCA’s network structure is akin to the L-MSCA module; however, it distinguishes itself by employing 3D 

depth-wise strip convolutions in its three branches. To further augment the expression of multi-scale features, it exhibits a unique set of 
convolution kernel sizes distinct from L-MSCA. The V-MSCA module’s calculations are captured in the following: 

Z3D
1 = DW5×5×5(F) (4)  

Z3D
2 = DW3[5×1]

(
Z3D

1

)
+ DW3[7×1]

(
Z3D

1

)
+ DW3[11×1]

(
Z3D

1

)
+ Z3D

1 (5)  

Z3D
out = Conv1×1×1

(
Z3D

2

)
⊗ F (6)  

where Z3D
1 and Z3D

2 represent intermediate outputs, Z3D
out signifies the output of the V-MSCA module, and DWK[N×M] denotes a pair of 

DWConvs with strip convolution kernel sizes set at K × N × M and K× M× N. 

2.3.4. Layer-Channel Attention 
As depicted in Fig. 3, the slices that contain the NPC tumor constitute only a small fraction of the total slice count. Moreover, the 

small size of the tumor within these slices, combined with its indistinct boundaries when compared to normal tissue, presents a 
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significant challenge. Indiscriminately applying sliding convolutional kernels across feature maps results in the extraction of infor
mation that is mixed with the complex background, negatively impacting the precision of GTV segmentation. Given these observa
tions, a Layer-Channel Attention module is introduced, specifically tailored to the output of the L-MSCA module, as an effective 
countermeasure. 

As shown in Fig. 4, inspired by the dual attention mechanism presented in Refs. [31,33], the conventional channel attention has 
been extended into a more sophisticated Layer-Channel Attention. Specifically, the input feature maps, denoted as F ∈ RC×D×H×W, are 
sequentially passed through Channel Attention and Layer Attention, processing the features along the channel and layer dimensions. 
This endows the network with the ability to allocate varying weights to each channel and slice, thereby accentuating features that 
exhibit a strong correlation with the tumor and attenuating contributions from less relevant regions. Finally, a Layer-Channel Scale 
matrix of size C × D × 1 × 1 is deployed, which further amplifies the importance of the strongly correlated channels and slices of the 
tumor to the overall segmentation. The specific formulation of the formula is as follows: 

Zca = CA(F) + F (7)  

Zla = LA(Zca) + Zca (8)  

Zout = LCS(Zla) (9)  

where CA represents Channel Attention, LA denotes Layer Attention, and LCS signifies the Layer-Channel Scale. Zca and Zla are in
termediate outputs after the application of Channel Attention and Layer Attention, respectively, whereas Zout represents the final 
output subsequent to processing by the entire Layer-Channel Attention module. 

2.4. Network decoder 

LVPA-UNet embraces the architecture of the decoder design delineated in Ref. [24] which is organized in a four-stage cascade that 
works together to gradually improve resolution and define the segmentation outlines. Each stage comprises three 
Conv3D-GroupNorm-ReLU (CGR) operations, where Group Normalization is chosen over Instance Normalization. Between adjacent 
CGR operations, upsampling methods based on trilinear interpolation and skip connections are implemented. These skip connections 

Fig. 3. Visualization of tumor characteristics in MRI imaging. D represents image depth, k represents the slice number containing the NPC tumor, 
and the red markings indicate areas with the tumor. Note that the tumor is present only in a small portion of the total number of slices, and it 
appears small in size within these slices. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version 
of this article.) 
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efficiently combine the high-level feature maps from the encoder with the corresponding stage of the decoder, effectively integrating 
multi-scale features. Notably, to safeguard the richness of depth information, The decoder treats D in the same way as the encoder, with 
stages I and II preserving depth congruent to the input features. 

Furthermore, the segmentation results of the previous layer are often instructive. As shown in the green flow in Fig. 1, the decoder 
part starts from stage III, downscaling the features extracted by the CNN block, realizing cross-channel information interaction and 
integration, and generating a single-channel rough segmentation result; the rough segmentation result is scaled up to the size of the 
result of the next layer, and the output of the CNN block of the next layer is fused into a higher resolution and more spatially detailed 
segmentation result to achieve the effect that the segmentation result of the former layer guides the latter layer. Repeat the operation 
until the final prediction map R ∈ R1×D×H×W is generated. 

3. Experiments and results 

3.1. Experimental data 

In this study, a retrospective review is carried out on 577 cases of stage II NPC from the Sun Yat-sen University Cancer Center (from 
May 2010 to July 2017), 286 cases from Fujian Province Cancer Hospital (from April 2008 to December 2016), and 212 cases from 
Jiangxi Province Cancer Hospital (from January 2010 to July 2017). As illustrated in Fig. 5, based on the inclusion and exclusion 
criteria, a total of 1010 NPC patients (median age, 45 years; 673 males, 337 females) with corresponding diagnostic MRIs are included 
in this study. Oncologists delineate the GTV on all MRI slices, serving as the ground truth for training and assessing the model’s 
performance.. 

Experiments are conducted on T1-weighted MRIs of the head and neck region of 1010 NPC patients. The inter-voxel spacings in the 
MRIs are set to 0.5 × 0.5 × 6mm3 through linear interpolations, with average dimensions of 33.0× 464.8× 464.6. The data are 
randomly divided into three subsets: a training set (606 cases, 60 %), a validation set (202 cases, 20 %), and a testing set (202 cases, 20 
%). Statistical information on the dataset is shown in Table 1. 

Fig. 4. The architecture of Layer-Channel Attention. Layer-Channel Attention is depicted in (A). Channel Attention (B) and Layer Attention (C) are 
similar in structure, but the scope of expression of their attention is different. This architecture automatically selects key features for multiple 
channels and layers. 
Abbreviation: ReLU = rectified linear unit. 
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3.2. Performance metrics 

The segmentation performance is evaluated via four metrics, namely the Dice similarity coefficient (DSC) [35], 95 % Hausdorff 
distance (HD95) [36], precision, and recall. 

The DSC is defined as follows: 

DSC =
2
⃒
⃒Zp ∩ Zg

⃒
⃒

⃒
⃒Zp

⃒
⃒+

⃒
⃒Zg

⃒
⃒

(10)  

where Zp denotes the predicted output mask, and Zg denotes the ground truth mask. A higher DSC indicates a more accurate seg
mentation. In binary segmentation tasks, the DSC can be derived from precision and recall and is computationally equivalent to the F1- 

Fig. 5. Flowchart of patient enrollment. 
AbbreviationAJCC/UICC = American Joint Committee on Cancer/Union for International Cancer Control. 

Table 1 
Statistical information of the dataset.  

Characteristic Training-Validation Set (n = 808) Testing Set (n = 202) 

Age (years), median (range) 45 (19, 82) 45 (15, 76) 
Sex, No. (%) 

Male 533 (66.0) 140 (69.3) 
Female 275 (34.0) 62 (30.7) 

Histopathology, No. (%) 
WHO I 50 (6.2) 0 (0.0) 
WHO II 108 (13.4) 13 (6.4) 
WHO III 650 (80.4) 189 (93.6) 

T, No. (%) 
T1 399 (49.4) 108 (53.5) 
T2 409 (50.6) 94 (46.5) 

Patients are categorized based on the 8th edition of the American Joint Committee on Cancer staging manual. 
Abbreviations: WHO: World Health Organization. 
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score. 
The HD95 assesses the spatial discrepancy between the predicted output and ground truth masks, with smaller values indicating 

better performance. Let Cp and Cg denote the boundaries of the predicted mask and the ground truth mask, respectively. The maximal 
HD is defined as: 

max
{

h
(
Cp,Cg

)
, h
(
Cg,Cp

)}
(11)  

where h(Cp,Cg) = maxa∈Cp minb∈Cg ||a − b||, h(Cg,Cp) = maxa∈Cg minb∈Cp ||a − b||. The value 95 % is employed to mitigate the influence of a 
very small subset of outliers. 

In summary, among these four metrics, a higher DSC, precision, recall, and lower HD95 indicate superior segmentation 
performance. 

3.3. Implementation details 

In this study, for the sake of fair comparison, the settings for LVPA-UNet, as well as all other models used in comparative exper
iments, are consistent. Apart from differences in model architecture, all training and testing parameters are kept identical. 

All experiments are conducted using PyTorch [37] and MONAI [38]. Training and testing are carried out on a Windows Server 
equipped with an Intel Xeon CPU E5-2650 v4 with 12 cores and an NVIDIA GeForce RTX 3090 with 24 GB memory. All data are 
subjected to min-max normalization to normalize pixel values to the range of 0–1 before use. 

During the training process, in addition to normalization, random flipping and rotation are performed on the data to enhance the 
model’s generalizability. Furthermore, random patches of 32 × 256 × 256 are cropped from 3D image volumes, an approach devised 
to exploit as many voxels as possible within the constraints of GPU memory. The dimensions of 32 × 256 × 256 essentially encompass 
all lesions, striving to optimize segmentation performance. All weights are initialized using the Kaiming method [39]. The loss function 
comprises a weighted sum of Dice loss and cross entropy loss [19]. An Adam optimizer and cosine scheduler are employed, and the 
learning rate is initially set to 0.0001. The training batch size is set to 1, with 300 training iterations. The model weights at the iteration 
with the highest Dice score on the validation set are selected as the final model weights. 

For the testing process, the sliding window inference method from MONAI is used, with a window size of 32 × 256 × 256 and an 
overlap of 50 %. The final four metrics are then derived by averaging the evaluations across all test data. 

3.4. Comparison with typical models 

The proposed model is compared to eight typical segmentation models: 3D UNet [40], Lin et al. [23], Isensee et al. [24], the 2D 
implementation of Isensee et al. [24], TransBTS [20], VT-UNet [19], UNETR [18], and MPU-Net [41]. As shown in Table 2, LVPA-UNet 
outperforms all other models in every metric, reaching peak scores for DSC, HD95, precision, and recall at 0.7907, 1.8702 mm, 0.7929, 
and 0.8025, respectively. Compared to the top-performing model VT-UNet, LVPA-UNet demonstrates an increase in mean DSC (0.7907 
vs 0.7758), precision (0.7929 vs 0.7690), and recall (0.8025 vs 0.7989), respectively. Compared to the previous advanced model by Lin 
et al. [23] from Sun Yat-sen University Cancer Center, LVPA-UNet showcases an increase in mean DSC (0.7907 vs 0.7754), precision 
(0.7695 vs 0.7633), and recall (0.8025 vs 0.7983), respectively. In terms of HD95, it achieves superior performance by recording a 
lower value compared to Isensee et al. [24] (1.8702 mm vs 2.4136 mm). 

Fig. 6 depicts the visual comparison of segmentation outcomes between LVPA-UNet and other typical models. The first and second 
rows present two adjacent slices from the same MRI image. In the first row, the delineations of the thin tumor area by 3D UNet, Lin 
et al. [23], Isensee et al. [24], 2D implementation of Isensee et al. [24], and VT-UNet are visibly thinner than the ground truth, even 
fragmented. Only UNETR, MPU-Net, and LVPA-UNet manage to accurately depict this area, but UNETR shows a tendency toward 
overlapping boundaries. In the second row, 3D UNet’s prediction noticeably deviates from the ground truth. While the predictions by 
Isensee et al. [24], Lin et al. [23], TransBTS, UNETR, MPU-Net, and VT-UNet are fairly similar and superior to 3D UNet, LVPA-UNet’s 
prediction closely matches the ground truth, demonstrating optimal performance. 

Upon scrutinizing the adjacent slices in the first and second rows, it’s evident that the size and shape of the tumor vary significantly, 
even in consecutive slices. The eight typical models exhibit varying degrees of error in outlining the tumor across these slices. Notably, 

Table 2 
Comparison of evaluation metrics of various typical models.  

Models DSC ↑ HD95 (mm) ↓ Precision ↑ Recall ↑ 

3D UNet 0.7172 ± 0.0955 5.7052 ± 26.80 0.7354 ± 0.1185 0.7223 ± 0.1317 
Isensee et al. [24] 0.7693 ± 0.0893 2.4136 ± 3.5872 0.7633 ± 0.1143 0.7924 ± 0.1163 
2D Isensee et al. [24] 0.6520 ± 0.1463 7.9084 ± 10.2189 0.8081 ± 0.1134 0.5763 ± 0.1846 
Lin et al. [23] 0.7754 ± 0.0954 2.6832 ± 4.7794 0.7695 ± 0.1177 0.7983 ± 0.1197 
TransBTS 0.7744 ± 0.0929 8.6436 ± 87.3025 0.7583 ± 0.1107 0.8080 ± 0.1221 
UNETR 0.7683 ± 0.0944 3.0822 ± 6.2588 0.7687 ± 0.1184 0.7850 ± 0.1199 
VT-UNet 0.7758 ± 0.0906 2.5433 ± 5.1414 0.7690 ± 0.1073 0.7989 ± 0.1203 
MPU-Net 0.7693 ± 0.0963 3.1479 ± 7.7695 0.7817 ± 0.1143 0.7747 ± 0.1279 
LVPA-UNet 0.7907 ± 0.0937 1.8702 ± 2.8491 0.7929 ± 0.1088 0.8025 ± 0.1201  
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the model proposed by Lin et al. [23] exhibits significant morphological distortion of the tumor between adjacent slices. The 2D 
implementation of Isensee et al. [24] exhibits inferior performance on the first slice and superior on the second compared to its 3D 
counterpart, indicating a loss of 3D features that leads to inconsistencies between adjacent slices. In stark contrast, LVPA-UNet’s 
predictions align well with the ground truth in both slices. This illustrates the strength of LVPA-UNet’s parallel and interactive 2D and 
3D workflows, which integrate volumetric information into the fine edge details of 2D slices, adapting to the anisotropic image 
environment for enhanced segmentation performance. 

As shown in the third row, the delineations of the thin tumor area by 3D UNet and the model proposed by Isensee et al. [24] are 
interrupted. TransBTS, UNETR, VT-UNet, and MPU-Net, despite connecting this thin tumor area, do not accurately represent its 
thickness, and they significantly miss the ambiguous region on the right. In contrast, LVPA-UNet proposed in this study adeptly handles 
both the thin tumor area and the ambiguous region on the right. 

3.5. Ablation study on the effect of the LVPA module 

To elucidate the effectiveness of the LVPA module in improving NPC GTV segmentation performance, different modules are in
tegrated into the model in a stepwise manner. As Table 3 demonstrates, the work by Isensee et al. [24] denotes the baseline, ‘V’ in
dicates the exclusive application of V-MSCA in the encoder block, and ‘LV’ refers to the module featuring a parallel structure of L-MSCA 
and V-MSCA. ‘LVPA’ represents the LV module enhanced with the Layer-Channel Attention module. This progressive integration of 
components simultaneously improves segmentation performance. Notably, compared to the baseline model, LVPA-UNet achieves the 
best performance in terms of mean DSC (0.7907 vs 0.7693), mean HD95 (1.8702 mm vs 2.4136 mm), mean precision (0.7929 vs 
0.7633) and mean recall (0.8025 vs 0.7924). These results manifest the superior performance of the LVPA module in NPC GTV 
segmentation. 

Fig. 7 presents visual results that emerge from progressively integrating distinct modules into the model. As depicted in the first 
row, the baseline model delineates an area that deviates from the ground truth, interrupting the delineation in the thinned area of the 
tumor within the slice. The incorporation of V-MSCA brings the outlined area into closer alignment with the ground truth, and it 
bridges the delineation in the thinning target area within the slice, attributed to the strip design of MSCA’s multi-branch depth-wise 
strip convolution that optimizes the segmentation of slender structures and their indistinct boundaries. Transitioning from V-MSCA to 
the parallel workflow of L-MSCA and V-MSCA enhances the detailed handling of the slices by leveraging the advantages of a 2D-3D 
parallel architecture. Ultimately, with the support of the Layer-Channel Attention module, LVPA adaptively promotes significant slices 
and channels while suppressing other non-important areas, resulting in segmentation outcomes that closely approximate the ground 
truth in the images. 

In the second row, apart from the shrunken segmentation result of the baseline model, the proposed models closely align with the 
ground truth. While the V model marginally outperforms the LV model by 0.59 % in DSC, the fully integrated LVPA model achieves the 
best results. This underscores the necessity of integrating the complete set of modules in LVPA-UNet. 

Fig. 6. Comparison of segmentation results between various representative segmentation models and LVPA-UNet. Ground truths for GTV in the 
current slice annotated by oncologists are marked with blue lines, while model predictions are outlined in red. The numbers at the bottom of the 
image represent the DSC score for the GTV in the current slice. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

Table 3 
Comparison of segmentation performance by stepwise integration of various modules into the model.  

Models DSC ↑ HD95 (mm) ↓ Precision ↑ Recall ↑ 

Isensee et al. [24] 0.7693 ± 0.0893 2.4136 ± 3.5872 0.7633 ± 0.1143 0.7924 ± 0.1163 
V 0.7822 ± 0.0913 2.3478 ± 3.4176 0.7836 ± 0.1113 0.7952 ± 0.1168 
LV 0.7865 ± 0.0925 2.3342 ± 6.0059 0.7827 ± 0.1106 0.8041 ± 0.1172 
LVPA 0.7907 ± 0.0937 1.8702 ± 2.8491 0.7929 ± 0.1088 0.8025 ± 0.1201  
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3.6. Ablation study on different designs of L-MSCA and V-MSCA 

This study undertakes an ablation study on the distinct kernel designs within the multiple branches of the L-MSCA and V-MSCA in 
the LVPA module. Here, 3[K×K] denotes a 3 × 1 × K 3D depth-wise convolution and a 3D 3 × K × 1 depth-wise convolution, while 
[K×K] signifies a K × 1 2D depth-wise convolution and a 1 × K depth-wise convolution. Table 4 presents the evaluation results for 
these different designs. The convolution parameters in the second row achieve the optimal scores in DSC, HD95, and precision. By 
selecting convolutional kernel geometries as exemplified in the second row, it is possible to capture both the comprehensive attributes 
and specific details of tumors across various dimensions and configurations, achieving a more appropriate receptive field that enhances 
the perception of indistinct boundaries. Consequently, this strategic choice can improve the overall GTV segmentation accuracy. 

4. Discussion 

This study utilizes a dataset compiled from 1010 stage II NPC T1-weighted MRIs from three renowned medical centers, meticu
lously delineated by two experienced radiation therapy specialists. Utilizing deep learning technology, an LVPA-UNet segmentation 
network integrating three key strategic advantages is designed. Through training, an automated segmentation model targeting GTV is 
developed. 

The results of LVPA-UNet show a DSC of 0.7907, precision of 0.7929, recall of 0.8025, and a Hausdorff Distance HD95 of 1.8702 
mm, surpassing the best existing model, with higher DSC by 1.49 %, greater precision by 2.39 %, improved recall by 0.36 %, and a 
reduced HD95 by 0.6731 mm. The model performance is enhanced continuously with the integration of modules during the ablation 
study: Firstly, a 1.29 % increase in DSC is obtained from the base model (Isensee et al. [24]) to the V model, which verifies that 
LVPA-UNet’s strategy of multi-branch depth-wise strip convolutions improves the adaptability of the base model to the complex issues 
of elongated tumors, size variations, and ambiguous boundaries. Subsequently, a further 0.43 % increase in DSC is achieved when V is 
improved to LV, which thoroughly demonstrates the synergistic advantages of 2D-3D parallel workflows and parallel multi-branch 
depth-wise strip convolutions. Finally, an additional 0.42 % DSC increase is achieved with the segmentation algorithm from LV to 
LVPA by incorporating the Layer-Channel Attention module which can focus on slices with high tumor correlation. Overall, 
LVPA-UNet improves in DSC, precision, and recall by 2.14 %, 2.96 %, and 1.01 % respectively to the base model, while reducing HD95 
by 0.5434 mm. The model successfully overcomes challenges commonly faced by normal 2D, 3D, or hybrid 2D-3D models, enables 
efficient and accurate segmentation for GTV automatically and consistently, and eliminates subjective judgment disparities. 

From a medical perspective, the accurate delineation by experts from renowned medical institutions ensures the professionalism of 
the ground truth data, making it a solid foundation for the reliability of the segmentation model. Notably, while Lin et al. [23] have 

Fig. 7. Comparative visualization of segmentation results of different modules gradually integrated into the model. Ground truths for GTV in the 
current slice annotated by oncologists are marked with blue lines, while model predictions are outlined in red. The numbers at the bottom of the 
image represent the DSC score for the GTV in the current slice. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the Web version of this article.) 

Table 4 
The effect of different L-MSCA and V-MSCA designs of LVPA modules.  

L-MSCA Design V-MSCA Design DSC ↑ HD95 (mm) ↓ Precision ↑ Recall ↑ 

[3 × 1] [5 × 1] [7 × 1] 3[3 × 1] 3[5 × 1] 3[7 × 1] 0.7890 ± 0.0923 2.0439 ± 3.1675 0.7814 ± 0.1095 0.8116 ± 0.1187 
[3 × 1] [5 × 1] [7 × 1] 3[5 × 1] 3[7 × 1] 3[11 × 1] 0.7907 ± 0.0937 1.8702 ± 2.8491 0.7929 ± 0.1088 0.8025 ± 0.1201 
[5 × 1] [7 × 1] [11 × 1] 3[3 × 1] 3[5 × 1] 3[7 × 1] 0.7901 ± 0.0933 1.9259 ± 2.9413 0.7842 ± 0.1079 0.8103 ± 0.1202 
[7 × 1] [11 × 1] [21 × 1] 3[3 × 1] 3[5 × 1] 3[7 × 1] 0.7884 ± 0.0915 2.0829 ± 3.9428 0.7863 ± 0.1102 0.8049 ± 0.1172  
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demonstrated their model’s NPC GTV segmentation capabilities to be comparable with those of senior radiation oncologists, 
LVPA-UNet presented in this study outperforms it across all essential metrics. This advancement offers substantial technical support for 
the accurate formulation of IMRT radiation plans. Especially for remote areas without seasoned IMRT specialists, the reliable 
LVPA-UNet segmentation model can bring expert-level medical services to local patients. 

From a perspective of universality, LVPA-UNet is endowed with natural generalizing genes for different tissues and organs by the 
inherent transferability of deep learning models. The solutions to address the issues of spatial feature loss and anisotropy, variability in 
tumor characteristics and blurred boundaries, as well as background interference, can be readily adapted to other similar 3D MRI or CT 
segmentation tasks, such as BraTS [42,43] and SPPIN [44]. This offers precise segmentation technology support for a wider range of 
clinical scenarios. 

This study has several limitations.  

(a) The Diffusion Probabilistic Models (DPMs) [45–48] have recently shown outstanding performance in the field of medical image 
segmentation. By simulating the diffusion process between image voxels, DPMs refine image features and capture contextual 
information, allowing them to implicitly recognize complex patterns and subtle changes within images. These models introduce 
unique optimization paths for GTV segmentation that differ from LVPA-UNet, demonstrating their distinct advantages. 
Consequently, by integrating the strengths of DPMs to enhance LVPA-UNet, there is potential for significant advancements in 
GTV segmentation performance.  

(b) The design of LVPA-UNet primarily focuses on optimizing the encoder stage, with limited depth optimization applied to skip 
connections and the decoder mechanism. There is a need to introduce attention mechanisms based on transformers or more 
complex fusion strategies in the future, to further enhance feature propagation [49,50]. Such advancements would not only 
allow for the full utilization of rich contextual information and long-distance dependencies during the decoding process but also 
more effectively restore spatial details in images.  

(c) The dataset utilized in this study is relatively limited in size. Given the importance of large datasets for enhancing the cross- 
domain adaptability and generalization capability of deep learning models, acquiring more extensive datasets is necessary. 
Moreover, LVPA-UNet currently relies solely on T1-weighted MRIs for training and evaluation. Incorporating additional MRI 
modalities such as T2-weighted and CET1-weighted would significantly enrich the information available to the model, 
providing more detailed analyses. However, the legal sensitivities associated with medical imaging data related to specific 
diseases like nasopharyngeal carcinoma impose restrictions and barriers on data collection and sharing, limiting the expansion 
of dataset size and modality diversity. In this context, exploring methods such as generative adversarial networks (GANs), 
DPMs, and text-to-image generation models [51–54] to create synthetic images that closely resemble real data offers a viable 
solution to this challenge. 

5. Conclusion 

This study introduces LVPA-UNet, a network model for GTV segmentation. The model employs three strategies: parallel workflows, 
parallel multi-branch depth-wise strip convolutions, and Layer-Channel Attention mechanism, effectively addressing issues encoun
tered in GTV segmentation, such as loss of spatial features and anisotropy, diversity in tumor size and shape, blurred boundaries, and 
background noise interference. By comparing the performance of the proposed model with eight typical models in NPC GTV seg
mentation tasks, the model’s efficacy is successfully validated. From a medical application perspective, LVPA-UNet precisely de
lineates GTV, aiding in the creation of accurate radiation treatment plans, thereby improving patient treatment outcomes and quality 
of life. In terms of generalizability, LVPA-UNet applies to 3D segmentation tasks in similar images (e.g., MRI or CT). The synthetic 
images to expand multimodal information and increase data samples, investigate new skip connection and decoder network strategies 
will be the next work in the future, and the advantages of DPM will be also fully utilized to provide a more accurate and robust solution 
for the GTV segmentation task. 
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