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Abstract
Purpose  Effective identification of electrical drivers within remodeled tissue is a key for improving ablation treatment for 
atrial fibrillation. We have developed a mutual information, graph-based approach to identify and propose fault tolerance 
metric of local efficiency as a distinguishing feature of rotational activation and remodeled atrial tissue.
Methods  Voltage data were extracted from atrial tissue simulations (2D Karma, 3D physiological, and the Multiscale Cardiac 
Simulation Framework (MSCSF)) using multi-spline open and parallel regional mapping catheter geometries. Graphs were 
generated based on varied mutual information thresholds between electrode pairs and the local efficiency for each graph 
was calculated.
Results  High-resolution mapping catheter geometries can distinguish between rotational and irregular activation patterns 
using the derivative of local efficiency as a function of increasing mutual information threshold. The derivative is decreased 
for rotational activation patterns comparing to irregular activations in both a simplified 2D model (0.0017 ± 1 × 10−4 vs. 
0.0032 ± 1 × 10−4, p < 0.01) and a more realistic 3D model (0.00092 ± 5 × 10−5 vs. 0.0014 ± 4 × 10−5, p < 0.01). Average local 
efficiency derivative can also distinguish between degrees of remodeling. Simulations using the MSCSF model, with 10 
vs. 90% remodeling, display distinct derivatives in the grid design parallel spline catheter configuration (0.0015 ± 5 × 10−5 
vs. 0.0019 ± 6 × 10−5, p < 0.01) and the flower shaped open spline configuration (0.0011 ± 5 × 10−5 vs. 0.0016 ± 4 × 10−5, 
p < 0.01).
Conclusion  A decreased derivative of local efficiency characterizes rotational activation and varies with atrial remodeling. 
This suggests a distinct communication pattern in cardiac rotational activation detectable via high-resolution regional map-
ping and could enable identification of electrical drivers for targeted ablation.

Keywords  Atrial fibrillation · Electrical drivers · Rotational activation · Cardiac mapping · Mutual information · Local 
efficiency

1  Introduction

Atrial fibrillation (AF) is the most common arrythmia, pro-
jected to affect 6–12 million people in the USA by 2050 
and 17.9 million people in Europe by 2060 [1]. Catheter 
ablation is a treatment option for symptomatic AF which 
aims to isolate or eliminate dominant electrophysiologi-
cal substrates. A variety of substrate mapping and ablation 

strategies have been proposed to achieve this goal, includ-
ing the identification of electrical drivers [2, 3]. The term “ 
AF driver” or “Electrical rotational activation” or “Rotor” 
applies to organizing source of vortex-like functional reen-
try, as a curved wave that rotates around an unexcited core 
and forms a spiral shape [4]. AF driver identification using 
the current electroanatomic mapping system has been a chal-
lenge: arrythmia cycle lengths and tissue heterogeneity can 
obscure re-entrant circuits within complex electrograms. 
The mapping catheters in the present iterations have dem-
onstrated only limited clinical utilities for guiding ablations, 
due to their poor spatial temporal resolution and restricted 
software modules. This has resulted in repeat ablations as 
well as variability in efficacy among patient groups [5, 6]. 
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It is therefore critical to develop novel strategies for better 
identifying target electrical drivers.

Insight into AF mechanism classification can be gained 
by approaching cardiac arrhythmias from a network theory 
perspective. Networks, collections of nodes connected by 
edges, have been widely used to represent relationships in 
systems such as social networks, metabolism, and the brain. 
Networks find a natural application in mapping cardiac 
arrhythmias: tissue areas surrounding an electrode can be 
represented as nodes while various relationships between 
neighboring electrical signals can be used to define edges. 
This approach has been used to demonstrate changes in 
global tissue connectivity upon ablation [7]. Networks 
can also be used to detect AF driver, by establishing links 
between electrodes based on sequential local activation 
time and applied a standard search algorithm for rapid cycle 
detection [8].

Mutual information is a measure of dependence between 
two signals: the amount of information obtained about one 
signal based on the observation of another. This measure 
has been applied to profiling communication between car-
diomyocytes during arrhythmias, demonstrating spatially 
heterogeneous patters during sinus rhythm, focal activation, 
and spiral reentry [9]. Spiral wave dynamics in particular 
can effectively be quantified through mutual information 
and correlated to micro-scale behavior of cardiac system 
components [10, 11].

The high-resolution multi-spline mapping catheter tech-
nology  provides  the opportunity to apply network and 
mutual information approaches to AF driver detection. Peri-
odic stationary rotors can process in 2–3 cm2 areas, making 
electrogram points obtained from regions of comparable 
area, rather than the whole atrium, particularly attractive for 

the real time 3D electroanatomic mapping [12]. Sequential 
mapping with the catheters that cover 7.1 cm2, combined 
with automated activation detection software, can identify 
temporally stable activations associated with AF termina-
tion (Fig. 1) [13, 14]. These mapping catheters also enable 
the activation identification within highly scattered regions 
that otherwise appear electrically silent [15]. The advanced 
mapping therefore provides rich regional information for 
further network and information theory-based analysis.

In this report, mutual information graphs are applied 
to gain insight into the regional electrical driver in 
AF.  Using  2D  and  3D  atrium  computational  models, 
we identify a metric that distinguishes between irregular 
and rotational activity at this scale—local efficiency. We 
then analyze an atrial tissue model that incorporates vary-
ing degrees of electrophysiological remodeling, demonstrat-
ing the utility of local efficiency in identifying drivers based 
specifically within remodeled substrates. Local efficiency, as 
a graph theory metric of fault tolerance, demonstrates the 
interference of tissue remodeling in regional communica-
tion and presents an avenue for identification of drivers 
located specifically within atrial electrical remodeling.

2 � Materials and methods

A mutual information-based  analysis was developed 
for  regional voltage maps at the scale accessible with 
high-resolution multi-spline catheters of varied geome-
tries. Simulated electrical driver data for analysis was first 
generated. Mutual information was then calculated based 
on action potential (AP) voltage signals obtained from 
any electrode pair within the catheter (Fig. 2a) to generate 

Fig. 1   Clinical regional high-
resolution local activation 
time mapping. a A schematic 
of high-resolution mapping 
catheters with flower-shaped 
open spline and grid-type 
parallel spline configura-
tions. b A schematic of 
a catheter spline represent-
ing mapping electrodes and 
the spacing between them. c A 
schematic representing regional 
local activation time maps 
obtained throughout the atrium 
with a high-resolution flower-
shaped open spline catheter. 
The colored region represents 
an individual map
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a graph where connections between electrodes if a particu-
lar mutual information threshold are reached (Fig. 2b). The 
subsequent graph analysis was focused on local efficiency, 
which is a metric calculated based on the average path 
length between electrodes of a given subgraph (Fig. 2c). 
The details of this approach are described below and sum-
marized in a schematic in Figure S1.

2.1 � Simulations

Multiple cardiac spiral wave simulations (2D and 3D) were 
adopted to verify the independence of observed graph 
characteristics from a particular model. In particular, 
the simplified 2D Karma model was selected to suggest 
if the analysis identified features of repeat spiral activa-
tion or of more complex physiological patterns originating 
from variable AP morphology. A model that represents 

Fig. 2   Regional mutual information graph approach. A) A sche-
matic representing two mapping electrodes positioned on cardiac tis-
sue. The action potentials at the electrode locations are used to esti-
mate the mutual information between the recording sites. B) A graph 
with each node representing  a recording  electrode, with electrodes 
from panel A highlighted. The connections between nodes (edges) 
represent mutual information values above a set threshold. C) A sche-
matic illustrating subgraph analysis. A set of nodes  connected to a 
single central node thereby forming a subgraph is highlighted in dark 
grey.  Edges highlighted in red represent the shortest paths  between 
subgraph nodes that do not connect to the central node. The average 

of these path lengths over multiple subgraphs  represents  local effi-
ciency. D) A  series of electrode positions shown in  grey  overlayed 
over a series of simulated voltage maps  demonstrate  data extrac-
tion using a particular  electrode  geometry. E) A mutual informa-
tion matrix demonstrating the mutual information between each 
pair of electrodes. Increased mutual information is shown in yel-
low. F) A binary adjacency matrix calculated by setting a threshold 
for mutual information between  electrode  pairs. G) A  graph with 
each node (orange) representing an electrode within a mapping cath-
eter  and each edge (blue)  representing  sufficient mutual information 
between electrode pairs based on the adjacency matrix
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re-modeling through Ca2+ dynamics was also adopted to 
represent a feature characteristic of cardiac tissue in per-
sistent AF.

2D simulations were based on the Karma model, which 
is a widely used simplification of more complex ionic 
models of the cardiac membrane. This model incorporates 
fast inward, slow outward, and slow inward currents that 
correspond to physiological Na+, Ca2+, and K+ current 
[16]. The model can reproduce the AP duration and con-
duction velocity but not morphology generated by more 
complex models. This simplification is suitable for study-
ing spiral wave behavior, for which the model was initial 
designed, due to the key role of restitution properties in 
determining wave behavior [17].

The simulations were performed using the virtual heart 
platform WebGL implementation developed for rapid 
cardiac simulations [18]. The 512×512 cell 2D Karma 
model was utilized in the spiral wave regime (nb= 1.0, 
m=7.0, eps= 0.4, simulation time= 10s) to extract 1500 
frames of spiral activity. The set parameters determine 
the AP duration of a single pulse, the sensitivity of the 
wavefront during propagation (tendency to disperse), and 
the relationship between the time scale of the upstroke 
to the maximum AP duration, respectively. While these 
parameters can be adjusted to match AP duration and con-
duction velocity of clinical data, they cannot be indepen-
dently adjusted to reflect properties such as cycle length. 
Spontaneous breakup of the spiral wave produces irregular 
activity, of which 1500 frames were also extracted. The 
images were converted to binary by ImageJ to enable effi-
cient mutual information estimation during further analy-
sis. The produced videos are available in the supplemen-
tary information (Video S1–2).

3D analysis was based on previous 10s 3D simulations 
by Rios-Munoz et al. [19]. The realistic atrial model imple-
ments heterogeneity in fiber orientation as well as anisot-
ropy in conduction velocity and ionic currents [20]. The 
simulations incorporate the AF-remodeled version of the 
cellular model [19, 21]. Briefly, this model aims to accu-
rately represent the repolarization process, incorporating 
improved formulations for the transient outward K+ current 
ultrarapid rectifier K+ current. These simulations considered 
two activity scenarios: rotor activity and irregular wavefront 
collisions at a sampling frequency of 1kHz. The simulation 
outputs were AP voltages.

The portion of the simulation output video containing 
a stabilized rotor core, as well as the corresponding region 
of irregular wavefront collision simulation, were isolated 
for further 2D analysis of surface AP voltages. The 1500 
frames obtained from each simulation were converted to 
binary images via ImageJ by thresholding at −50mV to ena-
ble efficient mutual information calculations. The produced 

surface activation videos are available in the supplementary 
information (Video S3–4).

Remodeling simulations were performed using the Mul-
tiscale Cardiac Simulation Framework (MSCSF), a C/C++ 
implementation for cardiac electrophysiology simulations 
[22]. This modeling framework aims to represent the bi-
directional coupling between sub-cellular and tissue level 
processes. The particular modeling parameters chosen for 
this study trigger rotor and included an implementation of 
spontaneous sub-cellular Ca2+ release events associated 
with remodeling. Specifically, first, a 1D model was paced 
to a stable state, using the RSERCA_NCX cell model with 
a conduction velocity D1 of 0.25 mm/ms, tissue modula-
tion (Dscale) of 0.75, and cell size of 0.3 mm at a basic 
cycle length of 300ms for 100 beats. Following pacing, this 
cell model is designed to spontaneously mimic general dis-
ease remodeling features observed in AF: upregulation of 
the sarcoplasmic reticulum Ca+2 pump and downregulation 
of the Na+-Ca2+ exchanger. These features promote spon-
taneous Ca2+ release and result in pro-arhythmic behavior. 
The corresponding 2D re-entry tissue model composed of 
250×250 such cells was then paced for 2 beats before apply-
ing an S1 beat and an S2 of 155. The simulation time of the 
final segment was set 460ms. The remodeling conditions 
were modulated on a linear scale, with the degree of remod-
eling modification applied to the cell model varied from 10 
to 90% remodeling. Increasing degrees of remodeling repre-
sent downregulation of the Na+-Ca2+ exchanger which low-
ers the Ca2+ efflux, resulting in spontaneous Ca2+ to propa-
gate to neighboring cells and sustained arrhythmia. This is 
implemented through linear scaling of model parameters, 
including ion flux rate ratios, maximum intracellular uptake, 
and the maximum Na+-Ca2+ exchanged current [22]. The 
obtained voltage files were imported into ParaView software 
and converted to binary using ImageJ for mutual information 
estimation.

2.2 � Regional network generation

To extract data for analysis, binary voltage signals were 
obtained at locations corresponding to  particular elec-
trode positions from simulated data sets. As demonstrated 
in a representative time slice of the analyzed 3D simulated 
tissue with rotational activation  in  Fig.  2d,  close elec-
trode positioning captured the simulated activations. The 
obtained binary signals were processed to calculate mutual 
information at each electrode pair, as demonstrated in the 
corresponding representative mutual information matrix 
in Fig. 2e. As expected, maximum mutual information is 
observed on the principal diagonal, which corresponds to the 
comparison of an electrode signal to itself. Several sur-
rounding clusters of increased mutual information are also 
observed. This matrix is converted to a binary adjacency 
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matrix by selecting a particular portion of connections with 
the highest mutual information, as demonstrated in Fig. 2f 
for the top 10% most informative connections. This thresh-
olding, although chosen arbitrarily, unambiguously high-
lights clusters of high mutual information. This matrix is 
directly converted to a graph for further analysis (Fig. 2g).

This analysis was performed using MatLab (R2019a, 
MathWorks) using  two  investigational catheter  geom-
etries representing (a) flower-shaped radial spline place-
ment and (b) grid-type parallel spline placement. Unless 
otherwise noted, electrodes in the radial spline geometry 
were positioned on eight 2 cm splines, each separated by 45 
degrees. The 48 electrodes were 500 µm in length and spaced 
2 mm apart. Electrodes in the parallel (grid) geometry were 
positioned on six splines spaced 2.14 mm apart. The 48 elec-
trodes were 500 µm in length and spaced 2 mm apart. For 
each time point in the obtained volage map, the catheter was 
positioned within the analyzed tissue and voltage values 
from four simulation cells neighboring the electrode were 
averaged and rounded.  This produced a binary signal 
sequence corresponding to each electrode. Mutual informa-
tion between each bipoles was estimated using the mutual 
information function from the Toolbox for C and MatLab  
[23]. Specifically, the estimated mutual information is pro-
vided by Eq. 1 below:

where N is the number of voltage signals observed at a given 
location for the duration of the simulation and distributions 
p̂
(

xiyi
)

, p̂
(

xi
)

 , and p̂
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)

 are obtained from fixed-width bin 
histogram estimators using voltage based binary sequences 
at a given electrode pair. The obtained mutual informa-
tion matrix was converted to a binary adjacency matrix by 
setting various information thresholds, which represented 
increasing percentages of potential edges being extracted 
for analysis. A graph was generated for each corresponding 
adjacency matrix. For each catheter geometry/simulation 
approach combination, this analysis was performed for 6 
catheter positions within the simulated tissue.

2.3 � Graph analysis

Generated graphs were analyzed using Matlab graph analy-
sis toolbox with a focus on the local efficiency parameter 
[24]. Local efficiency at a given electrode is given by Eq. 2 
below:
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where Gi is a subgraph, NGi is the number of nodes in 
the subgraph, and Li,j is the path length between a pair of 
nodes. The value was averaged over all electrodes to deter-
mine the mean local efficiency of the graph.

Local efficiency for graphs corresponding to each cath-
eter position was calculated as a function of the mutual 
information threshold used during graph generation. This 
function captured the variation in local efficiency with-
out selecting a particular arbitrary information threshold. 
The derivative of the function, calculated based on the 
third-degree polynomial fit, was used to illustrate the rela-
tionship between changes in local efficiency and mutual 
information.

2.4 � Initial clinical data analysis

A CARTOFINDER system (Biosense Webster, Irvine, CA) 
identified rotational activation 4D LAT map (Video S5) 
was kindly provided by Andrea Sarkozy, MD, at Univer-
sitair Ziekenhuis Antwerpen, Belgium. This system uses 
the CARTO 3 electroanatomical mapping platform and 
creates wavefront propagation maps from unipolar sig-
nals acquired by a multiple spine mapping catheter. Dur-
ing a electrophysiology mapping feasibility study for a 
persistent atrial fibrillaiton patient (subject 841–004), a 
rotational activation in left atrium anterior wall was cap-
tured, when utilizing the novel flower-shaped high-density 
mapping catheter containing 48 platinum-iridium mapping 
electrodes distributed across eight spines [25].

The portion of the video corresponding to the stable 
rotors core outside of ablated regions was isolated for the 
initial proof-of-concept analysis. The 125 frames corre-
sponding to the rotational activation were converted to 
binary in ImageJ by thresholding at − 153 ms 4D-LAT 
(local activation time) based on physician parameter selec-
tion during video recording. The corresponding original 
video and isolated binary segment are available in the sup-
plementary information (videos S5–6).

From the binary.png map images generated, a value of 
“1” or “0” is captured by digital electrodes superimposed 
over the clinical data. Each electrode thus has a sequence 
of binary values over the video runtime. For each pair 
of electrodes x and y, p ̂(x), p ̂(y), and p ̂(xy) are used to 
generate a pairwise mutual information matrix; The pair-
wise mutual information matrix can then be thresholded at 
various values of mutual information to generate the adja-
cency matrix, which is the basis of a regional information 
graph where edges represent sufficient mutual informa-
tion between electrodes. Local efficiency was calculated 
at each electrode of the catheter and averaged to generate 
local efficiency.
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3 � Results

3.1 � AF driver identification

The method was first applied to the identification of driv-
ers in simulated tissue, focusing on the local efficiency 
metric calculated as a function of the mutual informa-
tion threshold used to define the adjacency matrix. We 
analyzed data extracted by a grid-type mapping catheter 
geometry from tissue modeled using the simple 2D Karma 
model and the more physiologically accurate 3D atrial 

model. In each case, six distinct catheter positions within 
simulated data sets were analyzed, with geometric centers 
positioned as illustrated in Fig. 3a for the 3D rotors case. 
The typical calculated local efficiency as functions of 
mutual information threshold for this simulation is dis-
played in Fig. 3b, together with third degree polynomial 
fit. Results for the corresponding irregular and rotational 
3D and 2D simulation are available in Figure S2. Deriva-
tive calculations based on the third-degree polynomial 
fit (Fig. 3c) indicate an overlap in the 95% confidence 
interval at information threshold values below 40% and 

Fig. 3   Local efficiency signature of rotational activation. a Schematic 
representation of variable catheter positioning. Red crosses represent 
the center of the electrode array within a single time point of simu-
lated rotational activation in the 3D model. b Local efficiency as a 
function of information threshold plotted in black for one of six grid 
type catheter positions within simulated tissue (3D model rotational 
activation). Corresponding third degree polynomial fit is shown in 
red. c First derivative of local efficiency for 3D tissue simulations 

with irregular (black) and rotational (red) activation patterns. The 
shaded region represents the 95% confidence interval based on var-
ied grid type catheter position within the simulated tissue (n = 6). The 
region between the 40 and 80% information threshold used in fur-
ther analysis is highlighted in blue. d Comparison of the average first 
derivative in the 40–80% information threshold range for irregular 
(black) and rotational (red) activation patterns in 2D and 3D simula-
tions. Error bars represent the 95% confidence interval
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above 70% and distinct derivative values in the interme-
diate range for the 3D simulation results. Corresponding 
data for the 2D simulations is available in Figure S3, and 
indicate a lack of confidence level overlap in the 50–80% 
region. Comparison of average derivatives in the 40–80% 
information threshold range (Fig. 3d) indicate a signifi-
cant (p < 0.01 using a two-sample t-test) decrease in the 
rate of rate of local efficiency change when driver is intro-
duced: 0.0032 ± 1 × 10−4 vs. 0.0017 ± 1 × 10−4 for the 2D 
model and 0.0014 ± 4 × 10−5 vs. 0.00092 ± 5 × 10−5 for the 

3D model. Lack of consideration of more extreme infor-
mation thresholds is justified by the presence of sparse 
of uniformly connected matrices under these conditions.

3.2 � Electrophysiological remodeling identification

The method was then applied to the driver generated 
in simulated tissue with varying  degrees of remod-
eling. Local efficiency was calculated as a function of 

Fig. 4   Local efficiency 
for remodeling classifica-
tion. A) Representative local 
efficiency calculated for graphs 
with increasing information 
thresholds based on simulations 
that incorporate 10% remold-
ing and a grid type catheter with 
2 mm interelectrode spac-
ing. B) Representative local 
efficiency calculated for graphs 
with increasing information 
thresholds based on simulations 
that incorporate 50% remold-
ing and a grid-type catheter with 
2 mm interelectrode spac-
ing. C) Representative local 
efficiency calculated for graphs 
with increasing information 
thresholds based on simulations 
that incorporate 90% remold-
ing and a grid catheter with 
2 mm interelectrode spacing. D) 
The rate of change in local effi-
ciency for 40–80% information 
thresholds for grid-type cath-
eters and flower-shaped open 
spline-type catheters. Deriva-
tives are averaged for 90% (red), 
50% (orange), and 10% (black) 
remodeling simulations based 
on 6 catheter positions within 
the simulated tissue. Error bars 
represent the 95% confidence 
interval
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the information threshold for data extracted via grid type 
catheter geometry from simulated tissue with remodeling 
degrees of 10% (Fig. 4a), 50% (Fig. 4b), and 90% (Fig. 4c). 
Fitted local efficiency functions for varied catheter geome-
tries and degrees of remodeling are available in Figure S4. 
In all cases, instability was observed below the 40% infor-
mation threshold. When the rate of local efficiency change 
was quantified at varied catheter positions within the simu-
lated tissues as discussed above, the average derivatives in 
the 40–80% information threshold ranges were compared 
for both grid-type parallel spline and flower-shaped open 
radial spline catheter geometry configurations. Increased 
derivatives were observed in 90% remodeled tissue as 
compared to 10% remodeled tissue: 0.0019 ± 6 × 10−5 
vs. 0.0015 ± 5 × 10−5 for the parallel spline configura-
tion and 0.0016 ± 4 × 10−5 vs. 0.0011 ± 5 × 10−5 for the 
flower-shaped open spline configuration. This indicates a 
significant (p < 0.01 using a two-sample t-test) difference 
between the local efficiency derivatives due to remodeling 
for both catheter geometries. An intermediate degree of 
remodeling of 50% resulted in intermediate derivative val-
ues: 0.0016 ± 5 × 10−5 and 0.0015 ± 5 × 10−5 for the paral-
lel and open spline configurations, respectively.

As an initial proof of concept, local efficiency was 
calculated as a function of information threshold based 
on a clinical rotational activation video from a persistent 
AF mapping case using CARTOFINDER algorithm and 
a single overlay of flower-shaped radial spline catheter 
(Fig. 5). The average derivative in the 40–80% information 
threshold region of interest was 0.0032. Constant local 
information of 1 observed above the 80% information 
threshold corresponds to a uniformly connected matrix 
at that threshold.

4 � Discussion

4.1 � Local efficiency in atrial fibrillation

Local efficiency has previously been estimated in macaque, 
cat, and human brains, but has not yet been applied to AF dis-
ease states [26–28]. It signifies fault tolerance, indicating how 
well each subgraph exchanges information when the index 
electrode is eliminated. Local efficiency therefore represents 
the capacity of a network for parallel, or redundant, informa-
tion transfer. In Fig. 3d, simulated cardiac tissue that contains 
a rotational pattern displays a decrease in the rate of change in 
this metric as a function of information threshold, irrespective 
of the complexity of the simulation system. It indicates that 
the addition of less informative connections to networks rep-
resenting rotor does not rapidly increase fault tolerance. These 
connections, unlike those observed in irregular systems that 

contribute to an increase in local efficiency, represent a new 
characteristic of AF drivers.

4.2 � Remodeling mechanisms

AF results in progressive electrophysiological and structural 
changes in the atria, termed “remodeling,” which produce sus-
tained AF that is challenging to terminate [29]. In this elec-
trophysiological model, we demonstrate that fault tolerance 
changes more rapidly with the inclusion of less informative 
connections in highly remodeled tissues (Fig. 4). It indicates 
that redundant information transfer capacity in remodeled net-
works could depend on weakly informative connections. This 
suggests that the increased Ca2+ diffusion used to represent 
remodeling in this study impede parallel information trans-
fer [22]. The variable fault tolerance may interact with other 
remodeling mechanism, such as structural remodeling on scar 
formation. Scarring plays a key role in AF maintenance: in 
patients undergoing pulmonary vein isolation, left atrium scar-
ring is a strong predictor of procedure failure and increased 
recurrence (57%) compared to non-scared patients (19%) [6, 
30, 31]. One promising ablation strategy is based on modify-
ing low-voltage regions on non-uniform anisotropic conduc-
tion, resulting in improved outcomes after repeat procedures 
[32]. It is possible that variable fault tolerance observed in the 
Ca2+ diffusion-based remodeling approach of this study may 
decrease the ability of cardiac tissue to transmit signals around 
low-voltage scar areas, thereby contributing to AF mainte-
nance. Therefore, further study of fault tolerance in models 
that incorporate various remodeling mechanisms is warranted.

4.3 � Implications for substrate mapping 
and ablation strategy

To understand AF mechanisms, different methodologies 
[33–36] have been developed to map electrical activity, 
namely body surface mapping, electrocardiographic imag-
ing, multielectrode plaque epicardial electric mapping, mul-
tiple-spline, grid type [37], and basket catheter endocardial 
mapping. The innovative algorithms including spectrum 
analysis, complex fractionated atrial electrograms (CFAE) 
mapping, FIRM and ECGI (External ECG vest) phase 
mapping, and CARTOFINDER have also been evolved to 
apply for the mapping strategies in humans recently. Each 
approach has its clinical advantages and inherits technical 
shortcomings [33]. Newer mapping systems have trans-
formed the clinical electrophysiology field, and have enabled 
operators to overcome major limitations of the conventional 
mapping by using catheters with multiple-spine and mul-
tiple closely spaced small electrodes. The advanced map-
ping catheters facilitate the creation of more accurate maps 
through simultaneous acquisition of ten thousand points or 
maybe more. From the mechanistic perspective, the better 
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map representation of both rapid organized sites (potential 
sources) and rapid fragmented sites (critical substrates) 
may clarify further the role and interplay between different 
arrhythmic mechanisms in the sustainment of AF, as well 
as the contribution of specific anatomical structures in sup-
porting these mechanisms. In this study, two configurations 
of the advanced mapping catheters were applied to the mod-
els and the basket was not selected for the modeling, since 
the panoramic mapping using the basket catheter frequently 
showed uninterpretable mapping results [38]. Despite the 
existence of various technologies capable of visualizing AF 
drivers, the characterization of these drivers is quite dif-
ferent. In the FIRM mapping system, for example, drivers 
are displayed offline in a 2D system. Most of these driv-
ers were found to be rotors and were observed to be stable 
and long-lasting with certain meandering of the core [39]. 
In the ECGI, the rotors are less stable, lasting at most 2–3 
rotations but they demonstrate spatial consistency [40]. The 
system also identifies other focal source drivers. The obser-
vations of ECGI are actually quite consistent with driver 
mapping using both the CARTOFINDER [41, 42] and AcQ-
Map modules [43]. Interestingly, electrographic flow map-
ping recently published [44] is as a new approach to detect 
action potential sources in atria of AF patients, which has a 
potential to distinguish between active and passive rotors.

The local efficiency plateau can be added on to future 
mapping and ablation strategy since it can serve as a met-
ric for further identifying and classifying rotor specifically 
during the electrical remodeling. In Fig. 4d, an increase in 
the derivative of local efficiency as a function of informa-
tion threshold indicates increased remodeling within a driver 
activation. The exact derivative value in Fig. 5 is distinct 
from prior simulation-based results, which indicated that 

exact remodeling thresholds should be validated based on 
clinical or animal model rotational activation data. However, 
the functional form of the local efficiency graph, given the 
lack of a distinct plateau in the 40–80% information thresh-
old range, suggests a lack of underlining atrial remodeling. 
Therefore, despite the presence of rotational activation in 
the anterior wall region, such a rotor identification by the 
current AF mapping algorithm may be phenomenological. It 
might not be reliable for its mechanistic inference to classify 
it directly as AF driver, although the clinical analysis data 
is preliminary based on a single mapping data. More robust 
studies are necessary to determine how the local efficiency 
information can be successfully used in classifying the opti-
mal ablation targets for AF termination.

Rotors with varying degrees of remodeling can there-
fore be identified based on the local efficiency derivative, 
with potential classifications corresponding to the degree 
of remodeling in the mapping region.

In future studies, targeting regions for ablation based 
in this identification can be explored, potentially provid-
ing an avenue for identifying remodeling-based ablation 
targets without requiring extensive MRI imaging prior to 
treatment [45]. Specifically, classification of ablation tar-
gets through the local efficiency metric should be validated 
based on pre-clinical and clinical outcomes by a supervised 
machine learning linear classifier. Simultaneous mapping 
in ex vivo human atria [46] with mapping and optical map-
ping might be pursued for a supervised machine learning 
algorithm to classify advanced mapping signals as driver or 
non-driver. Once correlation between local efficiency and 
successful AF termination has been established, the metric 
can be included into an integrated workflow to enhance the 
ability to determine the true mechanism of apparently focal 

Fig. 5   Demonstration of a local 
efficiency curve simulating 
from a clinical AF map (Subject 
841–004, Sarkozy et al. 2020 
[25]), which could be integrated 
into CARTOFINDER rotational 
activity analysis interface in the 
Carto 3 mapping system. The 
red rectangle within the LAT 
map highlights the anterior wall 
region of interest analyzed. 
The putative insert displays 
local efficiency values and the 
corresponding polynomial fit 
as a function of information 
threshold
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activation. Combination of our modeling analysis through 
regional mutual information networks with high-density 
mapping systems and other algorithms may help to relate 
these peculiar signal features with specific underlying mech-
anisms (e.g., focal vs. reentrant activity, multiple wavelets).

4.4 � Limitations

One limitation of the approach as a standalone technique is 
the inability to precisely identify the source of AF driver: 
the distinction between rotational and irregular activation in 
a particular simulated region occurs at a range of catheter 
positions (Fig. 3). However, automated detection of rotors 
has previously been performed with advanced mapping cath-
eters [42]. The proposed method could therefore be utilized 
in tandem with such existing techniques to enable identifica-
tion of the degree of remodeling in already identified driv-
ers, providing the electrophysiologist with additional infor-
mation on the targets. Following remodeling identification 
areas of interest can be highlighted on global maps of AF 
wavefronts generated via stitching and ablated by creating a 
cluster of lesions immediately surrounding the target [42].

Further work with human data is required to translate these 
insights to clinical use. The activations analyzed in this report 
do not fully represent clinical AF dynamics, which have vari-
able cycle lengths and can be obscured by remodeling mecha-
nism not represented in this study, such as fibrotic substrate. 
Therefore, this study identifies a local efficiency pattern 
indicative of spontaneous Ca2+ release-based remodeling in 
rotational activation but does not explore how this signature 
may be obscured in clinical data. Furthermore, this simulation 
focuses on AP voltages, rather than unipolar or bipolar electro-
grams typically generated by commercial intracardiac mapping 
catheters. Both virtual AP and virtual electrogram features 
can be used to explore viable strategies for ablation [44, 47]. 
However, calculations of pseudo electrograms require assump-
tions about fiber diameters and the distance between the tissue 
and the electrode, which can be variable in practice [48]. APs 
were therefore utilized directly in this study to first establish 
if regional information networks displayed any distinguishing 
features due to driver activity. This study represents a neces-
sary first step in identifying local efficiency as distinguishing 
feature of remodeled driver observable at the regional scale.

4.5 � Summary

The real-time mapping identification of electrical drivers 
within remodeled heart tissue is vital for the AF manage-
ment. This study explored an information and graph the-
ory approach to this identification, focusing on high-res-
olution regional cardiac mapping. We demonstrate in two 
computational models that a decrease in the derivative of 
local efficiency as a function of information threshold is 

characteristic of driver in high resolution maps (2 mm elec-
trode spacing). This metric is a measure of regional fault tol-
erance in information transfer and therefore provides insight 
into myocardial communication on the local scale. Further 
simulations with tissues at various degrees of remodeling 
suggest that the local efficiency derivative correlates with 
rotational activity within remodeled tissue. The study sug-
gests an approach to atrial remodeling driver identification, 
therefore a possible focal substrate mapping and ablation 
strategy.
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