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Graphene-based synthetic antiferromagnets and
ferrimagnets

P. Gargiani® ', R. Cuadrado?3, H.B. Vasili', M. Pruneda?3 & M. Valvidares® '

Graphene-spaced magnetic systems with antiferromagnetic exchange-coupling offer exciting
opportunities for emerging technologies. Unfortunately, the in-plane graphene-mediated
exchange-coupling found so far is not appropriate for realistic exploitation, due to being weak,
being of complex nature, or requiring low temperatures. Here we establish that
ultra-thin Fe/graphene/Co films grown on Ir(111) exhibit robust perpendicular anti-
ferromagnetic exchange-coupling, and gather a collection of magnetic properties
well-suited for applications. Remarkably, the observed exchange coupling is thermally stable
above room temperature, strong but field controllable, and occurs in perpendicular orienta-
tion with opposite remanent layer magnetizations. Atomistic first-principles simulations
provide further ground for the feasibility of graphene-spaced antiferromagnetic coupled
structures, confirming graphene's direct role in sustaining antiferromagnetic superexchange-
coupling between the magnetic films. These results provide a path for the realization of
graphene-based perpendicular synthetic antiferromagnetic systems, which seem exciting for
fundamental nanoscience or potential use in spintronic devices.

TALBA Synchrotron Light Source, Cerdanyola del Valles, E-08290 Barcelona, Spain. 2 Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC
and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, 08193 Barcelona, Spain. 3 Universitat Autonoma de Barcelona, Cerdanyola
del Valles, Bellaterra, 08193 Barcelona, Spain. Correspondence and requests for materials should be addressed to P.G. (email: pgargiani@cells.es) or to
M.V. (email: mvalvidares@cells.es)

|8:699 | DOI: 10.1038/541467-017-00825-9 | www.nature.com/naturecommunications 1


http://orcid.org/0000-0002-6649-0538
http://orcid.org/0000-0002-6649-0538
http://orcid.org/0000-0002-6649-0538
http://orcid.org/0000-0002-6649-0538
http://orcid.org/0000-0002-6649-0538
http://orcid.org/0000-0003-4895-8114
http://orcid.org/0000-0003-4895-8114
http://orcid.org/0000-0003-4895-8114
http://orcid.org/0000-0003-4895-8114
http://orcid.org/0000-0003-4895-8114
mailto:pgargiani@cells.es
mailto:mvalvidares@cells.es
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | DOI: 10.1038/s41467-017-00825-9

ntiferromagnetic (AF) systems, among which synthetic

ferrimagnetic and antiferromagnetic (SFiM/SAF) struc-

tures, are receiving renewed attention for spintronic
applications and magnetic information storage! . SAF structures
based on metallic multilayers were initially developed in the 90s,
inspired by the discovery of exchange coupling in multilayers and
oscillatory magnetic interactions® >. A prototypical SAF structure
is composed by two ferromagnetic films that are anti-
ferromagnetically exchange-coupled through a non-magnetic
spacing material due to the Ruderman-Kittel-Kasuya—Yosida
(RKKY) interaction, and have been broadly used to improve the
thermal and magnetic properties of spin valves®~8. Furthermore,
exchange-coupled magnetic layers with perpendicular magnetic
anisotropy (PMA) are intensively researched for the realization of
vertical magnetic tunnel junctions (MTJs)’, in views of potential
application in future high-density and low current-induced
magnetization-switching spintronic devices!?.

With the emergence of graphene and other two-dimensional
(2D) atomic-crystals with unique electronic and structural
properties!!, hybrid 2D-material magnetic systems are presently
intensively investigated to enable new fundamental and applied
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developments. Remarkably, graphene/magnetic  structures
display among other characteristics long spin-lifetimes at
room-temperature!?, spin filtering'> 14, and tunnel magneto-
resistance!>17, which are appealing properties for a range of
innovative graphene-based spintronic technologies'® °. More-
over, graphene has been reported to Fromote large PMA at the
interface with magnetic thin-films?% 2%, thus possibly serving as a
building-block for perpendicular spintronic devices incorporating
a spacing layer with weak spin-orbit coupling. In this context,
assessing the possibility to realize exchange-coupled PMA mag-
netic thin-films across a single-layer graphene (Gr) is of primary
importance towards the realization of graphene spintronic devi-
ces. This has been recently stressed by a study of Yang et al.?!
with a theoretical prediction of strong PMA and AF exchange-
coupling (AFC) in Gr{Co,/Gr},, multilayers. However, the
graphene-mediated exchange coupling playground remains lar-
gely unexplored, and graphene-spaced systems with large PMA
and robust AFC have not been yet experimentally realized, in
spite of their interest in future spintronic information processing
technologies. In-plane AFC through a graphene layer was early
observed between a Ni thin-film and Co-porphyrin molecules at
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Fig. 1 System properties as deduced by element-specific hysteresis loops and XMCD. a Experimental geometry for the in-plane and out-of-plane hysteresis
measurements on the Gr/Co/Ir(111) and b a cartoon depicting the Fe/Gr/Co/Ir(111) multilayer sample. Element-specific hysteresis loops measured along
the out-of-plane easy magnetization axis for a ¢ Gr/Co[1.9 ML]/Ir(111) and d the same sample covered with Fe[1.6 ML]. Fe and Co loops were measured at
T=300K as the field-dependent L3 XMCD intensity, normalized by the pre-edge intensity value. An Fe magnetization of equal magnitude than its
remanence value is enforced by an applied field uoHarc onto a parallel configuration with the Co magnetization, as indicated in d, thus giving an estimation
of the effective exchange coupling between the Fe and Co layers. e, f XMCD spectra measured on the Fe[1.6 ML]/Gr/Co[1.9 ML]/Ir(111) sample at
uoH=6T and uoH =0T, respectively, after having previously magnetized the sample in an out-of-plane field of uoH=+6 T. The antiferromagnetic-
ordering (i.e., antiparallel) of the Fe and Co layers magnetizations at remanence is directly evidenced by the sign change of the Fe XMCD f and in the

element-specific hysteresis loop d between maximum and zero applied field
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temperatures below ~200 K by Hermanns et al.?2, as well as in
small-area MTJ devices with a graphene tunnel barrier and fer-
romagnetic metal electrodes by Li et al.!®. More recently,
graphene-mediated AFC between magnetic bulk single crystals
and magnetic adatoms was studied, and it was shown to weaken
or evolve onto a complex coupling when adatoms assemble to
form small clusters?®>. Under these conditions, up-scaling for
realistic applications is challenging.

Moving away from bulk magnetic materials into thin film
structures or nanostructures is key to achieve the development of
graphene-based robust AFC systems. The implementation of
magnetic ultra-thin films allows to achieve strong magnetic ani-
sotropies and exchange coupling via interfacial engineering, and
also enables the introduction of symmetry breaking
Dzyaloshinskii-Moriya and Rashba interactions®* 2°. In contrast,
the presence of a bulk magnetic layer dilutes the effect of inter-
facial contributions and eventually adds the complexity of mag-
netic surface closure domains. One suitable path to shift away
from bulk magnetic materials is the intercalation approach widely
used in the 70s-80s to tune graphite’s physical properties®®. In the
last few years, it has been demonstrated that a number of ele-
ments can be intercalated between a graphene layer and its
supporting substrate?”> 28, forming 2D layers that are well loca-
lized, chemically, and mechanically protected®®. This approach
was exploited to grow ultra-thin magnetic layers below graphene,
which displayed a remarkable PMA enhanced by the interaction
between graphene and the underlying magnetic metal thin-
ﬁ1m29‘31.

Here, we show the realization of hybrid graphene-ferromagnet
thin-film structures exhibiting strong perpendicular AF
exchange-coupling. The Fe/Gr/Co/Ir(111) ultra-thin films inves-
tigated display a robust perpendicular AF exchange-coupling
between the ferromagnetic layers mediated by the single-layer
graphene spacer. Remarkably, the perpendicular AF coupling is
stable above room temperature and field controllable, and dis-
plays a tunable remanent net magnetization as a function of the
Fe layer thickness. Our first principle theoretical simulations
confirm graphene’s direct role in establishing the AF coupling via
a graphene-mediated super-exchange mechanism. These results
demonstrate the realization of graphene-based synthetic AF sys-
tems, which appear of fundamental interest in nanoscience and
that possess an ensemble of properties well-suited for potential
applications in spintronic devices.

Results

XMCD experiments. A trilayer composed by an intercalated
Gr/Co/Ir(111) ultra-thin structure (Fig. la) coupled to a Fe
overlayer (Fig. 1b) displays a remarkable AFC at room tem-
perature, as revealed by the sign switching of the Fe element-
sensitive X-ray magnetic circular dichroism (XMCD) signal with
and without an applied magnetic field observed in Fig. le, f,
respectively (see Methods for further details). As deduced from
the room-temperature field-dependent XMCD intensities repor-
ted in Fig. 1c, the Gr/Co[1.9 monolayer]/Ir(111) intercalated film
presents high PMA and a large coercive field of poH.=0.27T,
together with a 92% magnetic remanence along the out-of-plane
easy-axis. The monolayer (ML) Co coverage was determined on
the basis of Auger electron spectroscopy measurements (Sup-
plementary Note 5). After the subsequent deposition of the Fe
overlayer, the resulting Fe[1.6 ML]/Gr/Co[1.9 ML]/Ir(111) tri-
layer exhibits a room-temperature field-controlled AFC clearly
evidenced by the Fe and Co element-specific hysteresis loops
reported in Fig. 1d: as the applied magnetic field is decreased
from the positive value of yoH=+3T to 0T, the Co magneti-
zation (red continuous line in Fig. 1d) exhibits a high remanent
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state, whereas the Fe magnetization (blue continuous line in
Fig. 1d) is progressively reduced and eventually crosses zero at
poH ~ 0.8 T; at lower fields the Fe magnetization reverses its sign
yielding an antiparallel alignment at yoH =0, as a result of the
AFC between the Fe and Co out-of-plane magnetizations. For a
negative applied field attaining the Co layer coercive field, the Co
layer ~magnetization switches, driving the Fe layer
magnetization on a corresponding abrupt jump, and preserving
the AF alignment. Under increased negative field the Fe
magnetization decreases monotonically, and eventually crosses
zero aligning progressively with both the external field and the Co
magnetization. In the reversed loop branch towards positive field,
one finds again a remanent AF configuration with antiparallel
magnetization and then attains positive coercive field, at which
the Co layer reverses and drives once more the reversal of the Fe
layer to maintain an AF coupled antiparallel configuration. For a
larger external field that we define as the effective AFC field,
HoHarc, the orientation of the Fe magnetization reverses and
reaches a magnitude equal to its remanent value but now in
parallel orientation with respect to the Co layer, thus overcoming
the AF coupling interaction. This allows estimating the effective
exchange-coupling energy density from the Hapc determined via
the Fe magnetization loop as Jox = Mg, - tg. - #oHarc, which might
be considered as a conservative estimate because using a field
smaller than the saturation field. Still, using approximated values
of the Fe magnetization and layer thickness for Mg, and tg., we
estimate J., = 0.74 mJ m~2 at T= 300K for the Fe[1.6 ML]/Gr/Co
[1.9 ML]/Ir(111) sample. This is an exchange coupling strength of
the same order of magnitude than that reported for conventional
RKKY SAF multilayers®.

Even at the maximum available external field of 6T, the
magnetic saturation of the Fe layer is not completely reached, as
evidenced by the non-horizontal slope of the Fe magnetization
curve. One likely hypothesis would be that this behavior is related
to considerable 3D-film morphology, giving place to a distribu-
tion of switching fields and/or weekly coupled magnetic regions
or grains. Other possibilities should not be excluded, taking into
account that the magnetization reversal of AF exchange-coupled
systems has been demonstrated to yield complex
phenomenologies?.

It is worth describing here in detail the Fe/Gr/Co/Ir(111)
multilayer fabrication and optimization, as this path seems
applicable to obtain further related FM/Gr hybrid structures with
tailored properties. The growth of the Co film below the graphene
layer was realized by the thermally activated intercalation of Co
adatoms®® 30, which were e-beam deposited on top of a single
high-quality layer of Gr CVD-grown in-situ on Ir(111) (Methods
section and Supplementary Note 3). In order to achieve high
PMA, high remanent magnetization (above 80%) and coercivity,
the optimal Co layer thickness was tuned at about 1.9+ 0.2 ML
(see Supplementary Notes 5 and 6). The cobalt intercalation was
activated at temperatures exceeding 500 K, and optimal PMA/
high magnetic remanence of the Co layer was obtained at about
T=700K. The Co saturation magnetic moment deduced via the
XMCD sum rules®® is p=2.25+0.07up, in agreement with
previous reports’!. The effective magnetic anisotropy energy
(MAE) K.g for the Gr/Co[1.9 ML]/Ir(111) system is estimated
employing the saturation field along the hard axis Hp,q and
assuming a simple uniaxial anisotropy term, according to Hyarg =
2K g/ ttoMp**. This yields K¢ S 9MJ m™ and a MAE per-unit-
area of K.p-t<$2.6mJm2, values in good agreement with
previous findigs for the interfacial anisotropy of Co/Ir(111) and
Gr/Co in the Gr/Co/Ir(111) system30. An enhancement of the
PMA of the cobalt-graphene interface has been early reported by
Vo-Van et al.?? and later confirmed for Co-intercalated graphene
systems?" 30, The intercalation process has been previously
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Fig. 2 Structural models for Fe/Gr/Co/Ir(111) heterostructures. a Schematic top view of the Moiré superlattice defined by graphene on top of Co/Ir(111). Co
is assumed to accommodate on the Ir lattice (in the simulations intermixing was neglected). Three distinct regions can be selected, that we name Grpg,
Grac, and Grgc, whose corresponding characteristic interlayer distances, adsorption energies, and exchange couplings are given in the Supplementary

Table 1. b Side view of the GragFea configuration, and the stacking adopted throughout the paper for the Ir(111) lattice and for the different MLs' sites (A, B,
and C). Co is always placed at the B site, with terminal Ir on the A site. For the selected commensurate lattice, there are two carbon atoms per Ir/Co/Fe,
and we use the notation Grag to illustrate that the carbon atoms are placed on A and B sites. € Fe monolayer adsorption is defined either in A, B, or C sites,
as shown in top view with red triangles, circles, and squares, respectively. d Projected density of states (pDOS) on Co and Fe ds,2_» and d,,,,, for the three

possible Fe stacks on top of Grag

shown to take place preferentially at graphene point defects and
wrinkles?> 34, and in correspondence with Ir(111) step edges®!,
remarkably preserving the structural integrity of the graphene
layer. Our characterization by high-resolution scanning electron
microscopy (SEM) (see Supplementary Note 4) and low energy
electron-diffraction (LEED) (Supplementary Fig. 4) seems in
good agreement with previously published reports, indicating the
high quality of the Gr layer before-and-after the intercalation
process. Moreover, by checking the protection against oxidation
of the intercalated Co layer (Supplementary Note 9 and
Supplementary Fig. 11), we obtained a further indication of the
completion of the Co-layer intercalation and of the structural
integrity of the graphene layer after the process. At a structural
level, the sharp and low background LEED patterns (Supple-
mentary Fig. 4) are indicative of a lattice-matched Co growth on
Ir(111).

The LEED patterns provide also information on the growth
morphology of the Fe overlayer in the Fe/Gr/Co/Ir(111) systems.
This approach does not offer the capability of local probes with
atomic resolution, but a unique statistically averaged information
over a large area®>. The Fe/Gr/Co/Ir(111) LEED patterns analysis
(Supplementary Note 3) provides evidence for Fe islands having
average lateral dimensions of the order of 6-8 nm for a 1 ML Fe
film, suggesting that a large surface coverage can be attained
already at few MLs coverage. These results seem to agree with
what might be expected from our calculated adsorption energies,
and are also in agreement with experimental findings obtained by
STM on similar surfaces®® 3’. The growth of Fe on graphene
beyond an initial 3D growth phase, results on high-island density
and high surface coverage (55% at 2 ML, which extrapolates to
80-90% for 3MLs) due to long-range repulsive interactions®’.
Our computed adsorption energies for Fe on Gr/Co/Ir(111) (see
below) being comparable to the Fe on Fe ones, should equally
favor the low-coverage nucleation of Fe islands over the
incorporation of deposited atoms atop of the already-nucleated
islands, favoring a large surface coverage. Summarizing the results
of our LEED data analysis together with the adsorption-energy
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interpretations, it seems reasonable to expect that the Fe films
with equivalent thickness ranging between 2 to 4 MLs have a 3D
thin film growth with a full or almost-full surface coverage,
coexisting with 3D multilevel islands. It is interesting to mention
that, as a result of the balance of adatom-adatom and adatom-
substrate interactions, the growth morphology of Fe (and Co)
layers on graphene appears controllable by deposition tempera-
ture and deposited thickness. Indeed, atomically-flat growth of
magnetic overlayers on graphene has been demonstrated by
pulsed laser assisted growth?’, and can be ascribed to a larger
instantaneous growth rate favoring islands nucleation and
reducing cluster formation. These considerations suggest that
the morphology of such kind of AFC Gr-based multilayers might
be tailored according to the requirements set by the desired
application, which can be relevant for properties such as the
coercive field or the exchange coupling®® 38,

In relation to coercive field, magnetic anisotropy and magnetic
remanence engineering, it is well-known that Co/Pd(111), Co/Pt
(111), and other related systems such as Co/Ir(111) can display
strong PMA with high coercivity and remanence’® 3°. These
properties can be controlled to a considerable extent by the
thermal annealing temperature of the intercalation process and
the total Co layer thickness. Thermally activated magnetic
hardening in Co/Ir(111) films has been interpreted as a result
of the partial interfacial alloying, with maximum coercive fields
observed for annealing temperatures around 700 K*°, in close
proximity to the intercalation temperatures used here. It is thus
expected that a certain amount of Co atoms have diffused and
intermixed at the very Co/Ir interface, as recently evidenced by a
related surface X-ray diffraction investigation of the Co inter-
calation on partially Gr-covered Ir(111)*!. On the other hand, the
preserved integrity of the graphene layer after Co intercalation
(Supplementary Notes 3 and 7), avoids Fe/Co intermixing at the
top Co or bottom Fe interfaces in room temperature deposition.
Indeed, for a Fe-layer coverage of few ML’s (up to 3-4 ML’s) the
Co magnetization loop is not significantly affected by the Fe
deposition, showing the same XMCD signal at saturation and
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Fig. 3 Temperature dependence of the antiferromagnetic coupling for a representative Fe[0.9 ML]/Gr/Co[1.9 ML1/Ir(111) sample. a-f Element-resolved
(Fe, Co) easy-axis hysteresis loops collected at increasing sample temperature T= 3.5, 100, 200, 300, 340, and 360 K respectively as the XMCD intensity
maximum measured at the Fe and Co L3 edge as a function of the applied field. We note that the Co loop at T=360 K was not acquired, however the sign
inversion of Fe loop still denotes an antiferromagnetic coupling between the Co and Fe layers. g Temperature-dependence of the experimentally-
determined effective exchange-coupling energy density J.,. Values are derived from the external field uoHarc necessary to invert the Fe magnetization to a
value comparable to the remanence one, according to Jey = Mre - tre - oHarc, Where Mg, is the bulk Fe magnetization and tg. the Fe layer thickness

maintaining the same coercivity value as the bare Gr/Co/Ir(111).
This evidences that the Gr spacing layer effectively preserves
chemical and magnetic state of the layers, which is advantageous
for engineering magnetic properties in a superposition
scheme!® 29,

Atomistic calculations. To investigate the nature of the coupling
in the graphene-based AFC structure, we performed atomistic
calculations based on density functional theory, and analyzed the
role played by the single-layer carbon spacer. Our calculations are
performed on a model for a Fe/Gr/Co ultra-thin film stacked on a
Ir(111) surface, and reproduce both the AFC and the strong PMA
observed in experiments. Due to the lattice mismatch between
graphene and Ir(111), a Moiré pattern is expected in the het-
erostructure (the cobalt layer can be considered pseudomorphic
with the Ir lattice), with a lattice parameter of ~2.5 nm (Fig. 2a)*2,
Rather than simulating this superstructure (with the 10 x 10
graphene unit cell and 9x9 Co/Ir lattice, which remains a
challenge for atomistic first-principles calculations), we consider a
computationally more efficient approach, where commensur-
ability is assumed, and different stacking configurations are used
to model the three principal Moiré domains sketched in the fig-
ure. On top of these, a Fe ML is considered, with Fe atoms placed
on the possible A/B/C sites of the underlying Ir(111) lattice
Fig. 2c. We obtain interlayer distances in good agreement with
previous calculations for Co-intercalated in graphene®! 43, as
reported in Supplementary Table 1. We observe a strong corru-
gation of up to 1 A in the Moiré lattice due to different zc ¢,
interlayer distances Fig. 2b. These lead to spatial variations of the
couplings between magnetic layers, and different PMA energies.
The theoretically calculated PMA energies for Fe/Gr/Co/Ir(111)
interfaces, in the range of 2.2-4.1mJm™2, seem in excellent
agreement with our experimental observations.

The origin of the large PMA in Fe/Gr/Co/Ir(111) hetero-
structure is analyzed from the study of the magnetic anisotropy
energy (MAE) at the different interfaces. The Co/Ir(111) and Gr/
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Co/Ir(111) interfaces were studied by Shick et al.*3, who reported
a strong effect of graphene on the anisotropy of ML Co on Ir
(111), with an overall reduction of the MAE and a tendency for
in-plane magnetization when carbon sits on top of Co. On the
contrary, our calculations show that perpendicular magnetization
is preferred for both Co/Ir(111) and Gr/Co/Ir(111) heterostruc-
tures, and although the strength shows some dependence with the
stacking of carbon atoms (1.8, 1.3, and 0.0mJm~2 for Grag,
Gr ¢, and Gr g, respectively), this affects marginally the already
high MAE of ML Co on Ir (1.7m] m~2). The MAE values
resulting from our simulations are not far from the experimental
values by Rougemaille et al.>* (0.8 and 1.6 mJ m™2 for Co/Ir and
Gr/Co interfaces, respectively), or Vo-Van et al.?’ (an experi-
mental estimation of 0.185 mJ m~2 for Gr/Co interfacial MAE,
and theoretical estimations of 1.0 and 1.2 mJ m™2 for Co/Gr and
Co/vacuum interfaces, respectively). A graphene-induced
enhancement of the PMA has been reported for graphene-
covered Co trilayers by Yang et al.2!, although their study do not
include a Co/Ir(111) interface, nor different C stacks due to the
underlying Moiré pattern. Our simulations for the case of ML Co
on Ir(111) do not show a clear enhancement of the PMA due to
graphene, but indicate a systematic increase in the computed
PMAs when the Fe ML is placed on top of graphene, no matter
what stacking (A/B/C) is considered.

In the following, we focus our attention on the Grap/Cop/Ir
stacking, that has a short interlayer distance and a significant
charge accumulation on graphene, suggesting that clustering of Fe
adatoms in this region would be preferred during film growth**
(similar results are obtained for the Grpc/Cop/Ir stack). The
computed Fe-ML adsorption energies, E,q, evaluated after
subtracting from the total energy of each configuration the
energy of the clean Gr/Co/Ir slab and the Fe ML, conform to this
assumption, with Gruc being on average less favorable than Gryp
or Grpc.

For the three possible Fe-stacks considered, we obtain a strong
interlayer exchange coupling, J, defined as the difference between
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Fig. 4 XMCD spectra and element-specific hysteresis loops for different Fe coverages at room temperature. a-d Fe and Co XMCD spectra collected in
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the Co layer, nevertheless the AFC is still present as evidenced by the opposite sign of the XMCD between Fe and Co. Element-specific (Fe, Co) hysteresis
loops measured as the XMCD signal at the Ls absorption edge normalized by the pre-edge absorption signal as a function of the applied field for the e Fe
[0.9 ML]-Co[1.9 ML], f Fe[1.6 ML]-Co[1.9 ML, and g Fe[3.8 ML]-Co[2.1 ML] samples. The sample reported in g shows a slightly lower coercive field as a
result of the lower thermal-induced Co intercalation temperature used, nominally T=640 K as compared to T=700 K. h Fe coverage-dependence of Fe/
Co magnetization ratio as estimated via the XMCD sum rules (data relative to spectra reported in a-d). i Temperature dependence of the Fe/Co

magnetization ratio measured on the sample Fe[0.9 ML]/Gr/Co[2.1 ML1/Ir(111). The error bars on the magnetization ratios of h, f reflect the uncertainity
in the background estimation for the XMCD sum rules analisys; the error bars on the Fe coverage h mirror the systematical error in the coverage

determination

the energies of parallel (FM) and antiparallel (AF) alignments of
magnetizations in Fe and Co (J = Egyp — Ear). Resulting exchange
coupling energies depend on the stacking and Fe adsorption site
on top of graphene, with values between 15 and 277 mJ m~2 as
indicated in Supplementary Table 1, larger than the values
predicted for symmetric Co/Gr/Co or Fe/Gr/Fe junctions®.
Similarly strong couplings are obtained for Grpc/Cop stacks,
while the coupling is substantially reduced (even switched to FM)
for Grac/Cop, where the interlayer distance is larger, and the
charge accumulation on graphene suppressed. We note that a fair
comparison with the experimental estimate requires an average
over the whole Moiré pattern, considering temperature effects,
and taking into account possible impurities and irregularities at
the interface, all of which would result in a significantly reduced
value.

The mechanism of the AF coupling between Fe and Co can be
tracked down from the analysis of the electronic structure of the
heterointerface. Figure 2d shows the projected Density of States
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(pDOS) on the metallic d states that point out of the layer plane
(dsz2—p> and d,;..). It is known that hybridization with graphene’s
2p, states strongly affects the energy position of Co-3d states?!> 6.
A d;_» peak at ~0.5eV below the Fermi level is apparent for
both Co and Fe in all atomic arrangements that give larger
couplings, and its amplitude correlates with the value of the J
couplings. Notably, if we take the same fixed structures but
removing the graphene ML (Supplementary Note 1 and
Supplementary Fig. 1), the peaks disappear, revealing that
superexchange through C-p, states is key (Supplementary Fig. 2).
This confirms a direct role of the graphene 2D-layer in sustaining
AF superexchange-coupling between the two magnetic films, in
line with earlier propositions by Hermanns et al.?%, Barla et al.?3,
or Yang et al.?! among others. Indeed, for the Co-Fe interlayer
distances obtained, the coupling becomes FM in absence of
graphene, and reduces by an order of magnitude. Furthermore,
calculations done for bilayer and trilayer graphene spacers result
in tiny but FM coupling, suggesting that the behavior of the
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spacer departs from that of a semimetal, where AF couplings with
long decay lengths are obtained?’. The strong distortion of
graphene’s electronic structure due to the hybridization with the
transition metals can be related to this observation. The
remarkable buckling 6zc_c in the graphene ML is another
consequence of this hybridization.

Stability of AF coupling and compensated configurations.
Having presented both experimental and theoretical evidences
supporting the realization of graphene-mediated AFC in
ferromagnet-Gr structures, we move on to discuss the robustness
of this AFC behavior against temperature or layer-thicknesses
variations. The set of Fe and Co magnetization hysteresis loops in
Fig. 3a-f, covering a wide temperature range from 7= 3.5 K up to
T=360K, reveals a remarkable stability of the AFC state for a
Fe[0.6ML]/Gr/Co[1.9ML]/Ir(111) sample grown at room tem-
perature. As the temperature is lowered, an increase in the out-of-
plane Fe layer remanent magnetization, together with a notable
increase in the Co coercive field, is observed. The exchange
coupling J., and pioHarc field (see Fig. 3g) both increase at lower
temperatures, indicating that the AFC state becomes more robust.
Nonetheless, the AFC state persists at temperatures up to 360 K,
as demonstrated by the J., and the pgHurc field vs T shown in
Fig. 3g. These temperature trends might result from increments
in the magnetic anisotropy, the magnetic susceptibility and
magnetic moment of the Fe layer, the exchange coupling strength,
or a combination of several of these factors.

To assess the feasibility of a magnetically compensated
graphene-based SAF/SFIM system, we analyzed the room
temperature dependence of the magnetic properties of a Fe/Gr/
Co/Ir(111) heterostructure as a function of Fe top-layer thickness.
We take special care in investigating two scenarios: the first, a
magnetically compensated system at room temperature; and the
second, a structure whose Fe top-layer magnetic moment exceeds
that of the Co layer, providing an inverse scenario to that of an
AF structure with a dominant PMA Co layer so far discussed. In
Fig. 4a-d we report a selected set of Fe and Co L,; XMCD
spectra, which were collected at T=300 K in remanent state for
increasing Fe layer nominal coverage on Gr/Co[1.9-2.1 ML]/Ir
(111) films. The AFC remains stable among the different
coverages, as evidenced by the XMCD-sign inversion between
Fe and Co atomic edges. Most notably, the X-ray absorption
(XAS)-normalized Fe XMCD signal measured at puoH=0
increases monotonically with Fe coverage up to a 3.8 ML Fe
layer thickness. This indicates that the remanent Fe magnetiza-
tion depends on the Fe layer thickness, as evidenced by the
element-specific hysteresis loops shown in Fig. 4e, f. In order to
assess the relative weight of the Fe and Co remanent-state
out-of-plane magnetization at different layer thicknesses and
temperatures, we applied the XMCD sum rules®>. The XMCD
sum rules can give quantitative information on the atomic
magnetic moment of the probed atom. We can estimate the
relative Fe and Co magnetization for the Fe/Gr/Co/Ir(111) system
as Mg/ Mco = trefireltcollco» Where g, tc, are the layer thick-
nesses, and pge, fco are the atomic moments of Fe and Co
obtained via the XMCD sum rules. In Fig. 4h we report the room-
temperature Mr./Mc, ratio as a function of the Fe layer thickness.
The data points are relative to the spectra reported in Fig. 4a-d.
The Mg./Mc, room-temperature ratio shows a clear dependence
on the Fe film thickness for thicknesses below ~10 ML’s and
notably crosses the magnetic compensation condition (Mg/Mc,
=1) for values close to Fe ~4 ML’s. This result provides an
indication that the total magnetization can be controlled by
tuning the Fe layer thickness, demonstrating that a Fe/Gr/Co/Ir
(111) magnetically compensated system can be realized at room
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temperature. A strong variation of the Mg./Mc, ratio is also
observed as a function of sample temperature, as reported in
Fig. 4i for the Fe[0.9 ML]/Gr/Co[1.9 ML]/Ir(111) sample.
Altogether, these observations prove that it is possible to achieve
a determined magnetization ratio in a chosen temperature range
by tuning the sublayer’s thicknesses.

For Fe thicknesses sufficiently larger than that of the Co layer,
the Mge/Mc, ratio takes values higher than unity, indicating that
the out-of-plane remanent magnetization of Fe layer exceeds that
of the Co layer. The Fe out-of-plane remanent magnetization (see
Fig. 4d) conserves the direction of the previously applied
maximum external field, as deduced by the sign of Fe XMCD.
In contrast, the Co remanent magnetization is now the one
switching and orienting antiparallel to the Fe magnetization,
presenting an XMCD-sign reversal (see also Supplementary
Figs. 7 and 9). This observation is in agreement with a preserved
AFC between the Co and Fe layer but with a magnetostatic energy
balance favoring the Fe top-layer, that drives the magnetization
direction of the Co bottom-layer. In this situation we observe an
appreciable reduction of the Fe and Co remanent magnetizations
as deduced from the XMCD intensity in Fig. 4d, which might be
related to the formation of magnetic domains in the Fe layer and
that, via the AF exchange coupling, imprint on the Co layer.

Discussion

The experimental and theoretical results presented above
demonstrate that it is possible to design Gr-based SFiM structures
with a vanishing net remanent magnetization at a determined
compensation temperature, i.e., SAF systems. Such graphene-
based SAF structures are appealing for having a closed-flux
magnetization configuration with a very low, ultimately vanish-
ing, and stray macroscopic magnetic field. This minimizes the
demagnetization energy, defining a magnetic configuration of
high stability. Hence, altogether, the studied Fe/Gr/Co/Ir SAF
structures gather a notable number of appealing magnetic prop-
erties, among which we highlight: a perpendicular easy axis with
strong magnetic anisotropy; a strong AFC along the perpendi-
cular direction; stability of AFC against field and temperature;
robustness of magnetic properties and AFC with layer thickness;
tunability of structures from uncompensated ferrimagnetic to
essentially compensated AF configurations.

When compared to commonly used in-plane SAF spin valve
structures such as CoFe/Ru/CoFe® or CoFeB/MgO(Ru)/CoFeB
MTJs” 48, graphene-based SAF systems present analogies but also
differentiating characteristics and potential advantages by mer-
ging appealing magnetic properties with graphene unique elec-
tronic, mechanical, or thermal properties. First, the Gr spacing
layer can contribute to the definition or preservation of the
chemical/magnetic interfaces, acting as a barrier for diffusion
preventing alloyin% of two neighboring materials or protecting a
magnetic material'®, in analogy to MgO(1-2 nm) or Al,O; bar-
riers®. Second, a single Gr spacing layer has been shown to per-
form as an effective pinhole-free spacing layer for the fabrication
of MTJs, in spite of its single atom-layer character'> '°. Also, the
graphene-mediated AFC between two layers allows a SFiM or
SAF structure avoiding the need for a high spin-orbit metallic
barrier such as Ruthenium, or the need of a third layer for the
biasing as in MTJs with MgO or Al,O; barriers. And finally,
graphene-based perpendicular SAF hybrid structures could
exploit graphene unique properties such as its outstanding
mechanical and thermal characteristics in the design of flexible
electronic devices* or improving thermal management strategies
in devices”.

It is worth briefly discussing potential paths and challenges for
the eventual technological introduction of these structures on
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devices. The monolithic integration of graphene on silicon has
been recently reported via an Yttrium-Stabilized-Zirconia (YSZ)
buffer approach. Remarkably, the growth of Gr on Ir(111)/YSZ/Si
(111) substrate is scalable in wafer size up to 4-inches and the Gr
layer quality is comparable to that obtained for the CVD growth
on Ir(111) single crysta155 1 Hence, a YSZ/Si(111) platform
appears a relevant and feasible path for the scalability and
monolithic silicon integration of the SAF structures investigated
in this work. Regarding compatibility with device fabrication
processes such as complementary metal-oxide-semiconductor
(CMOS), the high CVD Gr growth temperature here used (ie.,
1300 K) exceed the thermal budget of CMOS manufacturing,
being high enough to produce issues by diffusion or melting.
Alternative graphene-growth methods such as plasma assisted™?,
CVD reactors!®, or polycyclic aromatic —hydrocarbons
precursors®> >* enable a significant reduction of graphene-growth
temperatures (700-900 K). Alternatively, in past years an
increasing number of solutions have been proposed for hetero-
geneous Gr-Si integration, employing the clean transfer of Gr
grown on other supports directly onto SiO,/Si or silicon-on-
insulator substrates® °°. This has enabled roll-to-roll production
of 30-inch graphene films for transparent electrodes®, graphene
S$i-CMOS hybrid Hall integrated circuits®® or Gr/CMOS inte-
grated image sensors>’, among others. It is also noteworthy that
Gr-based flexible devices have been demonstrated by alternative
fabrication routes to CMOS*> 0. The field is in continuous
development as a result of the strong efforts being deployed for
addressing the challenges towards graphene spintronic devices'®.

In summary, we have addressed the feasibility of Fe/Gr/Co/Ir
(111) structures displaying a strong perpendicular AFC that is
robust on temperature and Fe layer thickness. Atomistic calcu-
lations confirm graphene’s direct role in sustaining AF
superexchange-coupling between the magnetic layers, and are in
good correspondence to the experimental findings. These results
demonstrate an additional class of synthetic-AF multilayered
materials that, while being of fundamental interest, appear cap-
able of providing practical magnetic devices with PMA which are
potentially relevant for perpendicular magnetic recording media,
perpendicular  spin valves, MTJ structures> °, or in
all-optical switching magnetic materials® °!. We expect that these
results will help to spark interest towards the search and dis-
covery of related perpendicular AFC Gr-based magnetic multi-
layers, a class of materials largely unexplored and unexploited at
present, but which could enable developments in the field of
graphene spintronics.

Methods

Sample fabrication. The samples were all prepared in situ in the preparation
chamber available at the XMCD magnet endstation of the BOREAS beamline at the
ALBA synchrotron, with a base pressure better than 1 x 10~ mbar. The Ir(111)
single crystal was prepared by repeated cycles of Ar* sputtering at 2 KeV followed
by annealing at T'= 1000 K. The quality of the surface was checked by LEED, giving
a sharp six-fold hexagonal pattern without any presence of reconstructions or
diffuse background. The Gr/Ir(111) was then prepared exposing the clean substrate
held at T=1300K to a C,H, residual gas atmosphere at a pressure of 2.0 x 107°
mbar for 10 min. This procedure leads to the formation of large single-domain
single-layer graphene over the whole surface area, as has been reported*? and as
deduced from the Moiré LEED pattern (Supplementary Fig. 4). The Gr/Ir(111)
samples kept at room-temperature were exposed to a Co atomic flux evaporated
from a high-purity rod by electron bombardment. The Co deposition rate was
about 1 A min~! as determined by a quartz micro-balance. The intercalation
process was done either in a single step, after having deposited the full amount of
Co, or in several intercalation steps at temperatures in the range 570-700 K.
Although all the films were showing large PMA and remanent magnetization,
larger coercivity values were observed for films prepared either in several steps or at
higher annealing temperatures. The full intercalation of Co below the graphene
layer was checked by exposing the Gr/Co/Ir(111) to molecular oxygen at a pressure
of 1 x 107 mbar for 5 min an then checking the XAS at the Co L, ; edge. In case of
non-completed intercalation the sample was showing definite signs of Co oxidation
(Supplementary Note 9), while for complete intercalation the sample was showing
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a pristine Co L, 53 absorption edge. The Fe was also deposited at room temperature
by electron bombardment evaporation from a high-purity (99.999%) rod.

XMCD measurements. The XAS and magnetic circular dichroism experiments
were carried out at the BOREAS beamline of the ALBA synchrotron using the fully
circularly polarized X-ray beam produced by an apple-II type undulator®. All
measurements were performed in situ immediately after sample preparation. The
base pressure during measurements was ~1x107'0 mbar. The X-ray beam was
focused to about 500 x 500 um?, and a gold mesh has been used for incident flux
signal normalization. The XAS signal was measured with a Keythley 428 current
amplifier via the sample-to-ground drain current (total electron yield TEY signal).
The magnetic field was generated collinearly with the incoming X-ray direction by
a superconducting vector-cryomagnet (Scientific Magnetics). The magnetization
loops were measured sweeping continuously the magnetic field at a fixed speed and
acquiring the absorption TEY current at the maximum of the L; XMCD signal and
at a pre-edge position in order to cancel-out any field-induced artifact in the
measurements. We recall that such XMCD measurements at the Co and Fe L, ;
absorption edges provide direct element-specific information on the magnitude
and sign of the projection of Co and Fe magnetizations along the beam and field
direction.

Atomistic calculations. Our density functional based calculations were performed
using the SIESTA code®. The generalized gradient approximation® for the
exchange-correlation (XC) potential was considered. We used norm-conserving
pseudopotentials in the separate Kleinman-Bylander®® form under the
Troullier-Martins parametrization®, and to address a better description of the
magnetic behavior, nonlinear core corrections were included in the XC terms®’.
The geometry optimizations were carried out using the conjugate gradient method
at spin-polarized scalar relativistic level. A double-{ polarized with strictly localized
numerical atomic orbitals was used as basis set, and the electronic
temperature-kpT in the Fermi-Dirac distribution-was set to 5 meV. The relaxed
lattice parameter for the Ir(111) surface was 2.715 A, in very good agreement with
previous experimental reports. After the relaxation process the forces per atom
were less than 0.01 eV A~1. Based on the locality of the fully relativistic contribu-
tion, there are two different levels of approximations when the spin-orbit (SO) is
taken into account. We have used in the present work the off-site approach®®, that
takes into account not only the local SO contributions to the total energy but also
the neighboring interactions between atoms to obtain the total self-consistent
energy. As usual, the MAE is defined as the difference in the total self-consistent
energy between hard and easy magnetization directions. Within the present work,
we performed an exhaustive analysis of the MAE convergence in order to achieve a
tolerance below 107> eV. We employed around 1000 k-points in the calculations
for each geometric configuration, which was sufficient to achieve the stated
accuracy (Supplementary Note 2 and Supplementary Fig. 3).

Data availability. The data sets generated during and/or analyzed during the
current study are available from the corresponding authors on reasonable request.
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