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ABSTRACT
Many optimization strategies have been employed to stabilize zinc anodes of zinc-ion batteries (ZIBs).
Although these commonly used strategies can improve anode performance, they simultaneously induce
specific issues. In this study, through the combination of structural design, interface modification, and
electrolyte optimization, an ‘all-in-one’ (AIO) electrode was developed. Compared to the
three-dimensional (3D) anode in routine liquid electrolytes, the new AIO electrode can greatly suppress
gas evolution and the occurrence of side reactions induced by active water molecules, while retaining the
merits of a 3D anode. Moreover, the integrated AIO strategy achieves a sufficient electrode/electrolyte
interface contact area, so that the electrode can promote electron/ion transfer, and ensure a fast and
complete redox reaction. As a result, it achieves excellent shelving-restoring ability (60 hours, four times)
and 1200 cycles of long-term stability without apparent polarization. When paired with two common
cathode materials used in ZIBs (α-MnO2 and NH4V4O10), full batteries with the AIO electrode
demonstrate high capacity and good stability.The strategy of the ‘all-in-one’ architectural design is
enlightened to solve the issues of zinc anodes in advanced Zn-based batteries.
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INTRODUCTION
Aqueous zinc-ion batteries (ZIBs), with their cost
efficiency, high safety, nontoxic features and high
energy density, are quite competitive and popular
in the large-scale energy storage and wearable
electronics field [1–3]. Since the reversible zinc-ion
storage in aqueous system, numerous breakthroughs
have been made in research into cathode materials
[4–9]. Commercial zinc foil has been used in anode
materials, but little has been done to overcome its
inherent problems [10]. In the past two years, the
use of zinc metal anodes has been attracting more
attention, with several studies summarizing issues
and proposed relevant optimizations [11–13].
Recent reviews on the anodes of ZIBs described the
main issues as formation of zinc dendrites, hydrogen
evolution, corrosion and passivation [14,15]. The
currentmodification strategies include structural de-
sign [16,17], surface modification [18], electrolyte
optimization [19] and zinc alloying [20]. Structural

design is a widely employed method of modifica-
tion. The essence of this method is to increase the
specific surface area of the electrode to accelerate
distribution of the electrolyte and current uniformly
on the electrode surface, thereby achieving uniform
deposition of zinc ions [21]. Therefore, more atten-
tion should be directed toward the research progress
of three-dimensional (3D) zinc anode than non-3D
anodes [22]. Despite these advantages, however,
traditional 3D anodes employed in routine liquid
electrolytes show an increase in the specific surface
area, which, in turn, indicates a reduction in the local
current density. According to the Tafel formula,
hydrogen evolution overpotential should decrease.
In addition, as the specific surface area increases,
there will inevitably be more reactive sites on the
anode surface. With this comes the probability of
an increase in hydrogen evolution and other side
reactions.The increase in these reactions will greatly
reduce the Coulombic efficiency (CE) of zinc depo-
sition/stripping, and thus, the cycle life of the zinc
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Figure 1. Schematics of structural design, interface modification, electrolyte optimization and integrated ‘all-in-one’ system,
advantages and disadvantages are also listed.

anode, thereby affecting the cycle performance of
the battery.

Interface modification is a commonly used strat-
egy to reduce side reactions caused by active water
molecules [23]. This strategy avoids direct contact
between the electrolyte and electrode. Most inter-
face modification strategies can realize uniform zinc
deposition, selective ion transfer and anti-corrosion
properties [24,25]. However, the introduced coat-
ing layer increases the internal impedance and hin-
ders the rapid transport of ions and electrons.

Flexible batteries are a promising developmental
direction for ZIBs [26,27], and gel electrolytes ac-
count for a large proportion of the electrolytes they
employ [28,29]. However, because of differences in
electrolyte fluidity, their development is significantly
restricted by electrode/electrolyte interface issues
[30].This is because of limited contact area, volume
change andmorphology changeof the electrodedur-
ing cycling. A solution to these problems is required
to achieve sufficient and close contact between the
electrolyte and electrode. For the above three anode
modification strategies, an optimized approach is ur-
gently required to combine their strengths.

Therefore, we designed an ‘all-in-one’ (AIO)
electrode by combining the strategies of structural
design (3D skeleton), interface modification (suffi-

cient interface contact) and electrolyte optimization
(mixed gel electrolyte).This integratedAIO strategy
should increase the electrode/gel electrolyte contact
area, facilitate occurrence of the ion transportation
and redox reactions, and improve the adaptability of
electrode volume changes to alleviate the interface
stress problem. Additionally, the AIO electrode
retains the advantages of a high specific surface
area while effectively suppressing hydrogen evo-
lution and side reactions, consequently achieving
better stability (Fig. 1). In a symmetrical battery,
the as-prepared AIO electrode achieved a 600-hour
long-time stability without significant polarization,
as well as ultra-stable shelving-restoring ability. In
Zn/α-MnO2 and Zn/NH4V4O10 cells, the AIO
electrode also exhibited better electrochemical
performance than traditional 3D anodes in routine
liquid electrolytes.

RESULTS AND DISCUSSION
The preparation of the AIO electrode is shown in
Fig. 2a. In step I, Cu foam and a Zn sheet are used
as the working and counter electrodes, respectively,
for the Zn plating to obtain Cu foam@Zn [31].
Using sodium alginate as the main content and
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Figure 2. (a) Schematics of the two-step electroplating process for preparing AIO electrodes, and photos of Cu foam, Cu
foam@Zn, and AIO electrodes. (b) Cross-sectional photo and (c) cross-sectional SEM image of the AIO electrode. (d) Diagram
of battery assembly. (e) XRD patterns of Cu foam and Cu foam@Zn. (f) FT-IR spectra of gel membrane and its corresponding
vibration form.

palygorskite powder as an additive, a mixed elec-
trolyte ‘plating’ suspension is obtained in step II.
Subsequently, the Cu foam@Zn and a Zn sheet
are utilized as the working electrode and counter
electrodes, respectively, such that the Zn on Cu
foam@Zn loses electrons and transfers into an
electrolyte ‘plating’ suspension. Sodium alginate in
the electroplating suspension completes the ionic
cross-linking on the surface of the Cu foam@Zn.
This is seen in Fourier transform infrared spectra
(FT-IR) from the asymmetric stretching vibrations
of the −COO– groups, which shift from 1615 cm–1

to higher values 1640 cm–1 through formation
of coordinate bonds between the carboxylate
groups and zinc ions (Fig. S1, Supplementary
data) [32,33], and brings the palygorskite together
with the electrode to form an AIO electrode.
Palygorskite has been proven to effectively improve

battery performance through ion exchange [34].
Surface and cross-sectional energy dispersive X-ray
(EDS) mappings (Al, Zn, Si, Mg) confirm the
uniform distribution of the palygorskite material
[MgAlSi4O10(OH)·4H2O] at the surface and body
of the gel membrane (Fig. S2). Photographs of the
Cu foam, Cu foam@Zn and AIO electrodes are
shown in Fig. 2a. The distributions of Zn on the Cu
foam andmixed gel membrane on the Cu foam@Zn
are both quite uniform. The cross-sectional pho-
tograph and scanning electron microscope (SEM)
image of the AIO electrode show that the gel
membrane penetrated the electrode and was
tightly bonded to Cu foam@Zn (Fig. 2b and c),
achieving sufficient electrode/electrolyte interface
contact. Such an AIO electrode can function as
an anode, electrolyte and separator simultane-
ously, as shown in Fig. 2d. The X-ray diffraction
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Figure 3. (a) Shelving-recovery performance of Cu foam@Zn/Cu foam@Zn symmetric cell (AIO electrode/Cu foam@Zn in AIO
system) under 2 mA cm–2. (b) First cyclic voltammetry curve, (c) float charge current, (d) open circuit potential decays of AIO
electrode/α-MnO2 and Cu foam@Zn/α-MnO2 full cell. (e) XRD patterns of the anodes in different full cell systems after 100
cycles at 500 mA g–1, and the corresponding SEM images of (f) AIO electrode and (g) Cu foam@Zn in 2 M ZnSO4 + 0.1 M
MnSO4.

(XRD) results show that Cu foam@Zn was ob-
tained during the electroplating process without
formation of by-products (Fig. 2e). Analysis of the
peeled off electrolyte membrane by FT-IR shows
that its infrared peaks (Fig. 2f) matched well with
its two components—palygorskite and zinc alginate
(Fig. S3a).

To illustrate the feasibility of this optimization
strategy, the electrochemical performances of the
AIO electrode and the Cu foam@Zn in liquid
electrolytes (2 M ZnSO4 or 2 M ZnSO4 + 0.1 M
MnSO4) were compared. In terms of shelving-
recovery performance, the AIO system delivered a
small polarization voltage after undergoing 60 hours
of shelving thrice and maintained a normal open-
circuit voltage (0.006 V) during the fourth shelving
(Fig. 3a). In contrast, in the liquid system, after
going through 60 hours of shelving twice, a signif-
icant polarization increment occurred in the third
cycle. During the third shelving, the open circuit
voltage increased sharply, accompanied by battery
failure. In a symmetric battery, the AIO system

exhibited better reversibility and stability.
Cyclic voltammogram tests of a full battery
(Cu foam@Zn/α-MnO2) show that the �V be-
tween the oxidation and reduction peaks in the AIO
system is smaller than that in the liquid system (2M
ZnSO4 + 0.1 M MnSO4). This is observed in both
the first (Fig. 3b) and second circles (Fig. S3b),
indicating that the AIO system exhibits better
reversibility.

Floating charge current can be used to evaluate
the amount of energy required to maintain a battery
at 100% charge. Generally, the smaller the floating
charge current, the better the stability of the system
[35,36]. As shown in Fig. 3c, the floating charge cur-
rent of the liquid system was 0.00777 mA, whereas
that of the AIO system was reduced by 36.3%. In
addition, the AIO system effectively suppressed self-
discharge (Fig. 3d). The faradaic reaction, which in-
cludes decomposition of the electrolyte, is the main
cause of self-discharge. This suggests that the AIO
system inhibits unwanted side reactions [37,38].
Zn4SO4(OH)4·xH2O is a common by-product in
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Figure 4. (a) Linear polarization curves of Zn foil/Zn foil symmetric cell in different electrolyte systems (liquid and gel, where
the gel represents the electrolyte peeled from the electrode) at a scan rate of 5 mV s–1. (b) Linear sweep voltammetry
curves of Zn foil/Ti foil cell at a scan rate of 0.05 V s–1. (c) Symmetrical cells with AIO electrode and Cu foam@Zn assem-
bled in transparent tanks representing the side reactions visually during continuous Zn plating/stripping at 0.5 mA cm–2.
(d) Cyclic voltammograms for Zn nucleation in AIO and liquid systems. (e) Chronoamperograms of AIO electrode/Cu foil and
Cu foam@Zn/Cu foil cells at the same overpotential. (f) Chronoamperograms of AIO electrode/Zn foil and Cu foam@Zn/Zn
foil cells. (g) Long-term galvanostatic cycling performance of symmetrical cells with AIO electrode and Cu foam@Zn at
1 mA cm–2. (h) Cycling performance of AIO electrode/NVO and Cu foam@Zn/NVO full cell at 10 A g–1.

aqueous ZIBs, and its formation can be indicative of
the severity of the side reactions. A comparison of
the XRD patterns of the anode in the AIO system
and liquid systems after 100 cycles at a current den-
sity of 500mA g–1 shows that the AIO system can ef-
fectively inhibit formation of Zn4SO4(OH)4·xH2O
(Fig. 3e).This conclusion canbe verifiedby the SEM
images of the anode in the AIO (Fig. 3f) and liq-
uid (Fig. 3g) systems, and further confirmed by low
magnification SEM images (Fig. S4). Moreover, the
morphology of the anode after cycling in the AIO
system is much flatter than that in the liquid system.

To explore the reasons for the improved stability
and reversibility of the AIO electrode, a linear polar-
ization test was performed to compare the corrosion
properties of Zn metal in the different systems.
As shown in Fig. 4a, there was a smaller corrosion
current in the gel system. It is generally believed
that a lower corrosion current indicates a lower
corrosion rate [39], which means that Zn metal
exhibits greater stability in the AIO system. Com-
paring the stable electrochemical windows of the gel
electrolyte and the liquid electrolyte, the former has
both a higher O2 evolution potential and a lower H2
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evolution potential (Fig. 4b). Thus, the AIO system
can effectively relieve gas evolution [40]. Toobserve
the hydrogen evolution more intuitively, symmet-
rical batteries were assembled in a transparent con-
tainer to perform repeated Zn deposition/stripping.
As shown in Fig. 4c, after five cycles under the same
conditions (Fig. S3c), obvious bubbles can be ob-
served on the electrode surface in the liquid system,
whereas the formation of bubbles can barely be seen
in the AIO system. With respect to the nucleation
overpotential (NOP, Fig. 4d), that of the AIO sys-
tem is 53 mV larger than that of the liquid system,
which ismainly attributed to the interactionbetween
zinc ions and carboxyl groups [33].The larger NOP
value provides a sufficient nucleationdriving force to
formfiner nuclei [23]. Current changewith time un-
der a constant potential has the sensitivity to reflect
the nucleation process and surface changes [41]. To
analyze the deposition forms of zinc ions on copper
and zinc in the two systems, the chronoamperom-
etry comparisons of the Cu foam@Zn/Cu and Cu
foam@Zn/Zn batteries were conducted. It can be
seen from Fig. 4e that Zn deposition on the copper
substrate in the AIO system is closely arranged. In
the chronoamperometry of the Cu foam@Zn/Zn
battery, two-dimensional diffusion corresponds to
the unrestricted diffusion of zinc ions on the anode
surface. The AIO system only undergoes a fast
constrained 2D diffusion before entering a stable
3D diffusion stage (Fig. 4f), that is, zinc ions tend to
be reduced at the adsorbed position, which greatly
increases the number of nucleation points and
improves the distribution situation. This limited 2D
diffusion can also be attributed to the coordination
between carboxyl groups and zinc ions [33].

The reasons for the improved stability of the AIO
system are shown in Fig. 1. In detail, the increase in
surface area through this structural design causes the
local current density to diminish, and consequently,
the hydrogen evolution overpotential to decrease
[42]. In most 3D systems, the number of reactive
sites inevitably increases because of surface area en-
largement. Hence, H3O+ is more likely to obtain
electrons to generate hydrogen (with the generated
bubbles adhering to the electrode surface), which
hinders the migration path of Zn2+. As hydrogen
evolution andZn2+ deposition are competitive reac-
tions, the easier reduction of H3O+ means that it is
more difficult for Zn2+ to obtain electrons [43]; that
is, the zinc stripped from the Cu foam@Zn is more
difficult to return. The macroscopic phenomenon is
that zinc on Cu foam@Zn gradually dissolves as the
cycle number increases. Moreover, the occurrence
of hydrogen evolution means that the partially re-
maining OH– aggravates side reactions and gener-
ates by-products such as Zn4SO4(OH)4·xH2O. For

interface modification, introducing a coating layer
usually leads to an increase in internal impedance,
which hinders fast ion/electron transfer. Because
most of the water molecules are fixed inside the gel,
electrolyte optimization can effectively reduce the
water-induced side reactions, but the poor interface
contact blocks its further development. In contrast,
within theAIOelectrode, the advantages are cleverly
combined. Most of the water molecules are fixed in-
side the mixed gel, and the number of active water
molecules are markedly reduced. As a result, side re-
actions, such as hydrogen evolution caused by active
water molecules, are greatly inhibited. Meanwhile,
the role of the 3D structure in homogenizing ion de-
position is retained, as the interaction between the
gel electrolyte and Zn2+ has been strengthened to a
certain extent. Moreover, the close contact between
the gel membrane and the electrode can enable fast
electron/ion transportation [44].

Because the AIO system is more stable than the
liquid system, it is believed that batteries with an
AIO electrode should also exhibit a better electro-
chemical performance. In 70 cycles of a Zn/Cu bat-
tery under a 20% depth of discharge (Fig. S5), the
CE of the AIO system was maintained at ∼100%,
while the liquid system had a relatively obvious volt-
age fluctuation at 41 cycles, and then completely
failed in the 68th cycle (CE dropped to 0%). Be-
causeof the lackof a rigid substrate, the zinc foil com-
pletely failed after only 14 cycles under a 20% depth
of discharge. In the Zn/Zn symmetric battery, the
polarization voltage of the AIO system can be sta-
bilized within ±0.06 V after cycling for 600 hours
at a 7% depth of discharge, whereas the polariza-
tion voltage of the liquid system more than doubles
(Fig. 4g). In addition, when the battery was disas-
sembled to compare the electrodes (Fig. S6), the
zinc on the Cu foam@Zn in the AIO system was
still visible, whereas the zinc dissolution could be
clearly observed in the liquid system, which is essen-
tially a result of the reduction in CE caused by the
severe hydrogen evolution mentioned above. Sur-
face and cross-sectional SEM images (Fig. S7) of the
AIO electrode after cycling also confirmed that the
gel electrolyte was still coated onto the 3D struc-
tural anode, which is the same as the gel electrolyte
before cycling with an obvious layer configuration.
By comparing the stability of symmetrical batteries
in the two systems at different current densities, it
was found that the AIO system also shows a bet-
ter rate performance (Fig. S8). At a current density
of 4 mA cm–2, the polarization voltage of the liquid
system increased sharply, followed by system failure,
whereas the AIO system maintained a stable per-
formance. The difference in rate performance can
be attributed to the stability difference of the two
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systems, as well as the higher ionic conductivity of
the AIO system (Fig. S9a). The high ionic conduc-
tivitymay be associatedwith the abundant ion trans-
fer channels of the nano-palygorskitematerials [34].
As the electrochemical reaction is a coordinated pro-
cess of electron transmission and ion migration, un-
der a large current density, the ion migration is lim-
ited by the polarization of concentration; that is,
systems with higher ionic conductivity tend to ob-
tain better high-rate performance. Notably, the con-
tact area provided by the close proximity of the gel
membrane and electrode enables the high ionic con-
ductivity of the gel electrolyte to be effectively uti-
lized. Moreover, in terms of electron transmission,
the AIO system possesses a smaller electric charge
resistance, according to the Nyquist plots (Fig. S9b
and c). In summary, fast ion/electron transfer can be
realized using an AIO electrode.

The superiority of the rate performance is also
reflected in the Cu foam@Zn/NH4V4O10 (NVO)
(Fig. S9d) and Cu foam@Zn/α-MnO2 (Fig. S9e)
full cells. Compared to the cycle performance of the
Cu foam@Zn/α-MnO2 system at a current density
of 0.5 A g–1 (Fig. S9f), the specific discharge capaci-
ties of the two 3D systems were similar, but the liq-
uid system started to suffer from obvious capacity
fading after 150 cycles. In contrast, the capacity re-
tention rate of the AIO systemwasmuch better.The
non-3D anode (Zn-foil-based AIO electrode) deliv-
ers inferior endurance to that of the 3D anode. The
XRD patterns and SEM images of the two cathodes
are shown in Fig. S10. For the NVO system at a cur-
rent density of 10 A g–1, the liquid system first main-
tained a stable cycle of ∼500 times, but then a ‘cliff’
capacity decline occurred at the 530th cycle, which
was associated with the severe H2 evolution phe-
nomenon and the dissolution of zinc metal (inset of
Fig. S11), as reflected in theCE shown inFig. S11. In
addition, because of the internal pressure increment,
electrolyte leakage occurred on the corresponding
button cell of the liquid system (Fig. S12). Because
theAIO system can effectively inhibit hydrogen evo-
lution, there was no obvious capacity decline even
when the cycle numberwas up to1000 (Fig. 4h), and
the corresponding button battery was no electrolyte
leakage.

To display the potential application of the AIO
electrodes,we conducted the following experiments.
We assembled a soft packing battery with an AIO
electrode, and its first cycle CE reached ∼100%
(Fig. S13a). Two AIO-based ZIBs were connected
in series to power an LED bulb (rated voltage:
3 V). To simulate situations that may be encoun-
tered in actual applications, bending experiments
(Fig. S13b and c; Video S1), piercing experiments
(Video S2) and impact experiments (Video S3)

were conducted. In all the above situations, the AIO
ZIBs exhibited constant stability.

CONCLUSION
In summary, an AIO electrode inheriting the ad-
vantages of the 3D zinc anode and gel electrolyte
with almost no hydrogen evolution was prepared by
two-step electroplating. In contrast to the point-to-
surface contact between gelmembranes and 3D zinc
anodes in the past, the gel electrolyte here is tightly
integrated with the Cu foam@Zn, providing more
active sites and channels for redox reactions and fast
ion transportation. As most water molecules in the
gel electrolyte are constrained, hydrogen evolution
is greatly suppressed. Therefore, the AIO electrode
can effectively reduce side reactions, improve stabil-
ity and obtain a relatively flat morphology. Conse-
quently, compared with a 3D anode in routine liq-
uid electrolyte, the AIO electrode exhibited a more
stable CE (99.6%) under 20% depth of discharge.
The stability of AIO electrode was confirmed using
full batteries with NVO and α-MnO2 cathodes. In
liquid electrolytes, zinc dissolution caused by strong
gas evolution induced a sharp capacity decline; how-
ever, the capacity retention rate of the AIO system
was as high as 85.4% (charging capacity), even af-
ter 1000 cycles. With this integrated AIO strategy,
we hope to point out a way to combine modifica-
tionmethods and promote the development of next-
generation Zn-based batteries.
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