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Improvement of variant calling in next-generation sequence data requires a comprehensive, genome-wide catalog of high-

confidence variants called in a set of genomes for use as a benchmark. We generated deep, whole-genome sequence data of

17 individuals in a three-generation pedigree and called variants in each genome using a range of currently available algo-

rithms. We used haplotype transmission information to create a phased “Platinum” variant catalog of 4.7 million single-

nucleotide variants (SNVs) plus 0.7 million small (1–50 bp) insertions and deletions (indels) that are consistent with the

pattern of inheritance in the parents and 11 children of this pedigree. Platinum genotypes are highly concordant with the

current catalog of the National Institute of Standards and Technology for both SNVs (>99.99%) and indels (99.92%)

and add a validated truth catalog that has 26% more SNVs and 45% more indels. Analysis of 334,652 SNVs that were

consistent between informatics pipelines yet inconsistent with haplotype transmission (“nonplatinum”) revealed that the

majority of these variants are de novo and cell-line mutations or reside within previously unidentified duplications and de-

letions. The reference materials from this study are a resource for objective assessment of the accuracy of variant calls

throughout genomes.

[Supplemental material is available for this article.]

Recent disruptive changes in sequencing technology (Bentley et al.
2008; Drmanac et al. 2010) have led to amassive growth in the use
of DNA sequencing in research and clinical applications (The 1000
Genomes Project Consortium 2010; The International Cancer
Genome Consortium 2010; Erikson et al. 2016). Accurate calling
of genetic variants in sequence data is essential as sequencing
moves into new settings such as clinical laboratories (Gullapalli
et al. 2012; Goldfeder et al. 2016). It is anticipated that genomic se-
quence information will improve the precision of clinical diagno-
sis as part of the new initiatives in precision medicine (Ashley
2015; Marx 2015). The field of next-generation sequencing
(NGS) is evolving rapidly: Continual improvements in technology
and informatics underline the need for effective ways to measure
the quality of sequence data and variant calls, so that it is possible
to perform objective comparisons of different methods. Robust
benchmarking enables us to better understand the accuracy of se-
quence data, to identify underlying causes of error, and to quantify
the improvements obtained from algorithmic developments.

It is important to assess aspects of variant calling accuracy
such as the fraction of true variants detected (recall) and the frac-
tion of the variants called that are true (precision). One approach

is to test variant callsmade by anNGSmethodusing an orthogonal
technology (e.g., array-based genotyping or Sanger sequencing)
and then to measure the degree of concordance between results
(Ajay et al. 2011; The 1000 Genomes Project Consortium 2012;
Pirooznia et al. 2014). This approach can provide a measure of pre-
cision of a variant caller, but not recall, as recall estimates require
knowledge of what is missed. Additionally, the resulting measure
of precision is typically based on a few hundred variants and is
then extrapolated to the entire variant call set. Limitations in
this approach to validation include cost and incompleteness due
to failed or erroneous results from the orthogonal technology. A
second approach is to compare technical and/or informatic repli-
cates of a data set (Lam et al. 2012; O’Rawe et al. 2013; Zook
et al. 2014). It is assumed that a variant call is correct if it is seen
in multiple analyses or data sets. Although this approach allows
rapid comparison of large variant call sets, estimates of precision
and recall of one variant call set can only be expressed relative to
a second set; it is not possible to know which variants are true in
either set. Additionally, calls found in two data sets may be catego-
rized as correct evenwhere they are in fact systematic errors in both
sets. A significant limitation of this approach is that some of the
variants called by just onemethodmay be correct andmayprovide
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valuable insights on how to improve variant calling, but these var-
iants are excluded from further consideration by this approach. A
third approach is to sequence parent–parent–child trios and test
for Mendelian consistency (Boland et al. 2013; Patel et al. 2014).
Although this approach can detect a subset of errors, it falls short
of identifying genotyping errors that do not violate inheritance
in a trio (Supplemental Tables S3, S4).

In the present study, we generated a genome-wide catalog of
5.4 million phased “platinum” variants. We included variant calls
from six different informatics pipelines (Conrad et al. 2011;
Garrison and Marth 2012; Iqbal et al. 2012; Saunders et al. 2012;
Raczy et al. 2013; Rimmer et al. 2014) and two different sequenc-
ing technologies (Bentley et al. 2008; Drmanac et al. 2010). We
used an inheritance-based validation based on a family of two par-
ents and 11 children to resolve conflicts between different call sets
and to include high confidence variants called by a single infor-
matics pipeline. Compared to previous studies, the genetic inher-
itance provided by this large family serves as a validation of all of
the variants within this study and provides an unbiased assess-
ment of different technologies and software pipelines. We also ex-
amined features of the SNVs that failed to segregate consistently
with the inheritance and conclude that the majority of these con-
flicts are caused by SNVs that colocalizewith copynumber variants
(CNVs). The data from this study are fully open source so that
groups can reanalyze and provide feedback to the catalog as need-
ed. As the technologies improve, this community resource will
continue to evolve by adding more validated variants, including
CNVs and structural variants (SVs) identified from new sequenc-
ing technologies and analysis methods.

Results

Phasing the pedigree

To obtain phased variants across a large pedigree, we sequenced
each of the four grandparents, two parents, and 11 children of
CEPH pedigree 1463 (Fig. 1; Dausset et al. 1990) on an Illumina
HiSeq2000 to an average depth of 50× using 2 × 100 bp reads
and PCR-free sample preparation. We determined the genome-
wide transmission of the parental haplotypes to each of the 11
children in the pedigree and identified 731 inheritance vectors be-
tween parents and children within the autosomes, plus 16 distinct
inheritance vectors on Chromosome X (Methods). In agreement
with previous studies (Kong et al. 2010), we observed a higher

number of crossovers in maternal versus paternal autosomal hap-
lotypes: 58% (415/709, 1.35 cM/Mb) compared to 42% (302/709,
0.98 cM/Mb) (Supplemental Fig. S1).

Sequencing and phasing a larger pedigree increases the ability
to detect errors and assess the accuracy of more of the variants
compared to a trio analysis. Theoretically, by sequencing the par-
ents and 11 children, both parental haplotypes will be represented
in at least one of the children for 99.8% of the genome, and single
errors in variant calls can be detected in all of these regions in any
member of the pedigree for which sequence data are available
(Supplemental Table S6). To this effect, combining the genotype
calls with the haplotype inheritance vectors enables identification
of genotype errors as well as other factors that lead to Mendelian
inheritance inconsistency, such as when variants cosegregate
with deletions and duplications.

Platinum variants

To generate a comprehensive catalog of pedigree-validated vari-
ants, we used six analysis pipelines (Supplemental Table S1) to
call SNVs and indels. For each individual call set, we identified var-
iants in which the genotypes are present in all 13 individuals and
are also consistent with the transmission of the parental haplo-
types (Supplemental Material, section 1). Next we merged each
of the six call sets into one catalog, using the following inclusion
criteria: (1) The genotypes and alleles were concordant between
call sets (154,681 variants removed by this rule), and (2) for mono-
allelic variants (i.e., homozygous for the alternate allele in every
sample), the variant was included in call sets using at least two dif-
ferent sequence aligners (103,603 variants removed by this rule).
Note that we included all variants that met the above criteria re-
gardless of whether or not they passed the default quality filters
of each analysis pipeline. Instead, we relied on the sensitivity of
the genetic inheritance to detect genotyping errors and maximize
the chance of including true variants that might otherwise be re-
moved by suboptimal filtering.

It is still possible that misalignments may lead to false geno-
types that are consistent with the inheritance or a single variant
may be represented as two different, nonoverlapping variants
when merging the call sets. To identify errors such as these, we re-
quired that some of the reads supporting each variant call also sup-
ported the flanking sequence using a k-mer approach. In brief, we
declared each variant valid only if the supporting reads contained
sequence confirming each allele, and the flanking sequence in a
51-bp window centered on the variant (Supplemental Figs. S2,
S3). We performed this check for every variant in the catalog and
removed 132,528 SNVs and 64,917 indels in which the genotype
calls were consistent with inheritance but failed this additional
flanking-sequence test (Supplemental Table S7).

In total, we identified 5,426,236 phased variants (4,729,676
SNVs; 693,623 indels; and2937complexvariantswithoverlapping
SNVs and indels) that segregate consistently with haplotype inher-
itance and also pass the flanking-sequence test; including 159,167
pedigree-consistent variants that were identified from a single
sequencing pipeline and 1042 SNVs that were unique to the
Complete Genomics (CGI) data (Drmanac et al. 2010). These vari-
ants have features consistent with high-quality sequencing data.
For example, the ratio of transitions to transversions in the pedi-
gree-validated SNVs is 2.11 (all) and 2.42 (coding), and the
het:hom ratios of SNVs and indels in both the parents of this fam-
ily are in agreementwith both previous studies and theoretical pre-
dictions (Supplemental Table S9). In addition to the 2937 complex

Figure 1. Pedigree of the family sequenced for this study (CEPH pedi-
gree 1463). The Coriell ID for each sample is defined by adding the prefix
NA128 to each numbered individual: e.g., 77 = NA12877. Samples filled
with dark orange are used in this analysis but the founder generations
(blue) were also sequenced and used as further validation of the haplo-
types generated in this study. The trio, 91-92-78, was also sequenced dur-
ing Phase I of the 1000 Genomes Project (The 1000 Genomes Project
Consortium 2010).
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variants, the set also includes 59,310 multiallelic variants (2728
SNVs and 56,582 indels). The indel loci include short tandem re-
peats such as homopolymer tracts and di- and trinucleotide repeats
(Supplemental Material, section 1.5), which are known to be less
stable than SNVs; hence, we expect a significant number of the
indels to be multiallelic, as observed here.

To identify invariant positions of high confidence, we collat-
ed all genomic positions that were called as homozygous reference
in every sample by at least two pipelines. As for the monoallelic
variants (described above), we required that the different pipelines
included at least two different sequence aligners. Additionally, we
filtered out all positions where any pipeline made a variant call in
any sample to exclude missed variants and regions of high error
rates. Based on these rules, we identified 2,737,246,156 positions
that are homozygous reference across the pedigree. These posi-
tions can be used to calculate false positive rates when assessing
variant calling pipelines.

Using founder haplotypes to validate platinum variants

We utilized the founders to provide an additional assessment of
the phasing and variant quality by testing whether the predicted
haplotype variants are observed in the appropriate founders (i.e.,
individuals 89, 90, 91, or 92) (Fig. 1). All the platinum variants
identified by this study are phased, and one of the haplotypes
will be present in each founder. To quantify the presence of the
variant in the founders without relying on the variant callers, we
tested whether the k-mers described above were observed in the
appropriate founders. This analysis supported 99.5% of the
5,426,236 variants in all of the founders, leaving 28,371 lower-
confidence variants (Supplemental Table S8). Variants with a
low normalized k-mer value are more likely to fail this test due
to either lower average depth or higher error rate. For example,
∼97.3% of the platinum variants have at least 5 k-mers supporting
each allele (Supplemental Table S7) compared with just 16.4%
(4,652) of the variants that failed the founder test. After excluding
the 23,719 variants with fewer than 5 k-mers supporting each
allele, many of the remaining variants exhibit signs of clustering
around biological mutational events in a grandparental haplo-
type. We presume, therefore, that they arose either in early devel-
opment or during generation or culture of the cell line:
Specifically, 2066 (46.7%) occur in 135 clusters of between five
and 260 spatially adjacent variants in the same founder (Fig. 2;
Supplemental Fig. S6).

It should be noted that these biological mutational events are
limited to the founders and thus do not affect the pedigree consis-
tency or our assessment that these variants are accurately called in
themain pedigree. Overall, for the variants in which at least one of
the founders did not have the appropriate k-mer, 99.2% show
strong supporting evidence for the variant, either because the k-
mer was seen as predicted in another founder (72.2%) and/or the
k-mer was seen multiple (5+) times in the pedigree (99.3%).
Because of this, we conclude that most of the failures in the foun-
ders are caused by complex genetic events in the grandparents and
do not affect the concordance of transmission. These variants are
flagged but not removed from the Platinum catalog.

Nonplatinum variants

The nonplatinum variants that failed our validation process re-
vealed important biological insights. We examined a total of
334,652 high-quality SNV calls, in which at least two pipelines
provided the same answer for all genotype calls in the parents

and all children, but the genotypes were inconsistent with haplo-
type inheritance. This analysis excluded all nonplatinumSNVcalls
thatmight be of lowquality, e.g., inwhich thereweremissing data,
or discrepancies between two callers, or variants called by only one
caller. We classified the high-quality failed SNVs into four catego-
ries. Category 1 SNVs (191,087) are heterozygous in all thirteen in-
dividuals. Most (91%) of the SNVs in this category are clustered at
specific locations in the genome and also deviate significantly (P <
0.01) fromHardyWeinberg Equilibrium (HWE) in a population of
European ancestry, having an excess of heterozygous genotypes
(Supplemental Fig. S7). Together these observations indicate that
most of these variants overlap real duplications or higher-order
CNVs and are not false positive variants (for an example of a 25-
kb duplication, see Fig. 3A). Category 2 SNVs (3861) are consistent
with the occurrence of underlying hemizygous deletions in the
family. Most (83%) of the SNVs are clustered (Fig. 3B) and have

Figure 2. Structural abnormalities account for most of the inconsisten-
cies in detection of the platinum haplotypes in the founders. (A) A 20-
Mb structural abnormality identified by 177 variants in nine clusters that
failed the founder haplotype validation test in NA12889. Based on the
marked skew in frequency of the SNV alleles within the rearrangement
(4:1) compared to the proximal flanking region (1:1), this event is likely
a mosaic on the distal end of Chromosome 11, specific to NA12889.
Each point represents the allele count at a SNV location expected to be het-
erozygous in NA12889 based on seeing the nontransmitted allele at least
six times. Red points show the allele counts (average n = 11 within the mo-
saic) of the haplotype transmitted to NA12877, and blue points show the
allele counts (average n = 43 in the mosaic) of the nontransmitted haplo-
type. The black line shows the average total depth in windows of 100
SNVs, highlighting that this mosaic is not associated with a change in
copy number. (B) Allele counts for SNV positions in a possible cell-line
somatic deletion in NA12891 identified by a cluster of 174 k-mer failures.
Points are colored the same as in A. Within this deletion, there are virtually
no reads corresponding to the transmitted haplotype, whereas a relatively
constant read depth was observed across the region for the nontransmit-
ted haplotype.
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low read depth in samples predicted to be hemizygous for the dele-
tion (25.6× compared to the 50.3× diploid genome average)
(Supplemental Fig. S8). Many (81%) are also significantly out of
HWE in the European cohort. Category 3 SNVs (49,800) are posi-
tions with a single heterozygous call in the pedigree. These sin-
gletons are not clustered; they may be isolated false positive calls
or somatic mutations (Supplemental Fig. S9). Of these, 48.8%
(24,299) were called identically in two independent data sets gen-
erated by different sequencing chemistries and analysis pipelines,
suggesting that they are likely to bemostly true somaticmutations,
arising either in the individual or during culture of the cell line,
plus an expected roughly 50–100 de novo germline mutations in
each of the children. The remaining 51.2% (25,501) are just iden-
tified in one sequencing technology, and there is no evidence to
indicate how many are errors versus low frequency somatic muta-
tions. Category 4 SNVs (89,904) are the remaining positions that
are not pedigree consistent. Compared to the previous categories,
thesemay be accounted for by a variety of reasons. Although some
SNVs are genotyping errors, most (79%) of the common SNVs are
significantly out of HWE and approximately half (54%) of all the
SNVs are clustered (Supplemental Fig. S10), which is consistent
with the occurrence of both somatic deletions and germline dele-
tions or duplications (but does not meet the criteria for inclusion
in Categories 1–3). An example of a complex event is shown in
Figure 3C, in which somatic instability in different individuals
has occurred in 22q11.2, a region in the genome that is known
to be highly mutable (Mikhail et al. 2014). Additionally, there
are approximately 589 SNVs in 322 clusters that failed to match
the inheritance vectors, that is consistent with a double crossover
or gene conversion (Supplemental Table S14).

Comparing our nonplatinum SNVs with a set of common,
population-level CNVs (Sudmant et al. 2015a) and CNV calls
from this pedigree (Roller et al. 2016) shows a significant excess
of Category 1 and Category 4 SNVs overlapping duplications and
significantly more Category 2 SNVs overlapping deletions
(Supplemental Table S13). Overall, we conclude that the majority
(∼75%) of nonplatinum SNVs in this analysis colocate with an un-
identified germline or somatic variant; 67.3% were accounted for
in 23,442 clusters (indicative of CNVs). Improvements in CNV
calling and modifying the inheritance analysis to utilize the
copy number information will lead to more accurate characteriza-

tion of these events. Although many of these are likely to be true
variant locations, assessing algorithmperformance should exclude
these sites until improved CNV calling is available and variants
pass the necessary criteria for inclusion in the Platinumvariant cat-
alog (Discussion).

Using the Platinum variant catalog for benchmarking

We used the Platinum variant catalog to benchmark the perfor-
mance of four commonly used informatics pipelines on sample
NA12878, using WGS at 30×, 40× or 50× average aligned read
depths (Fig. 4; Supplemental Tables S17–S19). We performed joint
calling with the parental data sets for those callers that have amul-
tisample analysismode. For precision,we utilized the homozygous
reference positions identified as high confidence. For SNVs,
FreeBayes has the highest recall at the cost of lower precision com-
pared to the other algorithms. The results for Strelka (Saunders et
al. 2012) and GATK3 (DePristo et al. 2011) are similar, with
GATK3 showing slightly higher recall and lower precision than
Strelka. For indels, Strelka and GATK3 have very similar recall
and precision, whereas Platypus has the highest precision values
at a cost of lower recall. We used default filters for these compari-
sons, but recall can be improved for any algorithmwith a resulting
loss in precision by altering filter thresholds. The receiver operator
characteristic (ROC) curves for GATK3 and Strelka are shown as an
example in Figure 4B.

Comparison to other studies

The NIST Genome-in-a-Bottle (Zook et al. 2014) and the 1000
Genomes (1KG) (The 1000 Genomes Project Consortium 2015)
both included data from NA12878, and we compared variant calls
from these studies with our Platinum variant catalog. All three
studies generated high-confidence, genome-wide variant sets
and then used different approaches to filter the calls and assess
quality. The goal of the NIST study was to generate a high-confi-
dence set of variants as a resource for benchmarking SNV and indel
calls and is therefore directly aligned with the aim of the present
study. The goal of the 1000 Genomes Project was to generate a
comprehensive catalog of human genetic variation across a diverse
set of individuals from multiple populations across the globe.

Figure 3. CNVs in this pedigree identified fromnonplatinumvariants. (A)DuplicationonChromosome1 containing242Category1nonplatinumSNVs in
a region of elevated read depth. Colored lines show the depths for the parents (NA12877 in purple and NA12878 in orange), and the gray lines show the
depths for each of the children. Points along the bottom highlight the platinum variants (blue) and the nonplatinum variants (red). Note that there are 16
platinum variants in this duplication, because the presence of duplicated sequence can still produce genotypes that are consistent with those predicted
by a diploid model (Supplemental Table S15). (B) Deletion on Chromosome 4 identified by 176 Category 2 nonplatinum SNVs that were consistent with
the presence of a large hemizygous deletion. In addition to the large deletion, the depth supports the presence of several segmental duplications both over-
lapping and flanking thedeletion. Lines andpoints are coloredas inA. (C) Cell line or somatic deletions inmultiplemembers of thepedigreeonChromosome
22 identified by926Category4nonplatinumSNVs. Lines are colored as inA, except for the addition of a black line that shows thedepth forNA12893 (child).
Although the other children (gray lines) do not appear to be deleted in any part of this region, the depths are highly variable, which may indicate somatic
instability and mosaicism. The variability of this region within different cell line passages is evident when we compared these sequence data for NA12878
against correspondingdata fromthe1000Genomes Project (1000GenomesProjectConsortium2010) andNIST (Zooket al. 2014) (Supplemental Fig. S11).
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The NIST study was a replicate-based analysis of a single sam-
ple (NA12878) using 14 separate sequencing experiments (total
depth = 831×) (Zook et al. 2014). Variants were excluded from the
final set by arbitration based on inconsistent genotype calls be-
tween pipelines and/or occurrence in repetitive/duplicated se-
quence or structural variants. In contrast to our platinum genome
calls, NIST used neither pedigree information nor flanking-se-
quence analysis to identify errors, although visual inspection was
used for some variants. We found that the genotype concordance
was very high for the SNVs (>99.99%) and indels (99.92%) called
in both data sets (Table 1). The Platinum data set also contained
800,564 SNVs and 223,780 indels not included in the NIST set.
Additionally we identified 912,018 SNVs and 261,647 indels that
are more difficult (based on the observation that they were not
called consistently by all of the pipelines), including 347,186
(38.2%) SNVs and 142,964 (54.6%) indels not included in the
NISTset (SupplementalTableS23). Identifyingthese“difficult”var-
iants is particularly important because they highlight areas where
the variant callingmethods can be improved. Given that these ad-
ditional variants passed our inheritance and flanking-sequence
tests, these can be considered true positives. Most of these variants
(91.3% of the SNVs and 63.5% of the indels) were also found
independently in the 1KG data set (see below). Conversely, the
NIST data set contained 62,946 SNVs and 60,057 indels absent
from the Platinum data set. The majority of these were observed
in this study but were then filtered out (Supplemental Table S22).

The 1KG data set was generated from 2504 individuals (in-
cluding NA12878) using 7.4× average depth WGS data combined
with 65.7× exome sequence data and array-based genotype data
(The 1000 Genomes Project Consortium 2015). Haplotype-based
imputation was used for error correction and to impute missing
data. This cohort-based analysis was calibrated to maintain a pop-
ulation-level false discovery rate (FDR) of <5% formost variants, in-
cluding SNVs and small indels. Genotyping concordance for the
3.4M SNVs shared between the two data sets is high (>99.8%),
but lower (92.8%) for the indels. The Platinum data set contains
105,966 SNVs and 142,592 indels that are absent from the 1KG
data for NA12878. When we examined the entire 1KG data set,
we found 28% of these SNVs and 30% of the indels were in fact
found in other individuals of the 1KG cohort. The rest were not
found in any of the 1KG individuals and these variants may have
low population frequency (<0.1%). Conversely, the 1KG calls for
NA12878 contain 224,651 SNVs and 159,163 indels absent from
the Platinum catalog, andmost of thesewere observed in our study
but were filtered out (Supplemental Table S22).

Estimating the extent of platinum genome coverage

To estimate the fraction of the total reference genome that has
high-confidence base calls in this study, we combined our
Platinum variant catalog with all high-confidence invariant posi-
tions (i.e., explicitly called homozygous reference throughout the
pedigree). We concluded that 96.72% of the known reference ge-
nome (hg19: autosomes and Chromosome X) is covered on the
basis of these combined criteria (Table 2), although coverage of
the autosomes (97.0%) is significantly better than Chromosome
X (92.5%) (Supplemental Table S11). Platinum coverage in genes,
and particularly exons, is higher than the genome average, as ex-
pected on the assumption that highly repetitive motifs, which
make upmost of the nonplatinum regions of the reference, are de-
pleted in transcribed and translated sequences compared to the ge-
nome average.

By this analysis, 93,000,907 reference bases of hg19 (∼3.3%)
are classified as nonplatinum. However 84,919,966 of these bases
lie within segmental duplications or one of the categories of
known repeats listed in RepeatMasker, which leaves just
8,080,941 nonplatinum bases in the reference that are not ac-
counted for by one of the annotation classes incorporated here.
Further work is required to address this remaining 8.1 Mb along
with the full characterization of undetected CNVs (see above).
This result indicates that we can locate and identify the vast major-
ity of nonplatinum bases, that most of them are known repeats,
and that they can all be flagged for inclusion or exclusion as dictat-
ed by the needs of individual studies in the future.

Table 1. Comparison of platinum genotype calls in NA12878 with
NIST and 1KG

Overlap
category

SNVs Indels

Count
GT

concordance Count
GT

concordance

NIST and PG 2,724,348 >99.99% 302,981 99.92%
PG not in NIST 800,564 NA 223,780 NA
NIST not in PG 62,946 NA 60,057 NA
1KG and PG 3,418,946 99.84% 384,169 92.79%
PG not in 1KG 105,966 NA 142,592 NA
1KG not in PG 224,651 NA 159,163 NA

Figure 4. Precision versus recall in NA12878 evaluated against the
Platinum catalog data set. Triangles, circles, and squares, respectively, rep-
resent the results from 30×, 40×, and 50× sequencing depth for Platypus
(red), FreeBayes (blue), GATK3 (green), and Strelka (black). Excluding
Strelka, all callers are run in joint calling mode incorporating the parents.
(A) Indels (large symbols) and SNV (small symbols) results plotted on the
same axis. (B) Expansion of SNV results, also showing ROC curves for
GATK3 and Strelka that reflect the trade-off of recall versus precision that
is obtained by altering specific variable parameters when using the
algorithms.
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Discussion

We combined data from two different sequencing technologies
and six different informatics pipelines to identify a ground truth
catalog of 5.4M phased SNVs and indels in this pedigree. A defin-
itive feature of this study is that every platinum variant has been
validated using inheritance patterns defined by phased haplotypes
in a large pedigree. We avoided the user-defined filters of the map-
ping and variant calling algorithms, thusmaximizing utility of the
input data and minimizing potential biases. The platinum variant
set is not intended to be an exhaustive list of variants. Instead, it is
a comprehensive genome-wide set of phased small variants that
has been validated to high confidence. We discovered that many
nonplatinum SNVs and small indels in this analysis are likely
real, but their inheritance patterns were confounded by colocal-
ized CNVs. For example, the present study highlighted 23,442 lo-
cations that are likely to be confounded by CNVs. Next steps will
include revision of the assumption of autosomal diploidy so as
to include models of multivariate positions. Future work will also
need to correct and incorporate the true variants that fail the flank-
ing-sequence analysis; many of these are due to issues with merg-
ing and normalizing variant calls frommultiple analysis pipelines.
A future study might benefit from the use of nonimmortalized
samples, not confounded by cell culture somatic mutation arti-
facts. Future studies should also include pedigrees from other eth-
nic origins.

Compared to other studies, utilizing the genetic inheritance
allows us to create a more comprehensive catalog of platinum var-
iants that reflects bothhigh accuracy and completeness. A compre-
hensive set of highly accurate SNVs and indels in both the easy and

difficult parts of the genome is vital for software developers
because these are the areas where the current methods most
need training data to improve their methods. Additionally,
because every one of the variants in this catalog is phased, this
data set provides a resource to accurately assess emerging technol-
ogies designed to provide phasing information (Kitzman et al.
2011; Suk et al. 2011; Zheng et al. 2016).

We demonstrated the use of the platinumvariants tomake an
accurate comparison of different analysis pipelines. This exercise
can be repeated using any pipeline to track progress in develop-
ment and to measure improvements in SNV and indel calling. As
tools improve, the same path forwardwill allow expansion of truth
data, with the overriding principle that validation by genetic
inheritance enables consideration of variants without being de-
pendent on the strengths and weaknesses of each caller. In partic-
ular, 2% of the exons are not within our platinum regions, and
thus these represent locations where the sequencing workflows
fall short. These regions should be prioritized for improvement
in future development efforts. In addition, this same method
can be used to rapidly assess new genome builds once the inheri-
tance vectors are available, and some of the nonplatinum variants
may be caused by reference issues that will be solved in future ge-
nomebuilds (platinumcalls forGRCh38 are also availablewith the
hg19 calls described in this study).

Ultimately a Platinum variant catalog should contain com-
prehensive, genome-wide sets of all types of variant calls: SNVs, in-
sertions, deletions, large structural rearrangements, and CNVs. In
this study, a single pedigree provided a very large number of
SNVs and indels. Inclusion of CNVs and SVs will become possible
as methods for detection improve. However, compared to the
small variants, the haplotypes in a single pedigree contain relative-
ly few large structural events. A population-based approach, using
aggregated whole-genome data, is a more appropriate strategy to
identify comprehensive genome-wide sets of CNVs and SVs that
can be used to improve large variant callers (Sudmant et al.
2015b). The more common large variants will be identified rela-
tively early on in an aggregate genome study and can then be val-
idated by inheritance in this and other pedigrees. An initial set of
common platinum CNVs and SVs will be invaluable to aid algo-
rithm improvement. The rare CNVs and SVs will be discovered
over time, as individual genomes are accumulated on a large scale
in population-based studies.

Methods

Sequence data and variant calls

Two sets of sequence data from the variousmembers of CEPH ped-
igree (1463) were generated or used in this study. The raw sequence
data were aligned to the hg19 reference, and SNVs and indels were
called using a variety of sequence data and variant calling pipelines
(Supplemental Table S1).

Calculating inheritance vectors

Inheritance vectors describing the transmission of the parental
haplotypes were calculated for the entire genome using the
GATK3 SNV calls (DePristo et al. 2011) combined with the linkage
software Merlin (Abecasis et al. 2002). Because genotype errors or
other deviations from Mendelian inheritance (e.g., hemizygous
deletions) will be problematic for the phasing, we only used the
SNVs that passed the quality filters in all 13 samples and showed
no Mendelian conflicts. Additionally, some parts of the genome

Table 2. Platinum coverage of the genome, entire genes, and exons
and in eachmajor category of repeat sequence, based onUCSC (hg19)

Category
Platinum
bases Total bases

Platinum
(%)

Genome summary
hg19 2,742,672,138 2,835,673,045 96.72
Genesa 1,207,891,444 1,240,678,689 97.36
Exonsa 75,060,473 76,594,953 98.00
ACMG genesb 4,924,381 4,985,610 98.77
ACMG exonsb 325,531 327,215 99.49

Repeat sequencec

LINE 586,967,167 624,134,772 94.04
SINE 377,522,795 389,006,060 97.05
LTR 254,199,704 259,386,042 98.00

Segmental
duplications

112,200,846 145,135,125 77.31

DNA 96,711,423 97,880,579 98.81
Simple repeat 17,832,795 25,487,926 69.97
Low complexity 14,706,936 16,652,501 88.32
Satellite 7,990,378 11,281,369 70.83
Merged otherd 4,904,637 6,844,288 71.66

All repeatse 1,417,943,645 1,502,863,611 94.35
Nonrepeats 1,324,728,493 1,332,809,434 99.39

aBreakdown of coverage per gene is available in Supplemental Table
S21.
bList of genes recommended for reporting incidental findings (Green
et al. 2013).
cCertain repeats in the genome may be represented in more than one
category.
d“Merged other” includes a nonredundant merge of categories listed in
RepeatMasker as RNA, rRNA, scRNA, snRNA, srpRNA, tRNA, unknown,
and other.
e“All repeats” is calculated from a single nonredundant merge of all
repeat categories.
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such as the regions around centromeres are prone to mapping er-
rors that may lead to an excess of heterozygous calls that will con-
found the phasing algorithm. To account for this, we developed an
automated approach tomerge large regions that show the same fa-
milial inheritance but are separated by smaller blocks exhibiting
multiple double crossovers. After removing these unlikely cross-
over events, we were left with 747 distinct inheritance regions
for the autosomes and Chromosome X. Because we filtered out
many SNVs when calculating the initial inheritance vectors, there
may be significant gaps where a crossover event occurs. We used
the similarity between siblings to narrow these gaps so that thema-
jority of SNVs are included (Supplemental Table S2). Our final set
of defined inheritance blocks cover 2.95 Gb (∼97% of the
genome).

Parsimony analysis

Assuming any variant is biallelic and each sample is diploid, there
are a limited number (24−1 = 15 for the autosomes and 23−1 = 7 for
X) of possible phased genotype combinations in the parents, ex-
cluding sites that are homozygous reference in every individual.
Because the children are not independent of the parents, there
are also only 15 (7 for X) possible genotype combinations in the
entire pedigree within each of the regions defined by the 747 in-
heritance regions described above. For each of these regions, we
calculated the possible genotype combinations across the family
defined by the inheritance vectors. For each variant position, we
compared the observed genotypes against each of the possible ge-
notype combinations based on the known haplotype transmis-
sion. If exactly one of the 15 predefined genotype combinations
agrees with the observed genotype calls, then the site is defined
as accurate and by definition is also phased. See the Supplemental
Section 1 for a full description of the method and rules used to
identify and merge the confident variant calls.

Data access

Sequence data, merged variant calls, and transmission vectors for
the two-generation pedigree analyzed here, as well as merged
variant calls and transmission vectors for GRCh38, have been
submitted to the Database of Genotypes and Phenotypes
(dbGaP; https://www.ncbi.nlm.nih.gov/gap) under accession
number phs001224.v1.p1. In addition, the variant calls and se-
quence data for just NA12877 and NA12878 have been submitted
to http://www.platinumgenomes.org and the sequence data
for NA12877, NA12878, NA12889, NA12890, NA12891, and
NA12892 have been submitted to the European Nucleotide
Archive (ENA; http://www.ebi.ac.uk/ena) under accession number
ERP001960.

Acknowledgments

We thank Andrew Gross, Mark Ross, and Ryan Taft for helpful dis-
cussions and comments.

References

1000 Genomes Project Consortium. 2010. A map of human genome varia-
tion from population-scale sequencing. Nature 467: 1061–1073.

1000Genomes Project Consortium. 2012. An integratedmap of genetic var-
iation from 1,092 human genomes. Nature 491: 56–65.

1000 Genomes Project Consortium. 2015. A global reference for human ge-
netic variation. Nature 526: 68–74.

Abecasis GR, Cherny SS, Cookson WO, Cardon LR. 2002. Merlin—rapid
analysis of dense genetic maps using sparse gene flow trees. Nat Genet
30: 97–101.

Ajay SS, Parker SC, AbaanHO, Fajardo KV,Margulies EH. 2011. Accurate and
comprehensive sequencing of personal genomes. Genome Res 21:
1498–1505.

Ashley EA. 2015. The precision medicine initiative: a new national effort.
JAMA 313: 2119–2120.

Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown
CG, Hall KP, Evers DJ, Barnes CL, Bignell HR, et al. 2008. Accurate whole
human genome sequencing using reversible terminator chemistry.
Nature 456: 53–59.

Boland JF, Chung CC, Roberson D, Mitchell J, Zhang X, Im KM, He J,
Chanock SJ, Yeager M, Dean M. 2013. The new sequencer on the block:
comparison of Life Technology’s Proton sequencer to an Illumina HiSeq
for whole-exome sequencing. Hum Genet 132: 1153–1163.

Conrad DF, Keebler JE, DePristo MA, Lindsay SJ, Zhang Y, Casals F,
Idaghdour Y, Hartl CL, Torroja C, Garimella KV, et al. 2011. Variation
in genome-wide mutation rates within and between human families.
Nat Genet 43: 712–714.

Dausset J, Cann H, Cohen D, LathropM, Lalouel JM,White R. 1990. Centre
d’Etude du Polymorphisme Humain (CEPH): collaborative geneticmap-
ping of the human genome. Genomics 6: 575–577.

DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C,
Philippakis AA, del Angel G, Rivas MA, Hanna M, et al. 2011. A frame-
work for variation discovery and genotyping using next-generation
DNA sequencing data. Nat Genet 43: 491–498.

Drmanac R, Sparks AB, Callow MJ, Halpern AL, Burns NL, Kermani BG,
Carnevali P, Nazarenko I, Nilsen GB, Yeung G, et al. 2010. Human ge-
nome sequencing using unchained base reads on self-assembling DNA
nanoarrays. Science 327: 78–81.

Erikson GA, Bodian DL, Rueda M, Molparia B, Scott ER, Scott-Van Zeeland
AA, Topol SE, Wineinger NE, Niederhuber JE, Topol EJ, et al. 2016.
Whole-genome sequencing of a healthy aging cohort. Cell 165:
1002–1011.

Garrison E, Marth G. 2012. Haplotype-based variant detection from short-
read sequencing. arXiv 1207.3907.

Goldfeder RL, Priest JR, Zook JM, Grove ME, Waggott D, Wheeler MT, Salit
M, Ashley EA. 2016. Medical implications of technical accuracy in ge-
nome sequencing. Genome Med 8: 24.

Green RC, Berg JS, Grody WW, Kalia SS, Korf BR, Martin CL, McGuire AL,
Nussbaum RL, O’Daniel JM, Ormond KE, et al. 2013. ACMG recommen-
dations for reporting of incidental findings in clinical exome and ge-
nome sequencing. Genet Med 15: 565–574.

Gullapalli RR, Desai KV, Santana-Santos L, Kant JA, Becich MJ. 2012. Next
generation sequencing in clinical medicine: challenges and lessons for
pathology and biomedical informatics. J Pathol Inform 3: 40.

International Cancer Genome Consortium. 2010. International network of
cancer genome projects. Nature 464: 993–998.

Iqbal Z, Caccamo M, Turner I, Flicek P, McVean G. 2012. De novo assembly
and genotyping of variants using colored de Bruijn graphs. Nat Genet
44: 226–232.

Kitzman JO, Mackenzie AP, Adey A, Hiatt JB, Patwardhan RP, Sudmant PH,
Ng SB, Alkan C, Qiu R, Eichler EE, et al. 2011. Haplotype-resolved ge-
nome sequencing of a Gujarati Indian individual. Nat Biotechnol 29:
59–63.

Kong A, Thorleifsson G, Gudbjartsson DF, Masson G, Sigurdsson A,
Jonasdottir A, Walters GB, Jonasdottir A, Gylfason A, Kristinsson KT,
et al. 2010. Fine-scale recombination rate differences between sexes,
populations and individuals. Nature 467: 1099–1103.

Lam HY, Clark MJ, Chen R, Chen R, Natsoulis G, O’Huallachain M, Dewey
FE, Habegger L, Ashley EA, Gerstein MB, et al. 2012. Performance com-
parison of whole-genome sequencing platforms. Nat Biotechnol 30:
78–82.

Marx V. 2015. The DNA of a nation. Nature 524: 503–505.
Mikhail FM, Burnside RD, Rush B, Ibrahim J, Godshalk R, Rutledge SL, Robin

NH, Descartes MD, Carroll AJ. 2014. The recurrent distal 22q11.2micro-
deletions are often de novo and do not represent a single clinical entity:
a proposed categorization system. Genet Med 16: 92–100.

O’Rawe J, Jiang T, SunG,WuY,WangW,Hu J, Bodily P, Tian L, Hakonarson
H, Johnson WE, et al. 2013. Low concordance of multiple variant-call-
ing pipelines: practical implications for exome and genome sequencing.
Genome Med 5: 28.

Patel ZH, Kottyan LC, Lazaro S, Williams MS, Ledbetter DH, Tromp H,
Rupert A, Kohram M, Wagner M, Husami A, et al. 2014. The struggle
to find reliable results in exome sequencing data: filtering out
Mendelian errors. Front Genet 5: 16.

Pirooznia M, Kramer M, Parla J, Goes FS, Potash JB, McCombie WR, Zandi
PP. 2014. Validation and assessment of variant calling pipelines for
next-generation sequencing. Hum Genomics 8: 14.

Raczy C, Petrovski R, Saunders CT, Chorny I, Kruglyak S, Margulies EH,
Chuang HY, Källberg M, Kumar SA, Liao A, et al. 2013. Isaac: ultra-fast
whole-genome secondary analysis on Illumina sequencing platforms.
Bioinformatics 29: 2041–2043.

5.4M variants validated by genetic inheritance

Genome Research 163
www.genome.org

http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.210500.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.210500.116/-/DC1
http://genome.cshlp.org/lookup/suppl/doi:10.1101/gr.210500.116/-/DC1
https://www.ncbi.nlm.nih.gov/gap
https://www.ncbi.nlm.nih.gov/gap
https://www.ncbi.nlm.nih.gov/gap
https://www.ncbi.nlm.nih.gov/gap
https://www.ncbi.nlm.nih.gov/gap
https://www.ncbi.nlm.nih.gov/gap
https://www.ncbi.nlm.nih.gov/gap
http://www.platinumgenomes.org
http://www.platinumgenomes.org
http://www.platinumgenomes.org
http://www.platinumgenomes.org
http://www.platinumgenomes.org
http://www.ebi.ac.uk/ena
http://www.ebi.ac.uk/ena
http://www.ebi.ac.uk/ena
http://www.ebi.ac.uk/ena
http://www.ebi.ac.uk/ena
http://www.ebi.ac.uk/ena


Rimmer A, Phan H, Mathieson I, Iqbal Z, Twigg SR, WGS500 Consortium,
Wilkie AO,McVeanG, Lunter G. 2014. Integratingmapping-, assembly-
and haplotype-based approaches for calling variants in clinical sequenc-
ing applications. Nat Genet 46: 912–918.

Roller E, Ivakhno S, Lee S, Royce T, Tanner S. 2016. Canvas: versatile and
scalable detection of copy number variants. Bioinformatics 32:
2375–2377.

Saunders CT, Wong WS, Swamy S, Becq J, Murray LJ, Cheetham RK. 2012.
Strelka: accurate somatic small-variant calling from sequenced tumor–
normal sample pairs. Bioinformatics 28: 1811–1817.

Sudmant PH, Mallick S, Nelson BJ, Hormozdiari F, KrummN, Huddleston J,
Coe BP, Baker C, Nordenfelt S, Bamshad M, et al. 2015a. Global diver-
sity, population stratification, and selection of human copy-number
variation. Science 349: aab3761.

Sudmant PH, Rausch T, Gardner EJ, Handsaker RE, Abyzov A, Huddleston J,
Zhang Y, Ye K, Jun G, Hsi-Yang Fritz M, et al. 2015b. An integrated map
of structural variation in 2,504 human genomes. Nature 526: 75–81.

Suk EK, McEwen GK, Duitama J, Nowick K, Schulz S, Palczewski S, Schreiber
S, Holloway DT, McLaughlin S, Peckham H, et al. 2011. A comprehen-
sively molecular haplotype-resolved genome of a European individual.
Genome Res 21: 1672–1685.

Zheng GX, Lau BT, Schnall-Levin M, Jarosz M, Bell JM, Hindson CM,
Kyriazopoulou-Panagiotopoulou S, Masquelier DA, Merrill L, Terry
JM, et al. 2016. Haplotyping germline and cancer genomes with
high-throughput linked-read sequencing. Nat Biotechnol 34: 303–
311.

Zook JM, Chapman B, Wang J, Mittelman D, Hofmann O, Hide W, Salit
M. 2014. Integrating human sequence data sets provides a resource
of benchmark SNP and indel genotype calls. Nat Biotechnol 32:
246–251.

Received May 25, 2016; accepted in revised form October 28, 2016.

Eberle et al.

164 Genome Research
www.genome.org


