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Abstract: Designing motion representations for 3D human action recognition from skeleton sequences
is an important yet challenging task. An effective representation should be robust to noise, invariant
to viewpoint changes and result in a good performance with low-computational demand. Two main
challenges in this task include how to efficiently represent spatio–temporal patterns of skeletal
movements and how to learn their discriminative features for classification tasks. This paper presents
a novel skeleton-based representation and a deep learning framework for 3D action recognition using
RGB-D sensors. We propose to build an action map called SPMF (Skeleton Posture-Motion Feature),
which is a compact image representation built from skeleton poses and their motions. An Adaptive
Histogram Equalization (AHE) algorithm is then applied on the SPMF to enhance their local patterns
and form an enhanced action map, namely Enhanced-SPMF. For learning and classification tasks,
we exploit Deep Convolutional Neural Networks based on the DenseNet architecture to learn
directly an end-to-end mapping between input skeleton sequences and their action labels via the
Enhanced-SPMFs. The proposed method is evaluated on four challenging benchmark datasets,
including both individual actions, interactions, multiview and large-scale datasets. The experimental
results demonstrate that the proposed method outperforms previous state-of-the-art approaches on
all benchmark tasks, whilst requiring low computational time for training and inference.

Keywords: 3D human action recognition; skeleton-based representation; SPMF; Enhanced-SPMF;
AHE; D-CNNs; DenseNet
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1. Introduction

Human action recognition [1] is one of the most important and challenging tasks in computer
vision. Detecting and recognizing correctly what humans do in unknown videos serve as a
key component of many real-world applications such as smart surveillance [2,3], human–object
interaction [4,5], autonomous vehicle technology [6,7], etc. Although significant progress has been
achieved over two decades of research, video-based human action recognition is still a challenging issue
due to a number of obstacles, e.g., changes in camera viewpoint, occlusions, background, surrounding
distractions, diversity in length and speed of actions [8].

As many other visual recognition tasks, traditional approaches on human action recognition [9]
have focused on extracting hand-crafted local features and building local descriptors from RGB
sequences provided by 2D cameras. Some typical examples that have been widely exploited with
success are SIFT [10,11], HOG/HOF [12,13], HOG-3D [14], Cuboids [15], SURF [16] and Extended
SURF [17]. Since these approaches typically recognize actions based on the appearance and movement
of the human body parts from a monocular RGB video sequence, they tend to lack 3D structure from
the scene. Therefore, single modality human action recognition based only on RGB videos is not
enough to overcome the current challenges.

The availability of low-cost and easy-to-use depth sensors such as the Microsoft KinectTM

sensor [18] has helped the computer vision community improve action recognition. These sensors are
able to provide detailed 3D structural information of human motion, which is considered complex
for traditional 2D cameras. Many action recognition approaches using RGB-D cameras have been
proposed and advanced the state-of-the-art [19–25]. In particular, most of currently depth-sensing
cameras have integrated real-time skeleton estimation and tracking frameworks [26,27], helping to
facilitate the collection of skeleton sequences. This data source is a high-level representation allowing
to describe human action in a more precise and effective way, which is suitable for the problem of
action analysis and recognition. Skeleton-based human action recognition is a time-series problem.
The skeletal data comprises 3D coordinates of the key joints in the human body over time. This is
an effective representation for structured motion [28] because each human action can be represented
through the movement of skeleton sequences. Moreover, a large set of actions can be distinguished
from these movements [29]. 3D skeletal data is not only invariant to camera-viewpoint but also can be
estimated in real-time. Moreover, it is available for most of depth based action datasets [30]. Hence,
exploiting this data source for 3D human action recognition opens up opportunities for addressing the
limitations of RGB-depth modalities-based solutions and so many skeleton-based action recognition
approaches have been proposed [19,23,31–33]. Our goal is to exploit the potential of low-cost consumer
depth cameras for identifying salient spatio–temporal patterns in skeleton sequences and then explore
them for improving the recognition of human actions using deep learning models.

In the literature of skeleton-based action recognition, there are two main issues that need to be
solved. The first challenge is to find a skeleton-based representation that transforms the raw skeletal
data into a representation that effectively captures the spatio–temporal dynamics of human skeleton
joints. The second challenge is to model and recognize actions that are complex, variable and have
large intra-class correlation, from the skeleton-based representation. Previous studies [19,23,31,34–42]
on this topic can be divided into two main categories: skeleton-based action recognition based on
hand-crafted features and skeleton-based action recognition using deep neural networks. The first
group of methods uses hand-crafted local features and probabilistic graphical models such as
Hidden Markov Model (HMM) [43], Conditional Random Field (CRF) [34], or Fourier Temporal
Pyramid (FTP) [23] to model and classify actions. However, almost all of these approaches are shallow,
data-dependent and require a lot of feature engineering. The second group of methods considers
skeletal data as a time-series patterns and proposes the use of Recurrent Neural Networks (RNNs) [44],
especially Recurrent Neural Networks with Long Short-Term Memory units (RNN-LSTMs) [45,46]
to analyze and model the contextual information contained in the skeleton sequences. They are
considered as the most popular deep learning based approach for skeleton-based action recognition
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and have achieved high-level performance. Although being able to model the long-term temporal of
human motion, RNN-LSTMs [45,46] just consider skeleton sequences as a kind of low-level features by
feeding raw skeletal data directly into the network input. The huge number of input features makes
them complex, time-consuming and may easily lead to overfitting. Nevertheless, almost all of these
networks act just as classifiers and do not extract high-level features for recognition tasks [47].

A practical human action recognition system should be able to detect and recognize actions
from different viewpoints, robust to noise and operate in real-time. We believe that an efficient
and effective representation for 3D human motion plays a decisive role in improving recognition
performance. Motivated by the success of our previous work on the SPMF (Skeleton Posture-Motion
Feature) representation [48] for video-based human action recognition, in this paper we aim to find
a new skeleton-based representation and take full advantages in learning highly hierarchical image
features of Deep Convolutional Neural Networks (D-CNNs) to build an end-to-end learning framework
for 3D human action recognition from skeletal data. Specifically, we propose a new 3D motion
representation, termed as Enhanced-SPMF (Enhanced Skeleton Posture-Motion Feature). Similar to
the SPMF [48], the proposed Enhanced-SPMF has a 2D image structure with three color channels,
which is built from a set of spatio–temporal stages, combining 3D skeleton poses and their motions.
Moreover, an Adaptive Histogram Equalization (AHE) algorithm [49] is then applied to the color
images to enhance their local patterns and generate more discriminative features for classification
task. Figure 1 illustrates an overview of the proposed Enhanced-SPMF. To learn image features and
recognize action labels from the proposed representation, different D-CNN models based on the
DenseNet architecture [50] have been designed and evaluated.

Figure 1. Overview of the proposed Enhanced-SPMF representation. Each skeleton sequence is
transformed into a single RGB that is a motion map called SPMF [48]. A color enhancement technique [49]
is then used to highlight the motion map and form the Enhanced-SPMF, which will be learned and
classified by a deep learning model. Before computing the SPMF, a smoothing filter is adopted to reduce
the effect of noise on skeletal data. Section 3 describes the details of the proposed approach.

There are five important hypotheses that motivate us to propose a new skeleton-based
representation and design DenseNets [50] for 3D human action recognition with skeletal data. First,
human actions can be correctly represented through the skeleton movements [28,29]. Second, compared
to RGB and depth streams that contain thousands of pixels per frame, skeletal data has a high-level
abstraction with much less complexity. This makes the training and inference processes much simpler
and faster. Third, as shown in our previous works [48,51], the spatio–temporal dynamics of skeleton
sequences can be transformed into color images—a kind of 3D tensor-structured representation that
can be effectively learned by representation learning models as D-CNNs. Fourth, many different
action classes share a great number of similar primitives, which interferes with action classification.
Therefore, extracting essential spatio–temporal patterns from skeleton movements plays a key role in
this task. Last, recent research results indicate that CNNs have achieved outstanding performances
in many image recognition tasks [52,53]. There are a many signs that seem to indicate that the
learning performance of CNNs can be significantly improved by increasing the depth of their
architectures [54–57]. In particular, D-CNNs with architectures such as DenseNet [50] can improve
accuracy in the image recognition task since this kind of network is able to prevent overfitting and
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degradation phenomena [58] by maximizing information flow and facilitating features reuse as each
layer in its architecture has direct access to the features from previous layers. Therefore, we explore
the use of DenseNet in this work and optimize this architecture for learning and recognizing human
actions on the proposed image-based representation.

The effectiveness of the proposed method is evaluated on four public benchmark RGB-D
datasets, including MSR Action3D [59], KARD [60], SBU Kinect Interaction [61] and NTU-RGB+D
datasets [39]. The hypotheses above were reinforced since the experimental results show that we
achieve state-of-the-art performance on all the reported benchmarks. Furthermore, we also report the
effectiveness of this approach in terms of computational cost, for both training time and inference
latency. Overall, the main contributions of our study include two aspects:

• Firstly, we present Enhanced-SPMF, a new skeleton-based representation for 3D human action
recognition from skeletal data. This work is an extended version of our paper published in the 25th
IEEE International Conference on Image Processing (ICIP) [48] in which the Enhanced-SPMF is
an extension of SPMF (Skeleton Pose-Motion Feature). Compared to our previous work, the current
work aims to improve the efficiency of the 3D motion representation via a smoothing filter and a
color enhancement technique. The smoothing filter helps us to reduce the effect of noise on skeletal
data, meanwhile the color enhancement technique could make the proposed Enhanced-SPMF
more robust and discriminative for recognition task. An ablation study on the Enhanced-SPMF
demonstrated that the new representation leads to better overall action recognition performance
than the SPMF [48].

• Secondly, we present a deep learning framework (The implementation and models will be made
publicly available at https://github.com/cerema-lab/Sensors-2018-HAR-SPMF). based on the
DenseNet architecture [50] for learning discriminative features from the proposed Enhanced-SPMF
and performing action classification. The framework directly learns an end-to-end mapping
between skeleton sequences and their action labels with little pre-processing. We evaluate the
proposed method on four highly competitive benchmark datasets and demonstrate significantly
improvement over existing state-of-the-art approaches. Our computational efficiency evaluations
show that the proposed method is able to achieve high-level of performance whilst requiring low
computational time for both the training and inference stages. Compared to our previous work
that exploited the Residual Inception v2 network [48], the current work uses a more powerful
deep learning model for action recognition task

The rest of this paper is organized as follows: Section 2 discusses related works. Section 3
presents the details of the proposed approach. Datasets and experiments are described in Section 4.
The experimental results and analyses are provided in Section 5. Section 6 concludes the paper.

2. Related Work

In this section, we briefly review the exiting literature closely related to the topic of deep
learning based approaches for 3D human action recognition from skeleton sequences, including
skeleton-based action recognition using hand-crafted features and deep learning-based action
recognition. We encourage the readers to refer to an extensive review by Han et al. [62] for getting a
more comprehensive picture on this topic.

2.1. Hand-Crafted Approaches for Skeleton-Based Human Action Recognition

Earlier studies on skeleton-based human action recognition focus on finding well-designed
hand-crafted features and using temporal graphical models to analyze the global temporal evolution
of skeleton joints. Since when the first work on 3D human action recognition from depth
data was introduced [59], many approaches for skeleton-based action recognition have been
proposed [19,23,31,34–36]. The common characteristic of these approaches is that, they extract
geometric features of 3D joint movements and model their temporal information by a generative

https://github.com/cerema-lab/Sensors-2018-HAR-SPMF
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model. For instance, Wang et al. [19] represented the human motion by means of the pairwise
relative positions of the skeleton joints for generating more discriminative features. Fourier Temporal
Pyramid (FTP) [19] was then proposed to model the temporal dynamics of the actions from LOPs.
Vemulapalli et al. [23] represented the 3D geometric relationships of body parts as points in a Lie Group
and then exploited Dynamic Time Warping (DTW) [63] and Fourier Temporal Pyramid (FTP) [19] to
model their temporal dynamics. Xia et al. [31] extracted and computed histograms of 3D joint locations
(HOJ-3D) to represent actions via posture visual words. The temporal evolutions of those words are
modeled by a discrete Hidden Markov Models (HMM) [64]. Instead of modeling temporal evolution
of skeletons, Luo et al. [35] proposed a discriminative dictionary learning algorithm (called DL-GSGC)
that incorporated both group sparsity and geometry constraints to learn motion features from the 3D
joint positions. An encoding technique called Temporal Pyramid Matching (TPM) [35] was then used
for keeping the temporal information and performing action classification.

Although promising results have been achieved, the above approaches have some limitations
that are difficult to overcome. For instance in many cases, they require pre-processing input
data in which the skeleton sequences need to be segmented or aligned. Unlike these approaches,
we propose a skeleton-based representation and a deep learning framework for 3D human action
recognition that learns to recognize actions directly from the original skeletons in an end-to-end
manner, without dependence on the length of actions. Moreover, the proposed solution is general and
can be applied with some other data modalities such as motion capture data [65] and the output of
pose estimation algorithms [66,67].

2.2. Deep Learning Approaches for Skeleton-Based Human Action Recognition

Approaches based on Recurrent Neural Network with Long Short-Term Memory units
(RNN-LSTM) [45,68] are the most popular deep learning approach for skeleton-based action
recognition and have achieved high-level performance for video-based action recognition tasks [37–42].
The temporal evolutions of skeletons are spatio–temporal patterns. Thus, they can be modeled by
memory cells in the structure of RNN-LSTMs [45,68]. For instance, Du et al. [37] proposed to use a
hierarchical RNN to model the long-term contextual information of skeletal data, in which the human
skeleton was divided into five parts according to its physical structure. Each low-level part was
modeled by an RNN and then combined into the final representation of high-level parts for action
classification. Shahroudy et al. [39] introduced a part-aware LSTM human action learning model by
splitting a long-term memory of the entire motion to part-based cells. The long-term context of each
body part was learned independently. The output of the network was then formed as a combination of
independent body part context information. Liu et al. [40] presented a spatio–temporal LSTM network,
called ST-LSTM, for 3D action recognition from skeletal data. They proposed a skeleton-based tree
traversal technique to feed the structure of the skeletal data into a sequential LSTM network and
improved the performance of the ST-LSTM by adding more trust gates. Recently, Liu et al. [42]
focused on selecting the most informative skeleton joints by using a new class of LSTM network,
namely Global Context-Aware Attention LSTM (GCA-LSTM), for 3D skeleton-based action recognition.
Two LSTM layers were used. The first layer encodes the input sequences and generates an initial global
context memory for these sequences. Meanwhile, the second layer performs attention over the input
sequences with the assistance of obtained global context memory. The attention representation was
then used back to refine the global context. Multiple attention iterations are executed and the final
global contextual information is used for action classification task.

Compared to the approaches based on hand-crafted local features, the RNN-LSTM based
approaches and their variants have been showing superior action recognition performance.
However, they tend to overemphasize the temporal information and lose the spatial information
of skeletons [37–42]. RNN-LSTM based approaches still struggle to cope to scope with the complex
spatio–temporal variations of skeletal movements due to a number of issues such as jitters and
movement speed variability. Another drawback of the RNN-LSTM networks [45,68] is that they just
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model the overall temporal dynamics of actions without considering the detailed temporal dynamics
of them. To overcome these limitations, we propose in this study a CNN-based approach that is
able to extract discriminative features of actions and model various temporal dynamics of skeleton
sequences via the proposed Enhanced-SPMF representation, including both short-term, medium-term,
and long-term actions. We summarize the advantages and disadvantages of our proposed method in
comparison with some previous approaches in Table 1.

Table 1. Summary of advantages and disadvantages of previous methods and our proposed method.

Method & Authors Data Modalities Year Advantages/Disadvantages

Bag of 3D Points [59] Depth maps 2010 Simple and fast/Low accuracy, viewpoint dependent.
Lie Group
Representation [23] Skeletal data 2014 Robust to temporal misalignment and noise/Low accuracy.

Hierarchical LSTM [37] Skeletal data 2015 Fast and high accuracy/ Easy to overfit.
Depth Motion Maps [69] Depth maps 2016 Real-time latency/Low accuracy.

ST-LSTM Trust Gates [40] Skeletal data 2016 View-invariant representation, robust to noise and
occlusion/High computational cost.

Graph-Based Motion [36] Skeletal data 2016 Robust to noise, high accuracy/Complex, parameter-dependent.
ST-NBNN [70] Depth maps 2017 Simple and low computational cost/Parameter-dependent.
Ensemble TS-LSTM
v2 [71] Skeletal data 2017 High accuracy, robust to scale, rotation and

translation/Data-hungry, high computational cost.
Bi-LSTM [72] Skeletal data 2018 Invariant representation/Complex, low accuracy.

Our proposed method Skeletal data 2019 View-invariant representation, real-time latency, high
accuracy/Data-hungry, sensitive to data error of local fragments.

3. Method

The details of the proposed approach are presented in this section. Figure 2 illustrates the key
components of the proposed learning framework for recognizing actions from skeleton sequences.
We first show how skeleton pose and motion features can be combined to build an action map in the
form of an image-based representation (Section 3.1), and how to use a color enhancement technique for
improving the discriminative ability of the proposed representation (Section 3.2). We then introduce
an end-to-end deep leaning framework based on DenseNets to learn and classify actions from the
enhanced representations (Section 3.3). Before that, in order to put the proposed approach into context,
it is useful to review the central ideas behind the original DenseNet architecture (Section 3.3.1).

Figure 2. Schematic overview of the proposed approach. Each skeleton sequence is encoded in a
single color image via a skeleton-based representation called SPMF. Each SPMF is built from pose
vectors (PFs) and motion vectors (MFs) extracted from skeleton joints. They are then enhanced by an
Adaptive Histogram Equalization (AHE) [49] algorithm and fed to a D-CNN for learning discriminative
features and performing action classification. To achieve high-level learning performance during the
training phase, we design and optimize different D-CNN models based on deep DenseNet [50], a recent
state-of-the-art architecture for image recognition tasks.

3.1. SPMF: Building Action Map from Skeletal Data

One of the major challenges in exploiting D-CNNs for skeleton-based action recognition is how the
spatio–temporal patterns of skeleton movements could be effectively represented and fed to D-CNNs
for representation learning. As D-CNNs work well on image representations [73], our idea therefore
is to encode the whole skeleton sequence into a single 2D image as a global representation for the
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action sequence. In general, two essential elements that determine a human action are poses and their
motions. Hence, we decide to transform these two important elements into the static spatial structure
of a color image with three R, G, B channels. Specifically, we propose a new representation, namely
Enhanced-SPMF (Enhanced Skeleton Pose-Motion Feature), which is built from pose and motion vectors
extracted from the skeleton joints. Note that, combining multiple kinds of geometric features such as
joint coordinates, lines and planes determined by the joints will lead to lower performance than using
only a single type of feature or several main type of features [74]. Moreover, it has been reported [61]
that joint features such as joint-joint distance and joint-joint motion are the strongest features among
many others.

3.1.1. Pose Features (PFs) Computation

Given a skeleton sequence S with N frames, denoted by S = {Ft}, where t = 1, 2, 3, ..., N. Let pt
j

and pt
k be the 3D coordinates of the j-th and k-th joints in Ft. The Joint-Joint Distance J JDt

jk between pt
j

and pt
k at timestamp t is computed as

J JDt
jk = ||p

t
j − pt

k||2, (t = 1, 2, 3, ..., N), (1)

where || · ||2 denotes the Euclidean distance between two joints. The joint distances obtained by
Equation (1) for all types of actions of a specific dataset range from Dmin = 0 to Dmax = max{J JDt

jk}.
We note this distance space as Doriginal . In fact, Doriginal can be transformed into a tensor-structure and
fed directly to D-CNNs for learning action features. However, since Doriginal is a high-dimensional
space, it could lead D-CNNs to overfit as well as being time-consuming. Thus, we need to describe
the input skeleton sequences as low-dimensional signals such that they are easy to parameterize
by learning models and discriminative enough for a classification task. To do that, we normalize
all elements of Doriginal to the range [0, 1], denoted as D[0,1]. To reflect the change in joint distances,
we encode D[0,1] into a color space using a sequential discrete color palette called JET color map (A JET
color map is based on the order of colors in the spectrum of visible light, ranging from blue to red,
and passing through the cyan, yellow, and orange.). The encoding process converts the joint distances
J JDt

jk ∈ D[0,1] for all possible combinations j and k into color points JJDt
RGB ∈ N3

[0,255] performed by
256-color JET scale. To this end, we first normalize the distance values with respect to the maximum
and minimum values of a grayscale image ranging from 0 to 1. As illustrated in Figure 3, the scalar
distances are converted to a three channel map via a JET mapping. This technique is similar to depth
encoding method presented in [75]. The use of a discrete color palette allows us to reduce complexity
of input features. This helps accelerate the convergence rate of deep learning networks during the
training stage. Moreover, it should be noted that point-point distances are invariant when they are
moved into a new coordinates system in the 3D Euclidean space. Therefore, the use of the Joint-Joint
Distance J JDt

jk can help our final representation be more independent to the camera viewpoint.

Figure 3. Illustration of the encoding process that converts joint-joint distance values to color points
using a JET colormap.
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Apart from the distance information, the orientation between joints is also important for describing
human motions. The Joint-Joint Orientation JJOt

jk from joint pt
j to pt

k at time-stamp t is computed as

JJOt
jk = pt

j − pt
k, (t = 1, 2, 3, ..., N). (2)

The JJOt
jk is a vector where all of its components p can be normalized to the range [0, 255]. This can

be done via the following transformation

pnorm = floor(255× p− cmin

cmax − cmin
), (3)

where pnorm indicates the normalized value, cmax and cmin are the maximum and minimum values of
all coordinates over the training set, respectively. The function floor(·) rounds down to the nearest
integer. We consider three components (x, y, z) of JJOt

jk after normalization as the corresponding three
components (R, G, B) of a color pixel and build JJOt

RGB as a 3D array that is formed by all JJOt
jk values.

We then define “a human pose" at timestamp t by vector PFt that describes the distance and orientation
relationship between skeleton joints,

PFt =
[
JJDt

RGB ++ JJOt
RGB

]
, (t = 1, 2, 3, ..., N). (4)

Here the symbol (++) horizontally concatenates vectors JJDt
RGB and JJOt

RGB together.

3.1.2. Motion Features (MFs) Computation

Let pt
j and pt+1

k denote the 3D coordinates of the j-th and k-th joints at two consecutive frames Ft

and Ft+1. Similarly to J JDt
jk in Equation (1), the Joint-Joint Distance J JDt,t+1

jk between pt
j and pt+1

k is
computed as

J JDt,t+1
jk = ||pt

j − pt+1
k ||2, (t = 1, 2, 3, ..., N − 1). (5)

Also, similarly to Equation (2), the Joint-Joint Orientation JJOt,t+1
jk from joint pt

j to pt+1
k is

computed as
JJOt,t+1

jk = pt
j − pt+1

k , (t = 1, 2, ..., N − 1). (6)

We define “a human motion” from t to t + 1 by vector MFt→t+1, in which

MFt→t+1 =
[
JJDt,t+1

RGB ++ JJOt,t+1
RGB

]
, (t = 1, 2, ..., N − 1), (7)

where JJDt,t+1
RGB and JJOt,t+1

RGB are encoded to qualify the color representation as JJDt
RGB and

JJOt
RGB, respectively.

3.1.3. Building Global Action Map from PFs and MFs

Based on the obtained PFs and MFs, we propose a skeleton-based representation called SPMF for
3D human action recognition. To this end, all PFs and MFs computed from the skeleton sequence S are
concatenated into a single feature vector in temporal order from the beginning to the end of the action.
It is a global representation for the whole skeleton sequence S without dependence on the range of
action and can be obtained by

SPMF = [PF1 ++ MF1→2 ++ PF2 ++ ... ++ PFt ++ MFt→t+1 ++ PFt+1... ++ PFN−1 ++ MFN−1→N ++ PFN ]. (8)

Figure 4 (top row) shows some SPMFs obtained from the MSR Action3D dataset [59] in which
all images are resized to 32 × 32 pixels. Before computing the SPMF, a Savitzky-Golay smoothing



Sensors 2019, 19, 1932 9 of 26

filter [37,76] is adopted to reduce the effect of noise on skeletal data. In the experiments, we use
the filter

f t =
−3ct−2 + 12ct−1 + 17ct + 12ct+1 − 3ct+2

35
, (9)

where ct denotes the skeleton joint coordinates of frame Ft (t = 1, 2, ..., N) and f t denotes the filtering
result. This filter design method is described in detailed in Appendix A.

Figure 4. Results of the skeleton-to-image mapping process. The top row shows the proposed SPMF
representations obtained from some samples of the MSR Action3D dataset [59]. The change in color
reflects the change of distance and orientation between the joints. The bottom row shows generated
images after applying the AHE algorithm [49].

3.2. Enhanced-SPMF: Building Enhanced Action Map

The skeleton-based representations obtained by Equation (8) mainly reflect the spatio–temporal
distribution of skeleton joints. We visualize these representations and observe that they tend to be low
contrast images, as shown in Figure 4 (top row). In this case, a color enhancement method can be useful
for increasing contrast and highlighting the texture and edges of the motion maps. Therefore, it is
necessary to enhance the local features on the generated color images after encoding. The Adaptive
Histogram Equalization (AHE) [49] is a common approach for this task. This technique is capable of
enhancing the local features of an image. Mathematically, let I be a given digital image, represented as
a r-by-c matrix of integer pixels with intensity levels in the range [0,L− 1]. The histogram of image I
will be defined by

Hk = nk, (10)

where nk is the number of pixels in I with intensity k. The probability of occurrence of intensity level k
in I can be estimated by

pk =
nk

r× c
, (k = 0, 1, 2, ...,L− 1). (11)

The histogram equalized image is defined by transforming the pixel intensities, n, of I by
the function

T(n) = floor((L− 1)
n

∑
k=0

pk), (n = 0, 1, 2, ...,L− 1), (12)

The Histogram Equalization (HE) method is used for increasing the global contrast of the image.
However, it cannot solve the problem of increasing local contrast. To overcome this limitation,
the image needs to be divided into R regions and the HE is then applied in each and every one of
these regions. This technique is called the Adaptive Histogram Equalization algorithm (AHE) [49].
The bottom row of Figure 4 shows samples of the enhanced motion map withR = 8 on 32 × 32 images,
which we refer to it as Enhanced-SPMF, for some actions from the MSR Action 3D dataset [59].
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3.3. Deep Learning Model

3.3.1. Densely Connected Convolutional Networks

DenseNet [50], considered as the current state-of-the-art CNN architecture, has some interesting
properties. In this architecture [50], each layer is connected to all the others within a dense block and
all layers can access to the feature maps from their preceding layers. Besides, each layer receives
direct information flow from the loss function through the shortcut connections. These properties
help DenseNet [50] to be less prone to overfitting for supervised learning problems. Mathematically,
traditional CNN architectures, e.g., AlexNet [52] or VGGNet [54] connect the output feature maps xl−1
of the (l − 1)th layer as input to the lth layer and try to learn a mapping function

xl = Hl(xl−1), (13)

whereHl(·) is a non-linear transformation and usually implemented via a series of operations such
as Convolution (Conv.), Rectified Linear Unit (ReLU) [77], Pooling [78], and Batch Normalization
(BN) [79]. When increasing the depth of the network, the network training process becomes complex
due to the vanishing-gradient problem and the degradation phenomenon [58] (please see Appendix B
for more details). To solve these problems, He et al. introduced ResNet [56]. The key idea behind
the ResNet architecture [56] is the presence of shortcut connections that bypass the non-linear
transformationsHl(·) with an identity function id(x) = x. This way, each ResNet building block [56]
produces a feature map xl by performing the following computation

xl = Hl(xl−1) + xl−1. (14)

Inspired by the philosophy of ResNet [56], to maximize information flow through layers,
Huang et al. proposed DenseNet [50] with a simple connectivity pattern: the lth layer in a dense block
receives the feature maps of all preceding layers as inputs. That means

xl = Hl([x0 ++ x1 ++ x2 ++ ... ++ xl−1]), (15)

where [x0 ++ x1 ++ x2 ++ ... ++ xl−1] is a single tensor constructed by concatenation of the previous
layer’s output feature maps. Additionally, all layers in the architecture receive direct supervision
signals from the loss function through the shortcut connections. In this manner, the network is easy
to optimize and resistant to overfitting. In DenseNet [50], multiple dense blocks are connected via
transition layers. Each transition layer consists of a convolutional layer followed by an average pooling
layer that changes the size of feature maps (The concatenation operation used in Equation (15) is not
viable when the size of feature maps changes.). Each block with its transition layer produces k feature
maps and the parameter k is called as the “growth rate” of the network. The non-linear functionHl(·)
in the original work [50] is a composite function of three consecutive operations: BN-ReLU-Conv.

3.3.2. Network Design

We propose to design and optimize deep DenseNets [50] for learning and classifying human
actions on the Enhanced-SPMFs. To study how recognition performance varies with architecture size,
we explore different network configurations. The following configurations are used in our experiments:
DenseNet (L = 100, k = 12); DenseNet (L = 250, k = 24); and DenseNet (L = 190, k = 40), where L is the
depth of the network and k is the network growth rate. On all datasets, we use three dense blocks on
32× 32 input images. In this design,Hl(·) is defined as Batch Normalization (BN) [79], followed by an
advanced activation layer called Exponential Linear Unit (ELU) [80] and 3× 3 Convolution (Conv.).
A Dropout [80] with a rate of 0.2 is used after each Convolution to prevent overfitting. After the feature
extraction stage, a Fully Connected (FC) layer is used for classification task in which the number
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of neurons for this FC layer is equal to the number of action classes in each dataset. The proposed
networks can be trained in an end-to-end manner by gradient descent using Adam update rule [81].
During the training stage, we minimize a cross-entropy loss function, which is measured by the
difference between the true action label y and the predicted action ŷ by the networks over the training
samples X . In other words, the network will be trained to solve the following optimization problem

Arg minW (LX (y, ŷ)) = Arg minW

(
− 1

M

M

∑
i=1

C

∑
j=1

yij log ŷij

)
, (16)

whereW is the set of weights that will be optimized by the model, M denotes the number of samples
in training set X and C is the number of action classes.

4. Experiments

We investigate the effectiveness of the proposed approach using four public benchmark action
recognition datasets, comparing our method with current state-of-the-art models for each benchmark.
We refer the reader to a survey by Zhang et al. [30] for a full description of current RGB-D based action
recognition datasets: MSR Action3D [59], KARD [60], SBU Kinect Interaction [61], NTU-RGB+D [39].
The detailed description of each dataset is provided in Section 4.1. The implementation and training
methodology are described in Section 4.2.

4.1. Datasets and Settings

MSR Action3D dataset [59]: This Kinect 1 captured dataset contains 20 actions performed by
10 subjects. Each skeleton is composed of 20 joints. The MSR Action3D dataset [59] is challenging due
to its high inter-action similarities. There are 567 action sequences in total, however, 10 sequences
are not valid since the skeletons were missing. Thus, our experiments were conducted on 557 valid
sequences. We follow the standard protocol proposed by Li et al. [59]. Specifically, the whole dataset is
divided into three subsets: AS1, AS2 and AS3. Table 2 provides a list of actions in each subset, in which
all subjects with IDs 1, 3, 5, 7, 9 are selected for training and the remaining subjects with IDs 2, 4, 6,
8, 10 are used for test. Very deep neural networks such as the deep DenseNet architecture require a
lot of data to train and optimize. Unfortunately, there are only 557 skeleton sequences on the MSR
Action3D dataset [59]. Therefore, some data augmentation techniques, i.e., random cropping, vertical
flipping, and rotation with α = 90◦ have been applied on this dataset to minimize overfitting. Figure 5
illustrates three data augmentation techniques that were used in our experiments.

Table 2. The list of actions in three subsets AS1, AS2, and AS3 of the MSR Action 3D dataset [59].

AS1 AS2 AS3

[a02] Horizontal arm wave [a01] High arm wave [a06] High throw
[a03] Hammer [a04] Hand catch [a14] Forward kick
[a05] Forward punch [a07] Draw x [a15] Side kick
[a06] High throw [a08] Draw tick [a16] Jogging
[a10] Hand clap [a09] Draw circle [a17] Tennis swing
[a13] Bend [a11] Two hand wave [a18] Tennis serve
[a18] Tennis serve [a12] Forward kick [a19] Golf swing
[a20] Pickup & Throw [a14] Side-boxing [a20] Pickup & Throw
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Figure 5. Illustration of data augmentation techniques used to generate more training samples.

Kinect Activity Recognition Dataset (KARD) [60]: The KARD [60] is a Kinect 1 dataset that contains
18 actions and 540 video sequences in total. Each action is performed three times by 10 subjects. It is
composed of RGB, depth and skeleton frames in which each skeleton frame contains 15 key joints.
The authors of the dataset [60] proposed to divide it into three subsets (i.e., Action Set 1, Action
Set 2, and Action Set 3), as listed in Table 3. For each subset, three experiments have been proposed.
Specifically, the first experiment (Experiment A) uses one-third of the dataset for training and the rest
for test. Meanwhile, the second experiment (Experiment B) uses two-thirds of the dataset for training
and the rest for test. The last experiment (Experiment C) uses half of the dataset for training and the
other half for testing. As was the case for MSR Action3D dataset [59], data augmentation techniques
(i.e., random cropping, vertically flipping, and rotation with α = 90◦) were also applied.

Table 3. The list of actions in three subsets of the KARD dataset [60].

Action Set 1 Action Set 2 Action Set 3

Horizontal arm wave High arm wave Draw tick
Two-hand wave Side kick Drink
Bend Catch cap Sit down
Phone call Draw tick Phone call
Stand up Hand clap Take umbrella
Forward kick Forward kick Toss paper
Draw X Bend High throw
Walk Sit down Horizontal arm wave

SBU Kinect Interaction dataset [61]: This dataset was collected using the Kinect v1 sensor.
It contains 282 skeleton sequences and 6822 frames performed by 7 participants. Each frame of
the SBU Kinect dataset [61] contains skeleton joints of two subjects corresponding to an interaction,
each skeleton has 15 key joints. There are 8 interactions in total, including approaching, departing,
pushing, kicking, punching, exchanging objects, hugging, and shaking hands. This dataset is challenging
due to the fact that the joint coordinates exhibit low accuracy. Moreover, they contain non-periodic
actions as well as very similar body movements. For instance, there are some pairs of actions that
are difficult to distinguish such as exchanging objects–shaking hands or pushing–punching. We randomly
split the whole dataset into 5 folds, in which 4 folds are used for training and the remaining 1 fold is
used for test. It should be noted that each skeleton frame provided by the SBU dataset [61] contains
two separate subjects. Therefore, we consider them as two data samples and feature computation is
conducted separately for the two skeletons. Additionally, data augmentation (i.e., random cropping,
vertically flipping, rotation with α = 90◦) has been also applied on the SBU dataset [61].

NTU-RGB+D dataset [39]: This Kinect 2 captured dataset is a very large-scale RGB-D dataset.
To the best of our knowledge, the NTU-RGB+D dataset [39] is currently the largest and state-of-the-art
benchmark dataset with skeletal data for human action analysis. It provides more than 56 thousand
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video samples, 4 million frames, collected from 40 distinct subjects for 60 different action classes.
The following actions are provided by the NTU-RGB+D dataset [39] (please see Figure 6 for some
examples): drinking, eating, brushing teeth, brushing hair, dropping, picking up, throwing, sitting down,
standing up, clapping, reading, writing, tearing up paper, wearing jacket, taking off jacket, wearing a shoe,
taking off a shoe, wearing on glasses, taking off glasses, putting on a hat/cap, taking off a hat/cap, cheering up,
hand waving, kicking something, reaching into self pocket, hopping, jumping up, making/answering a phone
call, playing with phone, typing, pointing to something, taking selfie, checking time, rubbing two hands together,
bowing, shaking head, wiping face, saluting, putting palms together, crossing hands in front. sneezing/coughing,
staggering, falling down, touching head, touching chest, touching back, touching neck, vomiting, fanning self.
punching/slapping other person, kicking other person, pushing other person, patting others back, pointing
to the other person, hugging, giving something to other person, touching other persons pocket, handshaking,
walking towards each other, and walking apart from each other. In the NTU-RGB+D dataset [39], each
skeleton contains the 3D coordinates of 25 body joints. The authors [39] of this dataset suggested two
different evaluation criteria, including Cross-Subject evaluation and Cross-View evaluation. For the
Cross-Subject setting, the sequences performed by 20 subjects (with IDs 1, 2, 4, 5, 8, 9, 13, 14, 15,
16, 17, 18, 19, 25, 27, 28, 31, 34, 35, and 38) are used for training and the rest sequences are used for
test. In Cross-View setting, the sequences provided by cameras 2 and 3 are used for training while
sequences from camera 1 are used for test. This setting allows to evaluate the ability to recognize
actions under multiple-viewpoints of the proposed skeleton-based representation. We do not apply
any data augmentation technique on the NTU-RGB+D [39] due to the very large-scale nature of this
dataset [39].

Figure 6. Some action classes of the NTU-RGB+D dataset [39]. Video samples have been captured
by 3 Microsoft Kinect TM v2 sensors concurrently at 30 FPS. The 3D skeletal data contains the three
dimensional locations of 25 major body joints, at each frame. Figure was reproduced from the work of
Shahroudy et al. [39] and used with permission from IEEE.

4.2. Implementation Details

For all the datasets, the proposed Enhanced-SPMF representations are computed directly from the
raw skeleton sequences without using a fixed number of frames. For computational efficiency, all the
image representations are resized to 32 × 32 pixels. The three network configurations: DenseNet
(L = 100, k = 12); DenseNet (L = 250, k = 24); and DenseNet (L = 190, k = 40) were implemented
and evaluated in Python with the support of the Keras framework using TensorFlow as back-end.
During the training stage, we use mini-batches of 32 images for all networks. The weights are
initialized as per the He initialization technique [82]. Adam optimizer [81] is used with default
parameters (i.e., β1 = 0.9 and β2 = 0.999). Additionally, we use a dynamic learning rate during
training. The initial learning rate is set to 0.01 and is decreased by a factor of 0.1 after every 50 epochs.
All networks are trained for 300 epochs from scratch.
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5. Experimental Result and Analysis

5.1. Results and Comparisons with the State-of-the-Art

Results on MSR Action3D dataset: Experimental results and comparisons of the proposed method
with the current state-of-the-art approaches on the MSR Action3D dataset [59] are summarized in
Table 4. We compare the proposed method with Bag of 3D Points [59], Depth Motion Maps [69],
Bi-LSTM [72], Lie Group Representation [23], FTP-SVM [72], Hierarchical LSTM [37], ST-LSTM Trust
Gates [40], Graph-Based Motion [36], ST-NBNN [70], ST-NBMIM [83], S-T Pyramid [84], Ensemble
TS-LSTM v2 [71] and our previous model SPMF Inception-ResNet-222 [48] using the same evaluation
protocol. The proposed DenseNets (L = 100, k = 12) and DenseNet (L = 190, k = 40) achieve average
accuracies of 98.76% and 98.94%, respectively. Meanwhile, the best recognition accuracies are obtained
by the proposed DenseNet (L = 250, k = 24) with a total average accuracy of 99.10%. This result
outperforms many previous approaches [23,36,37,40,59,69,70,72,83,84], demonstrating the superiority
of the proposed method. Figure 7 (first row) shows learning curves of the proposed DenseNets on
the AS1 subset/MSR Action3D dataset [59]. The recognition accuracy for each action class in the AS1
subset by the DenseNet (L = 250, k = 24) is provided in Figure 8 via its confusion matrix.

Results on KARD dataset: We performed a total of 9 experiments over three experiments
A, B, and C on the KARD dataset [60]. Table 5 summarizes the obtained results on this dataset.
We compute the average recognition accuracy over the three experiments and compare it with existing
techniques including Hand-crafted Features [60], Posture Feature+Multi-class SVM [85], and Key
Postures+Multi-class SVM [86]. As can be seen in Table 5, the proposed DenseNet (L = 250, k = 24) is
able to improve state-of-the-art accuracy by 9.15% over Hand-crafted Features [60], 2.78% over Posture
Feature+Multi-class SVM [85] and 0.68% over Key Postures+Multi-class SVM [86]. This result confirms
that the proposed deep learning framework trained on the Enhanced-SPMFs is able to achieve better
performance in the recognition of actions compared to hand-crafted based approaches.

Figure 7. Training curves of the proposed DenseNet (L = 250, k = 24) on the MSR Action3D [59],
KARD [60], SBU Kinect Interaction [61], and NTU-RGB+D [39] datasets. Almost all designed networks
are able to reach the optimal weights after the first 100 epochs. The symbols k and L and denote the
“growth rate” and the depth of the network, respectively.
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Table 4. Experimental results and comparison of the proposed method with state-the-art approaches
on the MSR Action3D dataset [59]. The list is ordered by recognition performance, in which results that
outperform previous works are in bold, while the best accuracies are in blue. Our previous work on
SPMF [48] are marked in red.

Method (Protocol of [59]) Year AS1 AS2 AS3 Aver.

Bag of 3D Points [59] 2010 72.90% 71.90% 71.90% 74.70%
Depth Motion Maps [69] 2016 96.20% 83.20% 92.00% 90.47%
Bi-LSTM [72] 2018 92.72% 84.93% 97.89% 91.84%
Lie Group Representation [23] 2014 95.29% 83.87% 98.22% 92.46%
FTP-SVM [72] 2018 95.87% 86.72% 100.0% 94.19%
Hierarchical LSTM [37] 2015 99.33% 94.64% 95.50% 94.49%
ST-LSTM Trust Gates [40] 2016 N/A N/A N/A 94.80%
Graph-Based Motion [36] 2016 93.60% 95.50% 95.10% 94.80%
ST-NBNN [70] 2017 91.50% 95.60% 97.30% 94.80%
ST-NBMIM [83] 2018 92.50% 95.60% 98.20% 95.30%
S-T Pyramid [84] 2015 99.10% 92.90% 96.40% 96.10%
Ensemble TS-LSTM v2 [71] 2017 95.24% 96.43% 100.0% 97.22%
SPMF Inception-ResNet-222 [48] 2018 97.54% 98.73% 99.41% 98.56%

Enhanced-SPMF DenseNet (L = 100, k = 12) (ours) 2018 98.52% 98.66% 99.09% 98.76%
Enhanced-SPMF DenseNet (L = 250, k = 24) (ours) 2018 98.83% 99.06% 99.40% 99.10%
Enhanced-SPMF DenseNet (L = 190, k = 40) (ours) 2018 98.60% 98.87% 99.36% 98.94%

Figure 8. Confusion matrix of the proposed DenseNet (L = 250, k = 24) on the MSR Action3D/AS1
dataset. Ground truth action labels are on rows and predictions by the proposed method are on
columns. We recommend the readers to use a computer and zoom in to see clearly these figures.

Table 5. Average recognition accuracies (%) over three experiments A, B, and C and comparison
with previous works on the KARD dataset [60]. The best accuracies are in blue. Results that surpass
previous works are in bold.

Method (Protocol of [60]) Year Acc. (%)

Hand-crafted Features [60] 2015 90.83%
Posture Feature+Multi-class SVM [85] 2016 97.20%
Key Postures+Multi-class SVM [86] 2016 99.30%

Enhanced-SPMF DenseNet (L = 100, k = 12) (ours) 2018 99.74%
Enhanced-SPMF DenseNet (L = 250, k = 24) (ours) 2018 99.98%
Enhanced-SPMF DenseNet (L = 190, k = 40) (ours) 2018 99.88%

Results on SBU Kinect Interaction dataset: As reported in Table 6, the proposed DenseNet (L = 250,
k = 40) achieved an accuracy of 97.86% and outperforms many existing state-of-the-art approaches
including Raw Skeleton [61], Joint Features [61], HBRNN [37], CHARM [87], Deep LSTM [41],
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Joint Features [88], ST-LSTM [40], Co-occurrence+Deep LSTM [41], STA-LSTM [89], ST-LSTM+Trust
Gates [40], ST-NBMIM [83], Clips+CNN+MTLN [90], Two-stream RNN [91], and GCA-LSTM
network [92]. Using only skeleton modality, the proposed method outperforms hand-crafted feature
based approaches such as Raw Skeleton [61], Joint Features [61] and recent state-of-the-art RNN-based
approaches [37,40,41,89,91,92]. In particular, the proposed method achieves a significant accuracy gain
of 2.96% compared to the nearest competitor GCA-LSTM network [92]. This result demonstrates that
the proposed deep learning framework is able to learn discriminative spatio–temporal features of
skeleton joints containing in the proposed motion representation for classification task.

Results on NTU-RGB+D dataset: For the NTU-RGB+D dataset [39], the best configuration
DenseNet (L = 250, k = 40) achieves an accuracy of 80.11% on the Cross-Subject evaluation and 86.82%
on the Cross-View evaluation, as summarized in Table 7. These results demonstrate the effectiveness of
the proposed representation and deep learning framework since they surpass previous state-of-the-art
techniques such as Lie Group Representation [23], Hierarchical RNN [37], Dynamic Skeletons [93],
Two-Layer P-LSTM [39], ST-LSTM Trust Gates [40], Geometric Features [74], Two-Stream RNN [91],
Enhanced Skeleton [94], Lie Group Skeleton+CNN [95], and GCA-LSTM [92]. The experimental results
have also shown that the proposed method leads to better overall action recognition performance
than our previous models including Skeleton-based ResNet [51] and SPMF Inception-ResNet-222 [48].
With a high recognition rate on the Cross-View evaluation (86.82%) where the sequences provided by
cameras 2 and 3 are used for training and sequences from camera 1 are used for test, the proposed
method shows its effectiveness for dealing with view-independent action recognition problem. Figure 7
(last row) shows the training loss and test accuracy of the DenseNet (L = 250, k = 24) on this dataset.

Table 6. Action recognition accuracies (%) and comparison with previous works on the SBU Kinect
Interaction dataset [61]. The best accuracies are in blue. Results that surpass previous works are
in bold.

Method (Protocol of [61]) Year Acc. (%)

Raw Skeleton [61] 2012 49.70%
Joint Features [61] 2012 80.30%
HBRNN [37] (reported in [91] ) 2015 80.40%
CHARM [87] 2015 83.90%
Deep LSTM [41] 2017 86.03%
Joint Features [88] 2014 86.90%
ST-LSTM [40] 2016 88.60%
Co-occurrence+Deep LSTM [41] 2018 90.41%
STA-LSTM [89] 2017 91.51%
ST-LSTM+Trust Gates [40] 2018 93.30%
ST-NBMIM [83] 2018 93.30%
Clips+CNN+MTLN [90] 2017 93.57%
CNN Kernel Feature Map [96] 2018 94.36%
Two-stream RNN [91] 2017 94.80%
GCA-LSTM network [92] 2018 94.90%

Enhanced-SPMF DenseNet (L = 100, k = 12) (ours) 2018 94.81%
Enhanced-SPMF DenseNet (L = 250, k = 24) (ours) 2018 96.67%
Enhanced-SPMF DenseNet (L = 190, k = 40) (ours) 2018 97.86%
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Table 7. Experimental results and comparison of the proposed method with previous approaches on
the NTU-RGB+D dataset [39]. The best accuracies are in blue. Results that surpass previous works are
in bold. Our previous works [48,51] are marked in red.

Method (Protocol of [39]) Year Cross-Subject Cross-View

Lie Group Representation [23] 2014 50.10% 52.80%
Hierarchical RNN [37] 2016 59.07% 63.97%
Dynamic Skeletons [93] 2015 60.20% 65.20%
Two-Layer P-LSTM [39] 2016 62.93% 70.27%
ST-LSTM Trust Gates [40] 2016 69.20% 77.70%
Skeleton-based ResNet [51] 2018 73.40% 80.40%
Geometric Features [74] 2017 70.26% 82.39%
Two-Stream RNN [91] 2017 71.30% 79.50%
Enhanced Skeleton [94] 2017 75.97% 82.56%
Lie Group Skeleton+CNN [95] 2017 75.20% 83.10%
CNN Kernel Feature Map [96] 2018 75.35% N/A
GCA-LSTM [92] 2018 76.10% 84.00%
SPMF Inception-ResNet-222 [48] 2018 78.89% 86.15%

Enhanced-SPMF DenseNet (L = 100, k = 12) (ours) 2018 79.31% 86.64%
Enhanced-SPMF DenseNet (L = 250, k = 24) (ours) 2018 80.11% 86.82%
Enhanced-SPMF DenseNet (L = 190, k = 40) (ours) 2018 79.28% 86.68%

5.2. An Ablation Study on the Proposed Enhanced-SPMF Representation

We believe that the use of the AHE algorithm [49] and the Savitzky-Golay smoothing filter [37,76]
helps the proposed representation to be more discriminative, which improves recognition accuracy.
To verify this hypothesis, we carried out an ablation study on the Enhanced-SPMF representation
provided by the SBU Kinect Interaction dataset [61]. Specifically, we trained the proposed
DenseNet (L = 250, k = 24) on both the SPMFs and Enhanced-SPMFs. During training, the same
hyper-parameters and training methodology were applied. The experimental results indicate that the
proposed deep network achieves better recognition accuracy when trained on the Enhanced-SPMFs.
As reported in Figure 9, applying the AHE algorithm [49] and and the Savitzky–Golay smoothing
filter [37,76] helps improving the accuracy by 4.09%. This result validates our hypothesis above.

(a) (b)

Figure 9. Training loss and test accuracy of the proposed DenseNet (L = 100, k = 12) on the SBU
dataset [61]. (a) shows the obtained result when trained on SPMFs, while (b) reports the obtained result
when trained on Enhanced-SPMFs. The symbols k and L denote the “growth rate” and the depth of the
network, respectively.
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5.3. Visualization of Deep Feature Maps

Different action classes have different discriminative characteristics. To better understand
the internal operation of the proposed deep networks and to study what they learned from the
skeleton-based representation, we input different Enhanced-SPMFs corresponding to different action
classes of the MSR Action3D dataset [59] to the DenseNet (L = 100, k = 12) and visualize the individual
feature maps learned by the network at the end of a dense block (intermediate layer). We observe
that the designed network is able to extract discriminative features from the Enhanced-SPMF
representations. This is expressed through the color of each learned feature map, as can be seen
in Figure 10. These discriminative features play a key role in classifying actions.

Figure 10. Visualization of feature maps learned by the proposed DenseNet (L = 100, k = 12) from
several samples of the MSR Action3D dataset [59]. Best viewed in color.

5.4. Computational Efficiency Evaluation

In this section, we take the AS1 subset of MSR Action3D dataset [59] and the DenseNet (L = 100,
k = 12) to evaluate the computational efficiency of the proposed method. Figure 11 illustrates three
main stages of the deep learning framework for learning and recognizing actions from skeleton
sequences, including an encoding process from input skeleton sequences to color images (Stage 1),
a supervised training stage (Stage 2), and an inference stage (Stage 3). The implementation is in
Python/Keras and when training on a single GeForce GTX 1080 Ti GPU, the proposed deep network
only has 6.0M parameters and it takes less than six hours to reach convergence. Latency in predicting
an action for a new skeleton sequence (including encoding it to color images, executed on a CPU) is
about 74.8× 10−3 seconds per sequence. Additionally, it should be noted that the computation of the
Enhanced-SPMFs can be implemented and optimized on a GPU for real-time applications. Please see
Table 8 for further details. This result verifies the effectiveness of the proposed learning framework in
terms of computational cost.

Figure 11. Three main stages of the proposed deep learning framework for recognizing human actions
from skeleton sequences.
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Table 8. Execution time of each stage of the proposed deep learning framework.

Stage Average Processing Time (Second/Sequence)

1 20.8× 10−3 (Intel Core i7 3.2 GHz CPU)
2 0.164 (GTX 1080 Ti GPU)
3 74.8× 10−3 (CPU + GPU time)

5.5. Limitations

The use of the Savitzky-Golay filter [76] helps reduce the effect of noise on the raw skeleton
sequences. However, the proposed approach cannot overcome the problem of missing data. In other
words, as the Enhanced-SPMF is a global representation for the whole skeleton sequence, data errors
of local fragments in the input sequences could reduce the recognition rate. Another open problem
of the proposed approach is how to scope with Online Action Recognition (OAR) task. Specifically,
how to detect and recognize human actions from unsegmented streams in a continuous manner, where
boundaries between different kinds of actions within the stream are unknown. A common solution for
OAR is the sliding window based methods [97,98]. These approaches consider the temporal coherence
within the window for prediction. We can also apply this idea to solve the current problem. E.g.,
during the online inference phase, we use a sliding window on the original skeleton sequences or on
image-coded representations (i.e., Enhanced-SPMFs) and then predicting action by pretrained deep
learning model, as we showed in Figure 11 (Stage 3). However, we understand that the performance of
this approach is sensitive to the window size. Either too large or too small window size could lead to a
significant drop in recognition performance. Another solution is to use Temporal Attention Networks
(TANs) [99–102] that incorporate temporal attention models for video-based action recognition.

6. Conclusions

In this paper, we have presented an efficient and effective deep learning framework for 3D human
action recognition from skeleton sequences. A novel motion representation, termed Enhanced-SPMF,
which captures the spatio–temporal information of skeleton movements and transforms them into
color images has been proposed. We exploited the Adaptive Histogram Equalization (AHE) technique
to enhance the local textures of color images and generate more discriminative features for learning
and classification tasks. Different Deep Convolutional Neural Networks (D-CNNs) based on the
DenseNet architecture have been designed and optimized to learn and recognize actions from the
proposed representation, in an end-to-end manner. Extensive empirical evaluations on four challenging
public datasets demonstrate the effectiveness of the proposed approach on both individual actions,
interactions, multiview and large-scale datasets. In particular, we also indicate that the proposed
method is invariant to viewpoint changes and requires low computational cost for training and
inference. We hope that this study opens up a new door to exploit the big potential of skeletal data,
which helps to address the current challenges in building real-world action recognition applications.
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Appendix A. Savitzky-Golay Smoothing Filter

Savitzky-Golay (S-G) filter is a low-pass filter based on local least-squares polynomial
approximation that is often used to smooth noisy data. The 3D skeleton joints obtained from depth
cameras can be considered as a series of equally spaced data in the time domain, applying S-G filter on
raw skeletal data helps reduce the level of noise while maintaining the 3D geometric characteristics of
the input sequences.

Considering a sequence of N = 2M + 1 input data points x[n] centered at n = 0, given by

x = [x−M, ..., x−1, x0, x1, ..., xM]T . (A1)

The N data samples of x can be fitted by a polynomial

p(n) =
N

∑
k=0

cknk. (A2)

To best fit the given data x, Savitzky and Golay [76] proposed a method of data smoothing by
finding the vector of polynomial coefficients c = [c0, c1, ..., cN ]

T that minimizes the mean-squares
approximation error

EN =
M

∑
n=−M

(
N

∑
k=0

cknk − x[n]

)2

. (A3)

To this end, one solution is to determine a set of coefficients that satisfies the partial derivative
equation is equal to zero

∂EN
∂ai

=
M

∑
n=−M

2ni

(
N

∑
k=0

cknk − x[n]

)
= 0 with i = 0, 1, ..., N. (A4)

Equation (A4) is equivalent to

N

∑
k=0

(
M

∑
n=−M

ni+k

)
ck =

M

∑
n=−M

nix[n]. (A5)

Defining a matrix A = {αn,i} as the matrix with elements

αn,i = ni (A6)

where −M ≤ n ≤ M and i = 0, 1, ..., N. The matrix A is called the design matrix for the polynomial
approximation problem. Note that, the transpose of A is AT = {αi,n} and the product matrix B = ATA
is a symmetric matrix with elements

βi,k =
M

∑
n=−M

αi,nαn,k =
M

∑
n=−M

ni+k (A7)

Therefore, Equation (A5) can be rewritten in matrix form as

B · c = AT ·A · c = AT · x. (A8)

The polynomial coefficients can be determined as

c = (AT ·A)−1 · (AT · x ). (A9)
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For example, for smoothing by a 5-point quadratic polynomial with N = 5, M = −2,−1, 0, 1, 2,
the tth filtering result, yt is given by

yt =
−3xt−2 + 12xt−1 + 17xt + 12xt+1 − 3xt+2

35
. (A10)

Equation (A10) above was used in our experiments to reduce the effect of noise on the raw
skeleton data.

Appendix B. Degradation Phenomenon in Training Very Deep Neural Networks

Very deep neural networks demonstrate to have a high performance on many visual-related
tasks [54–57]. However, they are very difficult to optimize. One of the main challenges for training
deeper networks is the vanishing and exploding gradient problems [103]. Specifically, when the
network is deep enough, the supervision signals from the output layer can be completely attenuated
or exploded on their way back towards the previous layers. Therefore, the network cannot learn the
parameters effectively. These obstacles can be solved by recent advanced techniques in deep learning
such as Normalized Initialization [104] or Batch Normalization [79]. When the deep networks start
converging, a degradation phenomenon occurs. Due to this, the training and test errors increase if more
layers are added to a deep architecture. This phenomenon is called by the degradation phenomenon.
Figure A1 shows an experimental result [56] related to this phenomenon.

(a) (b)

Figure A1. Degradation phenomenon during training D-CNNs. (a) Training error and (b) test error on
CIFAR-10 [105] with 20-layer and 56-layer CNNs reported by He et al. [56]. The deeper network has
higher error for both training and test phases. Figure was reproduced from the work of He et al. [56]
and used with permission from IEEE.

References

1. Aggarwal, J.; Ryoo, M. Human Activity Analysis: A Review. ACM Comput. Surv. 2011, 43, 16. [CrossRef]
2. Boiman, O.; Irani, M. Detecting Irregularities in Images and in Video. Int. J. Comput. Vis. 2007, 74, 17–31.

[CrossRef]
3. Lin, W.; Sun, M.T.; Poovandran, R.; Zhang, Z. Human activity recognition for video surveillance.

In Proceedings of the IEEE International Symposium on Circuits and Systems, Seattle, WA, USA,
18 May–21 August 2008.

4. Gupta, A.; Kembhavi, A.; Davis, L.S. Observing Human-Object Interactions: Using Spatial and Functional
Compatibility for Recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 1775–1789. [CrossRef]

5. Yao, B.; Fei-Fei, L. Recognizing Human-Object Interactions in Still Images by Modeling the Mutual Context
of Objects and Human Poses. IEEE Trans. Pattern Anal. Mach. Intell. 2012, 34, 1691–1703.

6. Dagli, I.; Brost, M.; Breuel, G. Action Recognition and Prediction for Driver Assistance Systems Using
Dynamic Belief Networks. In Agent Technologies, Infrastructures, Tools, and Applications for E-Services; Springer:
Berlin/Heidelberg, Germany, 2003; pp. 179–194.

http://dx.doi.org/10.1145/1922649.1922653
http://dx.doi.org/10.1007/s11263-006-0009-9
http://dx.doi.org/10.1109/TPAMI.2009.83


Sensors 2019, 19, 1932 22 of 26

7. Fridman, L.; Brown, D.E.; Glazer, M.; Angell, W.; Dodd, S.; Jenik, B.; Terwilliger, J.; Kindelsberger, J.; Ding, L.;
Seaman, S.; et al. MIT Autonomous Vehicle Technology Study: Large-Scale Deep Learning Based Analysis
of Driver Behavior and Interaction with Automation. arXiv 2017, arXiv:1711.06976.

8. Poppe, R. A survey on vision-based human action recognition. Image Visi. Comput. 2010, 28, 976–990.
[CrossRef]

9. Weinland, D.; Ronfard, R.; Boyer, E. A survey of vision-based methods for action representation, segmentation
and recognition. Comput. Vis. Image Underst. 2011, 115, 224–241. [CrossRef]

10. Lowe, D.G. Object recognition from local scale-invariant features. In Proceedings of the Seventh IEEE
International Conference on Computer Vision, Kerkyra, Greece, 20–27 September 1999; Volume 2, pp. 1150–1157.

11. Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110.
[CrossRef]

12. Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA,
20–25 June 2005; Volume 1, pp. 886–893.

13. Laptev, I.; Marszalek, M.; Schmid, C.; Rozenfeld, B. Learning realistic human actions from movies.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK,
USA, 23–28 June 2008; pp. 1–8.

14. Klaeser, A.; Marszalek, M.; Schmid, C. A Spatio-Temporal Descriptor Based on 3D-Gradients. In Proceedings
of the the British Machine Vision Conference, Leeds, UK, 1–4 September 2008; pp. 1–10.

15. Dollar, P.; Rabaud, V.; Cottrell, G.; Belongie, S. Behavior recognition via sparse spatio-temporal features.
In Proceedings of the IEEE International Workshop on Visual Surveillance and Performance Evaluation of
Tracking and Surveillance, Breckenridge, CO, USA, 7 January 2005; pp. 65–72.

16. Bay, H.; Tuytelaars, T.; Van Gool, L. SURF: Speeded Up Robust Features. In Proceedings of the European
Conference on Computer Vision; Springer: Berlin/Heidelberg, Germany, 2006; pp. 404–417.

17. Willems, G.; Tuytelaars, T.; Van Gool, L. An Efficient Dense and Scale-Invariant Spatio-Temporal Interest
Point Detector. In Proceedings of the European Conference on Computer Vision; Springer: Berlin/Heidelberg,
Germany, 2008; pp. 650–663.

18. Zhang, Z. Microsoft Kinect Sensor and Its Effect. IEEE MultiMed. 2012, 19, 4–10. [CrossRef]
19. Wang, J.; Liu, Z.; Wu, Y.; Yuan, J. Mining actionlet ensemble for action recognition with depth cameras.

In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA,
16–21 June 2012; pp. 1290–1297.

20. Oreifej, O.; Liu, Z. HON4D: Histogram of Oriented 4D Normals for Activity Recognition from Depth
Sequences. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Portland,
OR, USA, 23–28 June 2013; pp. 716–723.

21. Xia, L.; Aggarwal, J.K. Spatio-temporal Depth Cuboid Similarity Feature for Activity Recognition Using
Depth Camera. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Portland, OR, USA, 23–28 June 2013; pp. 2834–2841.

22. Rahmani, H.; Mahmood, A.; Huynh, D.Q.; Mian, A. HOPC: Histogram of Oriented Principal Components of
3D Pointclouds for Action Recognition. In Proceedings of the European Conference on Computer Vision; Springer
International Publishing: Cham, Switzerland, 2014; pp. 742–757.

23. Vemulapalli, R.; Arrate, F.; Chellappa, R. Human Action Recognition by Representing 3D Skeletons as
Points in a Lie Group. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Columbus, OH, USA, 24–27 June 2014; pp. 588–595.

24. Wang, J.; Liu, Z.; Wu, Y.; Yuan, J. Learning Actionlet Ensemble for 3D Human Action Recognition. IEEE Trans.
Pattern Anal. Mach. Intell. 2014, 36, 914–927. [CrossRef] [PubMed]

25. Yang, X.; Tian, Y. Super Normal Vector for Human Activity Recognition with Depth Cameras. IEEE Trans.
Pattern Anal. Mach. Intell. 2017, 39, 1028–1039. [CrossRef]

26. Shotton, J.; Fitzgibbon, A.; Cook, M.; Sharp, T.; Finocchio, M.; Moore, R.; Kipman, A.; Blake, A. Real-time
human pose recognition in parts from single depth images. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Colorado Springs, CO, USA, 20–25 June 2011; pp. 1297–1304.

27. Ye, M.; Shen, Y.; Du, C.; Pan, Z.; Yang, R. Real-Time Simultaneous Pose and Shape Estimation for Articulated
Objects Using a Single Depth Camera. IEEE Trans. Pattern Anal. Mach. Intell. 2016, 38, 1517–1532. [CrossRef]

http://dx.doi.org/10.1016/j.imavis.2009.11.014
http://dx.doi.org/10.1016/j.cviu.2010.10.002
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94
http://dx.doi.org/10.1109/MMUL.2012.24
http://dx.doi.org/10.1109/TPAMI.2013.198
http://www.ncbi.nlm.nih.gov/pubmed/26353226
http://dx.doi.org/10.1109/TPAMI.2016.2565479
http://dx.doi.org/10.1109/TPAMI.2016.2557783


Sensors 2019, 19, 1932 23 of 26

28. Gu, J.; Ding, X.; Wang, S.; Wu, Y. Action and Gait Recognition From Recovered 3-D Human Joints. IEEE Trans.
Syst. Man Cybern. Part B 2010, 40, 1021–1033.

29. Johansson, G. Visual motion perception. Sci. Am. 1975, 232, 76–89. [CrossRef]
30. Zhang, J.; Li, W.; Ogunbona, P.O.; Wang, P.; Tang, C. RGB-D-based action recognition datasets: A survey.

Pattern Recognit. 2016, 60, 86–105. [CrossRef]
31. Xia, L.; Chen, C.; Aggarwal, J.K. View invariant human action recognition using histograms of 3D joints.

In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Workshops, Providence, RI, USA, 16–21 June 2012; pp. 20–27.

32. Chaudhry, R.; Ofli, F.; Kurillo, G.; Bajcsy, R.; Vidal, R. Bio-inspired Dynamic 3D Discriminative Skeletal
Features for Human Action Recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, Portland, OR, USA, 23–28 June 2013; pp. 471–478.

33. Ding, W.; Liu, K.; Fu, X.; Cheng, F. Profile HMMs for skeleton-based human action recognition. Signal Process.
Image Commun. 2016, 42, 109–119. [CrossRef]

34. Han, L.; Wu, X.; Liang, W.; Hou, G.; Jia, Y. Discriminative human action recognition in the learned hierarchical
manifold space. Image Vis. Comput. 2010, 28, 836–849. [CrossRef]

35. Luo, J.; Wang, W.; Qi, H. Group Sparsity and Geometry Constrained Dictionary Learning for Action
Recognition from Depth Maps. In Proceedings of the IEEE International Conference on Computer Vision,
Portland, OR, USA, 23–28 June 2013; pp. 1809–1816.

36. Wang, P.; Yuan, C.; Hu, W.; Li, B.; Zhang, Y. Graph Based Skeleton Motion Representation and Similarity
Measurement for Action Recognition. In Proceedings of the European Conference on Computer Vision; Springer
International Publishing: Cham, Switzerland, 2016; pp. 370–385.

37. Du, Y.; Wang, W.; Wang, L. Hierarchical recurrent neural network for skeleton based action recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA,
7–12 June 2015; pp. 1110–1118.

38. Veeriah, V.; Zhuang, N.; Qi, G. Differential Recurrent Neural Networks for Action Recognition.
In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 13–16 December
2015; pp. 4041–4049.

39. Shahroudy, A.; Liu, J.; Ng, T.; Wang, G. NTU RGB+D: A Large Scale Dataset for 3D Human Activity Analysis.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA,
27–30 June 2016; pp. 1010–1019.

40. Liu, J.; Shahroudy, A.; Xu, D.; Wang, G. Spatio-Temporal LSTM with Trust Gates for 3D Human Action
Recognition. In Proceedings of the European Conference on Computer Vision; Springer International Publishing:
Cham, Switzerland, 2016; pp. 816–833.

41. Zhu, W.; Lan, C.; Xing, J.; Zeng, W.; Li, Y.; Shen, L.; Xie, X. Co-occurrence Feature Learning for Skeleton
Based Action Recognition Using Regularized Deep LSTM Networks. In Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February 2016; pp. 3697–3703.

42. Liu, J.; Wang, G.; Hu, P.; Duan, L.; Kot, A.C. Global Context-Aware Attention LSTM Networks for 3D Action
Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu,
HI, USA, 21–26 July 2017; pp. 3671–3680.

43. Lv, F.; Nevatia, R. Recognition and Segmentation of 3-D Human Action Using HMM and Multi-class
AdaBoost. In Proceedings of the European Conference on Computer Vision; Springer: Berlin/Heidelberg,
Germany, 2006; pp. 359–372.

44. Schuster, M.; Paliwal, K. Bidirectional Recurrent Neural Networks. Trans. Signal Process. 1997, 45, 2673–2681.
[CrossRef]

45. Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]
46. Graves, A.; Fernández, S.; Schmidhuber, J. Bidirectional LSTM Networks for Improved Phoneme

Classification and Recognition. In Artificial Neural Networks: Formal Models and Their Applications; Springer:
Berlin/Heidelberg, Germany, 2005; pp. 799–804.

47. Sainath, T.N.; Vinyals, O.; Senior, A.; Sak, H. Convolutional, Long Short-Term Memory, fully connected
Deep Neural Networks. In Proceedings of the IEEE International Conference on Acoustics, Speech and
Signal Processing, Brisbane, Australia, 19–24 April 2015; pp. 4580–4584.

http://dx.doi.org/10.1038/scientificamerican0675-76
http://dx.doi.org/10.1016/j.patcog.2016.05.019
http://dx.doi.org/10.1016/j.image.2016.01.010
http://dx.doi.org/10.1016/j.imavis.2009.08.003
http://dx.doi.org/10.1109/78.650093
http://dx.doi.org/10.1162/neco.1997.9.8.1735


Sensors 2019, 19, 1932 24 of 26

48. Pham, H.; Khoudour, L.; Crouzil, A.; Zegers, P.; Velastin, S.A. Skeletal Movement to Color Map: A Novel
Representation for 3D Action Recognition with Inception Residual Networks. In Proceedings of the IEEE
International Conference on Image Processing (ICIP), Athens, Greece, 7–10 October 2018; pp. 3483–3487.

49. Pizer, S.M.; Amburn, E.P.; Austin, J.D.; Cromartie, R.; Geselowitz, A.; Greer, T.; ter Haar Romeny, B.;
Zimmerman, J.B.; Zuiderveld, K. Adaptive histogram equalization and its variations. Comput. Vis. Graph.
Image Process. 1987, 39, 355–368. [CrossRef]

50. Huang, G.; Liu, Z.; van der Maaten, L.; Weinberger, K.Q. Densely Connected Convolutional Networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017; pp. 2261–2269.

51. Pham, H.; Khoudour, L.; Crouzil, A.; Zegers, P.; Velastin, S.A. Learning to recognise 3D human action
from a new skeleton-based representation using deep convolutional neural networks. IET Comput. Visi.
2019, 13, 319–328. [CrossRef]

52. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural
Networks. Commun. ACM 2017, 60, 84–90. [CrossRef]

53. Karpathy, A.; Toderici, G.; Shetty, S.; Leung, T.; Sukthankar, R.; Fei-Fei, L. Large-Scale Video Classification
with Convolutional Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, Columbus, OH, USA, 24–27 June 2014; pp. 1725–1732.

54. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014,
arXiv:1409.1556.

55. Szegedy, C.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper
with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Boston, MA, USA, 7–12 June 2015; pp. 1–9.

56. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

57. Telgarsky, M. Benefits of depth in neural networks. arXiv 2016, arXiv:1602.04485.
58. He, K.; Sun, J. Convolutional neural networks at constrained time cost. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5353–5360.
59. Li, W.; Zhang, Z.; Liu, Z. Action recognition based on a bag of 3D points. In Proceedings of the IEEE

Computer Society Conference on Computer Vision and Pattern Recognition, San Francisco, CA, USA,
13–18 June 2010; pp. 9–14.

60. Gaglio, S.; Re, G.L.; Morana, M. Human Activity Recognition Process Using 3-D Posture Data. IEEE Trans.
Hum.-Mach. Syst. 2015, 45, 586–597. [CrossRef]

61. Yun, K.; Honorio, J.; Chattopadhyay, D.; Berg, T.L.; Samaras, D. Two-person interaction detection using
body-pose features and multiple instance learning. In Proceedings of the IEEE Computer Society Conference
on Computer Vision and Pattern Recognition Workshops, Providence, RI, USA, 16–21 June 2012; pp. 28–35.

62. Han, F.; Reily, B.; Hoff, W.; Zhang, H. Space-time representation of people based on 3D skeletal data:
A review. Comput. Vis. Image Underst. 2017, 158, 85–105. [CrossRef]

63. Berndt, D.J.; Clifford, J. Using Dynamic Time Warping to Find Patterns in Time Series. In Proceedings of the
3rd International Conference on Knowledge Discovery and Data Mining; AAAI Press: Seattle, WA, USA, 1994;
pp. 359–370.

64. Eddy, S.R. Hidden Markov models. Curr. Opin. Struct. Biol. 1996, 6, 361–365. [CrossRef]
65. Kirk, A.G.; O’Brien, J.F.; Forsyth, D.A. Skeletal parameter estimation from optical motion capture data.

In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
San Diego, CA, USA, 20–25 June 2005; Volume 2, p. 1185.

66. Cao, Z.; Simon, T.; Wei, S.; Sheikh, Y. Realtime Multi-person 2D Pose Estimation Using Part Affinity Fields.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA,
21–26 July 2017; pp. 1302–1310.

67. Bearman, A.; Dong, C. Human Pose Estimation and Activity Classification Using Convolutional Neural
Networks. CS231n Course Project Reports. 2015. Available online: http://www.catherinedong.com/pdfs/
231n-paper.pdf (accessed on 22 April 2019).

68. Graves, A. Supervised Sequence Labelling with Recurrent Neural Networks; Studies in Computational Intelligence;
Springer: Berlin/Heidelberg, Germany, 2012; Volume 385.

http://dx.doi.org/10.1016/S0734-189X(87)80186-X
http://dx.doi.org/10.1049/iet-cvi.2018.5014
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/THMS.2014.2377111
http://dx.doi.org/10.1016/j.cviu.2017.01.011
http://dx.doi.org/10.1016/S0959-440X(96)80056-X
http://www.catherinedong.com/pdfs/231n-paper.pdf
http://www.catherinedong.com/pdfs/231n-paper.pdf


Sensors 2019, 19, 1932 25 of 26

69. Chen, C.; Liu, K.; Kehtarnavaz, N. Real-time Human Action Recognition Based on Depth Motion Maps.
J. Real-Time Image Process. 2016, 12, 155–163. [CrossRef]

70. Weng, J.; Weng, C.; Yuan, J. Spatio-Temporal Naive-Bayes Nearest-Neighbor (ST-NBNN) for Skeleton-Based
Action Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, USA, 21–26 July 2017; pp. 445–454.

71. Lee, I.; Kim, D.; Kang, S.; Lee, S. Ensemble Deep Learning for Skeleton-Based Action Recognition Using
Temporal Sliding LSTM Networks. In Proceedings of the IEEE International Conference on Computer Vision,
Venice, Italy, 22–29 October 2017; pp. 1012–1020.

72. Tanfous, A.B.; Drira, H.; Amor, B.B. Coding Kendall’s Shape Trajectories for 3D Action Recognition.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT,
USA, 19–21 June 2018; pp. 2840–2849.

73. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [CrossRef]
74. Zhang, S.; Liu, X.; Xiao, J. On Geometric Features for Skeleton-Based Action Recognition Using Multilayer

LSTM Networks. In Proceedings of the IEEE Winter Conference on Applications of Computer Vision,
Santa Rosa, CA, USA, 24–31 March 2017; pp. 148–157.

75. Eitel, A.; Springenberg, J.T.; Spinello, L.; Riedmiller, M.; Burgard, W. Multimodal deep learning for robust
RGB-D object recognition. In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots
and Systems, Hamburg, Germany, 28 September–2 Octorber 2015; pp. 681–687.

76. Savitzky, A.; Golay, M.J. Smoothing and differentiation of data by simplified least squares procedures.
Anal. Chem. 1964, 36, 1627–1639. [CrossRef]

77. Glorot, X.; Bordes, A.; Bengio, Y. Deep Sparse Rectifier Neural Networks. In Proceedings of the Fourteenth
International Conference on Artificial Intelligence and Statistics, Ft. Lauderdale, FL, USA, 11–13 April 2011;
Volume 15, pp. 315–323.

78. Lecun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition.
Proc. IEEE 1998, 86, 2278–2324. [CrossRef]

79. Ioffe, S.; Szegedy, C. Batch Normalization: Accelerating Deep Network Training by Reducing Internal
Covariate Shift. In Proceedings of the 32th International Conference on International Conference on Machine
Learning, Lille, France, 6–11 July 2015; pp. 448–456.

80. Clevert, D.A.; Unterthiner, T.; Hochreiter, S. Fast and accurate deep network learning by Exponential Linear
Units (ELUs). arXiv 2015, arXiv:1511.07289.

81. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
82. He, K.; Zhang, X.; Ren, S.; Sun, J. Delving Deep into Rectifiers: Surpassing Human-Level Performance on

ImageNet Classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,
Chile, 13–16 December 2015; pp. 1026–1034.

83. Weng, J.; Weng, C.; Yuan, J.; Liu, Z. Discriminative Spatio-Temporal Pattern Discovery for 3D Action
Recognition. IEEE Trans. Circuits Syst. Video Technol. 2019, 29, 1077–1089. [CrossRef]

84. Xu, H.; Chen, E.; Liang, C.; Qi, L.; Guan, L. Spatio-Temporal Pyramid Model based on depth maps for action
recognition. In Proceedings of the IEEE 17th International Workshop on Multimedia Signal Processing,
Xiamen, China, 19–21 October 2015; pp. 1–6.

85. Cippitelli, E.; Gasparrini, S.; Gambi, E.; Spinsante, S. A human activity recognition system using skeleton
data from RGB-D sensors. Comput. Intell. Neurosci. 2016, 2016. [CrossRef]

86. Ling, J.; Tian, L.; Li, C. 3D Human Activity Recognition Using Skeletal Data from RGB-D Sensors. In Advances
in Visual Computing; Springer International Publishing: Cham, Switzerland, 2016; pp. 133–142.

87. Li, W.; Wen, L.; Chuah, M.C.; Lyu, S. Category-Blind Human Action Recognition: A Practical Recognition
System. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile,
13–16 December 2015; pp. 4444–4452.

88. Ji, Y.; Ye, G.; Cheng, H. Interactive body part contrast mining for human interaction recognition.
In Proceedings of the IEEE International Conference on Multimedia and Expo Workshops, Chengdu, China,
14–18 July 2014; pp. 1–6.

89. Song, S.; Lan, C.; Xing, J.; Zeng, W.; Liu, J. An end-to-end spatio-temporal attention model for human
action recognition from skeleton data. In Proceedings of the AAAI Conference on Artificial Intelligence,
San Francisco, CA, USA, 4–9 February 2017; Volume 1, pp. 4263–4270.

http://dx.doi.org/10.1007/s11554-013-0370-1
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1021/ac60214a047
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1109/TCSVT.2018.2818151
http://dx.doi.org/10.1155/2016/4351435


Sensors 2019, 19, 1932 26 of 26

90. Ke, Q.; Bennamoun, M.; An, S.; Sohel, F.; Boussaid, F. A New Representation of Skeleton Sequences for 3D
Action Recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
Honolulu, HI, USA, 21–26 July 2017; pp. 4570–4579.

91. Wang, H.; Wang, L. Modeling Temporal Dynamics and Spatial Configurations of Actions Using Two-Stream
Recurrent Neural Networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 3633–3642.

92. Liu, J.; Wang, G.; Duan, L.; Abdiyeva, K.; Kot, A.C. Skeleton-Based Human Action Recognition with Global
Context-Aware Attention LSTM Networks. IEEE Trans. Image Process. 2018, 27, 1586–1599. [CrossRef]
[PubMed]

93. Hu, J.; Zheng, W.; Lai, J.; Zhang, J. Jointly Learning Heterogeneous Features for RGB-D Activity Recognition.
IEEE Trans. Pattern Anal. Mach. Intell. 2017, 39, 2186–2200. [CrossRef] [PubMed]

94. Liu, M.; Liu, H.; Chen, C. Enhanced skeleton visualization for view invariant human action recognition.
Pattern Recognit. 2017, 68, 346–362. [CrossRef]

95. Rahmani, H.; Bennamoun, M. Learning Action Recognition Model from Depth and Skeleton Videos.
In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017;
pp. 5833–5842.

96. Tas, Y.; Koniusz, P. CNN-based Action Recognition and Supervised Domain Adaptation on 3D Body
Skeletons via Kernel Feature Maps. In Proceedings of the British Machine Vision Conference 2018, Newcastle,
UK, 3–6 September 2018; p. 158.

97. Kulkarni, K.; Evangelidis, G.; Cech, J.; Horaud, R. Continuous Action Recognition Based on Sequence
Alignment. Int. J. Comput. Vis. 2015, 112, 90–114. [CrossRef]

98. Kviatkovsky, I.; Rivlin, E.; Shimshoni, I. Online action recognition using covariance of shape and motion.
Comput. Vis. Image Underst. 2014, 129, 15–26. [CrossRef]

99. Mnih, V.; Heess, N.; Graves, A.; Kavukcuoglu, K. Recurrent Models of Visual Attention. In Proceedings
of the 27th International Conference on Neural Information Processing Systems, Montreal, QC, Canada,
8–13 December 2014; pp. 2204–2212.

100. Xu, K.; Ba, J.L.; Kiros, R.; Cho, K.; Courville, A.; Salakhutdinov, R.; Zemel, R.S.; Bengio, Y. Show, Attend
and Tell: Neural Image Caption Generation with Visual Attention. In Proceedings of the 32th International
Conference on International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 2048–2057.

101. Luong, M.T.; Pham, H.; Manning, C.D. Effective approaches to attention-based neural machine translation.
arXiv 2015, arXiv:1508.04025.

102. Zang, J.; Wang, L.; Liu, Z.; Zhang, Q.; Hua, G.; Zheng, N. Attention-Based Temporal Weighted Convolutional
Neural Network for Action Recognition. In Artificial Intelligence Applications and Innovations; Springer
International Publishing: Cham, Switzerland, 2018; pp. 97–108.

103. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks.
In Proceedings of the International Conference on Artificial Intelligence and Statistics (AISTATS), Sardinia,
Italy, 13–15 May 2010; pp. 249–256.

104. LeCun, Y.; Bottou, L.; Orr, G.B.; Müller, K.R. Efficient backprop. In Neural Networks: Tricks of the Trade;
Springer: Berlin/Heidelberg, Germany, 1998; pp. 9–50.

105. Krizhevsky, A.; Hinton, G. Learning Multiple Layers of Features from Tiny Images; Technical Report; University
of Toronto: Toronto, ON, Canada, 2009.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1109/TIP.2017.2785279
http://www.ncbi.nlm.nih.gov/pubmed/29324413
http://dx.doi.org/10.1109/TPAMI.2016.2640292
http://www.ncbi.nlm.nih.gov/pubmed/28026749
http://dx.doi.org/10.1016/j.patcog.2017.02.030
http://dx.doi.org/10.1007/s11263-014-0758-9
http://dx.doi.org/10.1016/j.cviu.2014.08.001
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Hand-Crafted Approaches for Skeleton-Based Human Action Recognition
	Deep Learning Approaches for Skeleton-Based Human Action Recognition

	Method
	SPMF: Building Action Map from Skeletal Data
	Pose Features (PFs) Computation
	Motion Features (MFs) Computation
	Building Global Action Map from PFs and MFs

	Enhanced-SPMF: Building Enhanced Action Map
	Deep Learning Model
	Densely Connected Convolutional Networks
	Network Design


	Experiments
	Datasets and Settings
	Implementation Details

	Experimental Result and Analysis 
	Results and Comparisons with the State-of-the-Art
	An Ablation Study on the Proposed Enhanced-SPMF Representation
	Visualization of Deep Feature Maps
	Computational Efficiency Evaluation
	Limitations

	Conclusions
	Savitzky-Golay Smoothing Filter
	Degradation Phenomenon in Training Very Deep Neural Networks
	References

