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Abstract  
Cerebral ischemia activates an endogenous repair program that induces plastic changes in neurons. In this study, we investigated the 
effects of environmental enrichment on spatial learning and memory as well as on synaptic remodeling in a mouse model of chronic 
cerebral ischemia, produced by subjecting adult male C57BL/6 mice to permanent left middle cerebral artery occlusion. Three days post-
operatively, mice were randomly assigned to the environmental enrichment and standard housing groups. Mice in the standard housing 
group were housed and fed a standard diet. Mice in the environmental enrichment group were housed in a cage with various toys and 
fed a standard diet. Then, 28 days postoperatively, spatial learning and memory were tested using the Morris water maze. The expression 
levels of growth-associated protein 43, synaptophysin and postsynaptic density protein 95 in the hippocampus were analyzed by western 
blot assay. The number of synapses was evaluated by electron microscopy. In the water maze test, mice in the environmental enrichment 
group had a shorter escape latency, traveled markedly longer distances, spent more time in the correct quadrant (northeast zone), and 
had a higher frequency of crossings compared with the standard housing group. The expression levels of growth-associated protein 43, 
synaptophysin and postsynaptic density protein 95 were substantially upregulated in the hippocampus in the environmental enrichment 
group compared with the standard housing group. Furthermore, electron microscopy revealed that environmental enrichment increased 
the number of synapses in the hippocampal CA1 region. Collectively, these findings suggest that environmental enrichment ameliorates 
the spatial learning and memory impairment induced by permanent middle cerebral artery occlusion. Environmental enrichment in mice 
with cerebral ischemia likely promotes cognitive recovery by inducing plastic changes in synapses.
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Graphical Abstract   

Environmental enrichment (EE) intervention promotes synaptic plasticity by upregulating growth-
associated protein 43 (GAP-43), synaptophysin (SYN), and postsynaptic density protein 95 (PSD-95), and 
increases the number of synapses in the hippocampus

Introduction 
Cerebral infarction is one of the most common debilitating 
diseases worldwide. The neuronal death in the infarcted 
region causes permanent neurologic deficits and significant 
disability (Go et al., 2014). Spontaneous functional recovery 
after cerebral ischemia has been shown to be related to brain 
plasticity and reorganization (Kreisel et al., 2006). Restoring 
neuronal function in the ischemic penumbra by activating 
endogenous repair mechanisms that induce neuronal plas-

ticity and reorganization is considered a promising thera-
peutic strategy for treating ischemic injury. Recent studies 
suggest that activating endogenous repair mechanisms, as 
opposed to just reducing the area of the cerebral infarction, 
may lead to improved recovery of body functions post stroke 
in experimental animals (Chen et al., 2005; Cui et al., 2013). 
Understanding the underlying mechanisms of endogenous 
repair is important for developing new treatment strategies 
to improve functional outcomes.
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Previous studies have demonstrated that brain ischemia 
can lead to learning and memory impairment (Calabresi et 
al., 2003; Chen et al., 2015; Gutierrez-Vargas et al., 2015). En-
vironmental enrichment involves providing complex toys to 
stimulate mice with cerebral ischemic damage, increasing so-
cial interaction, and physical exercise (Ohline and Abraham, 
2018; Zhang et al., 2018). The environmental enrichment par-
adigm has been shown to improve functional outcomes after 
focal cerebral ischemia (He et al., 2017; Sakalem et al., 2017).

The ability to adapt to a changing environment is one of 
the most important properties of the central nervous sys-
tem (Pekna et al., 2012). In cerebral ischemic injury, the 
disruption of synaptic function is a major cause of memory 
impairment (Stuart et al., 2017; Djurisic et al., 2018; Maz-
zocchetti et al., 2018). Various medicines and other thera-
peutic strategies have been used to target the molecules and 
signaling pathways involved in synaptic remodeling (Zheng 
et al., 2017, 2018), in an effort to ameliorate symptoms. Nu-
merous studies have focused on the effects of environmental 
enrichment on angiogenesis and nerve regeneration (Chen 
et al., 2017; Wu et al., 2018). Environmental enrichment im-
proves angiogenesis, in part, by increasing the levels of CD31 
and vascular endothelial growth factor, two specific markers 
of angiogenesis (Yu et al., 2014; Shilpa et al., 2017). Studies on 
the mechanisms underlying the effects of environmental en-
richment on nerve regeneration have mainly focused on neu-
rotrophic signaling molecules (Hirata et al., 2011; Paban et 
al., 2011) or neuronal differentiation (Matsumori et al., 2006). 
Environmental enrichment upregulates the expression of 
genes such as brain-derived neurotrophic factor and a subset 
of genes involved in signal transduction (Hirata et al., 2011; 
Paban et al., 2011). The effects of environmental enrichment 
on neurogenesis and synaptic plasticity have been reviewed 
previously (Nithianantharajah and Hannan, 2006).

Growth-associated protein 43 (GAP-43) is an important 
mediator of structural plasticity of axonal terminals, and it 
has been suggested to play a vital role in synaptic plasticity 
and synaptogenesis (Grasselli and Strata, 2013; Hou and  
Kang, 2016; Holahan, 2017). Several studies have shown that 
mice lacking one or both copies of the Gap43 gene exhibit 
defects in learning and memory (Rekart et al., 2005; Holah-
an et al., 2010).

Focal cerebral ischemia induces neuronal death and syn-
aptic dysfunction in experimental cerebral ischemic models, 
resulting in cognitive decline (Li et al., 2013). In the present 
study, we investigated the effects of environmental enrich-
ment on synaptic plasticity and functional outcomes in the 
mouse model of permanent middle cerebral artery occlu-
sion (pMCAO). Synaptophysin (SYN), postsynaptic density 
protein 95 (PSD-95) and GAP-43 proteins are important 
markers of synaptic plasticity and synaptogenesis (Hirata et 
al., 2011; Pekna and Nilsson, 2012; Johnson et al., 2013; Shil-
pa et al., 2017). To evaluate synaptic plasticity, we examined 
the expression of the presynaptic marker SYN (Scheff et al., 
2015) and PSD-95 (Li et al., 2009), as well as GAP-43, a rep-
resentative marker of axonal terminal regeneration (Grasselli 
and Strata, 2013), using western blot assay. We examined 

the number of synapses in the hippocampal CA1 region by 
transmission electron microscopy. Furthermore, we evaluat-
ed spatial memory using the Morris water maze (MWM), as 
an index of function outcome.
  
Materials and Methods
Animals
Because estrogen has a protective effect following brain 
injury, only male mice were used in this study. A total of 
60 clean male C57BL/6 mice, 8–12 weeks old and weighing 
25–28 g, were provided by Jie Si Jie Lab Animal Ltd., Shang-
hai, China. The experimental protocols were approved by 
the Institutional Animal Care and Use Committee of Fudan 
University, China (approval No. 20160858A232) on Febru-
ary 24, 2016.

The mice were housed at 20°C, 45–50% humidity, under a 
12-hour dark/light cycle (lighting from 8:00 to 20:00), with 
water and chow available ad libitum. Of the 60 mice, 16 were 
used as the sham group, and the remaining 44 mice were 
subjected to the pMCAO procedure. Of these 44 mice, five 
died, while the surgery failed in another seven. The remain-
ing 32 mice were randomly divided into the environmental 
enrichment and standard housing groups. A diagram of the 
experimental design is shown in Figure 1.

pMCAO procedure
Before pMCAO surgery, each mouse was deeply anesthetized 
with 5% isoflurane, and maintained at 2% during surgery. pM-
CAO on the left side was performed as previously described 
(Doyle and Buckwalter, 2014). Briefly, a ventral midline in-
cision was made in the neck, and the left common carotid 
artery was isolated and ligated with a 6-0 silk suture. Next, the 
internal and external carotid arteries were ligated with 6-0 silk 
sutures. A 4-0 surgical nylon monofilament with a silicone 

A

B

Figure 1 Study design.
All mice were adapted to their environment for 7 d, and then the pM-
CAO operation was performed. (A, B) Three days after the operation, 
mice in the EE group were exposed to EE for 28 d (n = 8), while mice in 
the standard housing group were maintained in standard (non-enriched) 
housing (n = 8). Mice in the sham group (n = 8) were also maintained 
in standard housing. Then, the Morris water maze (MWM) test (A) and 
histological examination (B) were performed. pMCAO: Permanent mid-
dle cerebral artery occlusion; EE: environmental enrichment; d: day(s).
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tip was inserted into the internal carotid artery through an 
incision made in the proximal common carotid artery. The 
filament was advanced approximately 6.5 cm beyond the bi-
furcation of the internal carotid and external carotid arteries. 
An electric heating plate was used to maintain the temperature 
of the operating table at 36.5–37.5°C throughout the entire 
procedure. The mouse was returned to its cage after recovery 
from anesthesia. All sham-operated mice received the same 
procedure, but without artery occlusion.

Monitoring cerebral blood flow using a laser Doppler 
imaging system
To ensure that the ischemic insult was uniform among all 
experimental animals, cerebral blood flow was measured 
with a laser Doppler perfusion and temperature monitor 
(moorVMS-LDF2, Moor Instruments, Devon, UK) im-
mediately after the filament was advanced into the middle 
cerebral artery. Briefly, the skull was exposed, and whole 
brain scans were conducted using the blood flow monitor in 
each cerebral hemisphere. Digital images were consecutively 
acquired, and the average instantaneous blood flow was cal-
culated using LDF2 software (Moor Instruments). Cerebral 
blood flow decreased to 30–35% and remained relatively 
stable (Figure 2). Otherwise, the filament was advanced fur-
ther into the MCA until cerebral blood flow decreased to the 
required target level.

Animal groups and environmental enrichment protocol
Three days later, mice were scored for their performance 
on the beam walk as previously described (Watanabe et al., 
2004). Each mouse was placed on a beam (1.5 cm wide, 60 
cm long) for 60 seconds. The mouse was then assigned a 
score between 0 and 6, as follows: good beam balance and 
walking freely = 0; grasping side of the beam with contra-
lateral two paws = 1; grasped the beam, but with one limb 
falling off = 2; grasped the beam, but with two limbs falling 
off = 3; falling off the beam within 40–60 seconds = 4; falling 
off within 20–40 seconds = 5; unable to stay on the beam = 
6. Only mice with a score of 2–4 were considered to success-
fully model cerebral ischemic injury and were included in 
the present study. These pMCAO mice were then randomly 
assigned to the standard housing (n = 8) and environmental 
enrichment (n = 8) groups. The third group consisted of sh-
am-operated mice given standard housing (sham, n = 8).

In the environmental enrichment group, the home cage 
was 65 cm wide × 75 cm long × 25 cm high, and contained 
climbing ladders, plastic tubes and tunnels, running wheels, 
and small boxes (Figure 3A). Environmental enrichment also 
provided enhanced social stimulation because the mice were 
group-housed (10 mice; eight mice from the environmental 
enrichment group and two normal mice). The objects were 
changed every 3 days to maintain environmental novelty. 
Standard housing mice were housed in groups of four in 
standard accommodation (21 cm wide × 27 cm long × 16 cm 
high), with no objects (Figure 3B). The sham-operated mice 
were also housed in standard accommodation. During en-
richment, chow and water were available ab libitum. The mice 

in the environmental enrichment group were maintained in 
the environmental enrichment cage for 4 weeks.

MWM test
After environmental enrichment, mice were given the 
MWM test. The apparatus was a circular pool with a di-
ameter of 150 cm filled with clear water at a temperature 
of 25 ± 1°C (Stoelting Co., Wood Dale, IL, USA). The pool 
had four equal quadrants; southwest, northwest, northeast 
and southeast. A transparent platform (diameter 8 cm) was 
positioned 1.5 cm below the water surface. The mice (n = 
8 per group) were trained to find a hidden platform in the 
southwest quadrant that permitted escape from swimming, 
as previously described (Vorhees and Williams, 2006), but 
with some modifications. Briefly, the mice were placed in-
dividually into the pool in a random location to ensure they 
could not use visual cues on the wall of the pool. The mice 
were allowed 60 seconds to locate the submerged platform, 
and if found, were allowed to stay there for 15 seconds. If a 
mouse failed to locate the platform within 60 seconds, the 
researcher guided the mouse to the platform and allowed it 
to remain there for 15 seconds. Each mouse underwent four 
trials daily for 5 days. The mean escape latency per day was 
recorded for each mouse. After 5 consecutive days of con-
tinuous training, on the probe test day, the platform was re-
moved, and the mouse was permitted to swim for 2 minutes. 
The distance and the time mice spent in the correct quadrant 
(northeast), and the frequency of crossings where the sub-
merged platform was previously positioned were measured. 
The starting position for the probe trial was in the location 
most distal to the target quadrant. A computer tracking 
system (ANY-maze version 4.82; Stoelting, Chicago, IL, 
USA) was used to automatically record the swimming pat-
terns. The escape latency over the 5-day period was used as 
an index of spatial learning (Figure 4A). The percent time, 
distance swam in the target quadrant and the total number 
of crossings of the platform location were used as indices of 
spatial memory (Figure 4B–E).

Western blot assay
Ipsilateral hippocampal tissue was collected 28 days after 
pMCAO. Protein extraction and western blot assay were 
carried out as previously described (Zhang et al., 2012). 
Briefly, the tissue was homogenized in radioimmunopre-
cipitation assay lysis buffer and centrifuged. The protein 
sample was concentrated and denatured at 95–100°C for 10 
minutes. Then, 15 μg of the protein (20 µL) was subjected 
to 10% sodium dodecyl sulfate polyacrylamide gel electro-
phoresis (BioRad, Berkeley, CA, USA) and then transferred 
onto 0.2 μm nitrocellulose membranes (Immobilon, EMD 
Millipore, Billerica, MA, USA). The membranes were incu-
bated for 1 hour in blocking solution (Beyotime, Shanghai, 
China) at room temperature. The primary antibodies were 
as follows: mouse monoclonal anti-GAP-43 (1:2000), mouse 
monoclonal anti-synaptophysin (1:500), mouse monoclonal 
anti-PSD-95 (1:1000) and mouse monoclonal anti-β-tubulin 
(1:1000). The membranes were incubated overnight with 
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the primary antibodies at 4°C. The membranes were then 
washed and incubated with secondary antibody (anti-mouse 
IgG, 1:5000) for 1 hour at room temperature. All antibod-
ies were purchased from Abcam (Cambridge, MA, USA). 
The intensity of the protein bands was determined using a 
scanning western blot imaging system and quantified with 
ImageJ software (NIH, Bethesda, MD, USA). The ratio of 
the optical density of the target protein to that of β-tubulin 
was used as the relative expression value for that protein. 
The researcher who performed the image acquisitions and 
quantifications was blinded to the experimental groupings.

Electron microscopy and synaptic counting
Four weeks after pMCAO, all mice were anesthetized with 
an overdose of chloral hydrate and intracardially perfused 
with 0.9% saline followed by 20 mL 4% paraformaldehyde. 
The brains were removed immediately, and samples (ap-
proximately 1 mm3) were taken from the hippocampal CA1. 
The tissues were postfixed with 2.5% glutaraldehyde over-
night and then processed for transmission electron micros-
copy as previously described (Zhang et al., 2013). In brief, 
the tissue samples were osmicated, dehydrated, stained with 
uranyl acetate, and embedded in araldite. Ultrathin sections 
(approximately 65 nm thick) were cut from one block of 
tissue, mounted on copper mesh grids, stained with lead 
citrate, and then examined using an electron microscope 
(CM120, Philips, Eindhoven, Netherlands). Micrographs of 
the neuropil in the hippocampal CA1 region were taken at a 
magnification of 6000×, and 15 micrographs of each mouse 
were observed and analyzed. The technique of Colonnier 
and Beaulieu was used to estimate the number of synapses 
(Colonnier and Beaulieu, 1985) using the formula NV = NA/d, 
where NV is the number of synapses per unit volume, NA is 
the number of synaptic junctions per unit area of an electron 
micrograph, and d is the mean length of densities associated 
with the synaptic junctions.

Statistical analysis
All normally distributed data are expressed as the mean ± 
SEM. The data were analyzed with SPSS 17.0 statistical soft-
ware (SPSS, Chicago, IL, USA). Contralateral and ipsilateral 
blood flow values after pMCAO were analyzed using the 
paired t-test. The results of western blot assay, the MWM 
test and the number of synapses were analyzed using one-
way analysis of variance followed by Fisher’s least significant 
difference post hoc test. The results of the correlation of cog-
nitive functional outcomes with GAP-43, PSD-95 and SYN 
were analyzed using Spearman’s correlation coefficient. P < 
0.05 was considered statistically significant.

Results
Effects of environmental enrichment on spatial learning 
and memory
The MWM test revealed that there were no statistically sig-
nificant differences in the total distance traveled in the four 
maze zones among the three different groups (P > 0.05) 
(Figure 4B). The environmental enrichment group spent 

less time finding the platform (P < 0.05) (Figure 4A), trav-
eled significantly longer distances (P < 0.05) (Figure 4C), 
spent more time in the correct quadrant (northeast zone) 
(P < 0.05) (Figure 4D), and crossed the previous location of 
the platform more frequently compared with the standard 
housing group (P < 0.05) (Figure 4E). The differences be-
tween the environmental enrichment and sham groups were 
not statistically significant (P > 0.05) (Figure 4A, C–E).

Effects of environmental enrichment on SYN, GAP-43 
and PSD-95 expression in the ischemic hippocampus
As shown in Figure 5, western blot assay demonstrated that 
SYN, GAP-43 and PSD-95 protein expression levels were 
significantly increased in the environmental enrichment 
group compared with the standard housing group (P < 0.05).

Effects of environmental enrichment on the number of 
synapses in the hippocampal CA1
The number of synapses (NV) was significantly decreased 
in the hippocampal CA1 4 weeks after pMCAO (P < 0.05; 
Figure 6). Compared with the standard housing group, en-
vironmental enrichment attenuated the pMCAO-induced 
decrease in the number of synapses in the hippocampal CA1 
(P < 0.05; Figure 6).

Correlation of cognitive functional outcomes with 
GAP-43, PSD-95 and SYN
We next examined whether cognitive functional outcomes 
correlated with synaptic protein expression. The number 
of crossings of the previous platform location, used as an 
index of cognitive function, was compared to the relative 
expression levels of GAP-43, PSD-95 and SYN using Spear-
man’s correlation coefficient (rs). The correlations between 
cognitive function and relative expression of GAP-43, PSD-
95 and SYN are shown in Figure 7. The cognitive functional 
outcomes were positively correlated with the relative expres-
sion levels of GAP-43, PSD-95 and SYN (Figure 7).

Discussion
Our current findings show that environmental enrichment 
improves cognitive impairment induced by the pMCAO 
model of stroke. Environmental enrichment starting 3 days 
after pMCAO robustly upregulated the expression of the 
axonal terminal plasticity marker GAP-43 and the synap-
tic plasticity markers SYN and PSD-95 28 days post-stoke. 
The number of synapses in the hippocampal CA1 was also 
increased by environmental enrichment. Furthermore, we 
found that the recovery of cognitive function was positively 
correlated with the expression of GAP-43, a marker of post-
stroke axonal terminal plasticity (Stokowska et al., 2017), 
and with the expression of SYN and PDS-95.

To study the effects of environmental enrichment in post-
stroke synaptic plasticity and functional recovery, we used 
the pMCAO stroke model, which results in irreversible 
damage to the ischemic core in specific brain regions (Doyle 
and Buckwalter, 2014). This model produces a functional 
disorder that is repeatable and consistent, thereby facilitat-
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Figure 5 Effect of EE on SYN, GAP-43 
and PSD-95 expression levels in the 
ischemic hippocampus.
(A) Representative western blots. (B–D) 
Quantitative analysis of western blots. 
Expression levels of GAP-43, SYN and 
PSD-95 were significantly increased 
in the ischemic hippocampus 4 weeks 
after permanent middle cerebral artery 
occlusion in the EE group. There was 
no significant difference between the 
EE and sham groups. #P < 0.05, vs. EE 
group. Data are expressed as the mean 
± SEM (n = 8; one-way analysis of vari-
ance followed by Fisher’s least signifi-
cant difference post-hoc test). GAP-43: 
Growth-associated protein 43; PSD-95: 
postsynaptic density protein 95; SYN: 
synaptophysin; EE: environmental en-
richment. SH: standard housing.

Figure 4 Effect of EE on spatial learning and memory (Morris water maze test).
(A) Escape latency. (B) In the probe test, there were no significant differences in the total distance traveled in the four quadrants (zones) among 
the groups. (C–E) The EE group traveled significantly longer distances, spent more time in the correct (northeast) quadrant, and crossed the plat-
form location more frequently compared with the SH group. *P < 0.05, vs. sham group. #P < 0.05, vs. EE group. Data are expressed as the mean ± 
SEM (n = 8; one-way analysis of variance followed by Fisher’s least significant difference post-hoc test). pMCAO: Permanent middle cerebral artery 
occlusion. EE: environmental enrichment; SH: standard housing; NE: northeast.

Figure 3 Environmental enrichment and standard housing 
conditions.
(A) Environmental enrichment; (B) standard housing.

A B

Figure 2 Contralateral and ipsilateral blood flow values.
Contralateral and ipsilateral blood flow values after permanent middle 
cerebral artery occlusion. †P < 0.05, vs. ipsilateral. Data are expressed as 
the mean ± SEM (n = 8; paired t-test).
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ing the study of post-stroke neuronal dysfunction (Lay and 
Frostig, 2014).

It has been reported that animals exposed to environmen-
tal enrichment have improved functional outcomes follow-
ing ischemic injuries (Nygren and Wieloch, 2005; Sakalem et 
al., 2017). The mechanisms include enhanced neurogenesis 
(Komitova et al., 2005), dendritic restructuring (Johansson 
and Belichenko, 2002; Johansson, 2004), and angiogenesis 
(Yu et al., 2014; Shilpa et al., 2017). It is widely accepted that 
synaptic plasticity and functional remapping play important 
roles in functional recovery after stroke (Nithianantharajah 
and Hannan, 2006; Pekna et al., 2012; Li et al., 2017). How-

ever, only a few studies have focused on the regeneration of 
axonal terminals, the changes in presynaptic and postsynap-
tic proteins, and the simultaneous changes in the number of 
synapses.

Axonal plasticity is an important mechanism that leads 
to the formation of new synapses after ischemic injury. 
Previous studies have demonstrated that this phenomenon 
is associated with robust upregulation of the membrane 
phosphoprotein GAP-43, which is critically involved in 
axonal terminal growth (Benowitz and Routtenberg, 1997; 
Carmichael et al., 2005; Allegra Mascaro et al., 2013). GAP-
43 is upregulated in neuronal regeneration, and is a sensitive 
marker of axonal regeneration in the hippocampus (Bomze 
et al., 2001). Recently, GAP-43 was shown to be involved in 
glial cell plasticity and to enhance neuronal plasticity (Hung 
et al., 2016). Here, we found that the expression of GAP-43 
is increased in the hippocampus 28 days after pMCAO in 
mice exposed to environmental enrichment. The enhanced 
cognitive recovery in these mice suggests that environmental 
enrichment facilitates post-stroke synaptic plasticity, possi-
bly associated with axonal terminal regeneration.

Synaptogenesis is considered essential for learning and 
memory. SYN and PSD-95 are two important markers 
associated with synaptogenesis. SYN is a transmembrane 
glycoprotein that plays a fundamental role in synaptic 
plasticity and synaptogenesis (Jahn et al., 1985; Ujike et al., 
2002). A previous study showed that SYN is involved in 
hippocampus-dependent cognition after cerebral ischemic 
injury (Dandi et al., 2018). SYN knockout mice exhibit 
impaired spatial learning and memory without limb func-
tion impairment (Schmitt et al., 2009). PSD-95 is another 
important synaptic marker related to synaptogenesis. It is 
the most representative protein member of the postsynap-
tic density protein family (Niethammer et al., 1996), which 
plays an important role in synaptic plasticity and in learning 
and memory (Xu et al., 2009). Several previous studies have 
demonstrated that PSD-95 expression is downregulated in 
the hippocampus after cerebral ischemia (Watanabe et al., 
2004; Yan et al., 2013). Our present results show that envi-
ronmental enrichment prevents the reduction in PSD-95 
expression, thereby helping to maintain synaptic plasticity 

Figure 6 Effect of EE on the number of synapses in the hippocampal 
CA1.
The number of synapses (NV, the number of synapses per unit volume) 
was markedly reduced in the hippocampal CA1 area 4 weeks after per-
manent middle cerebral artery occlusion. Black arrows indicate synapses 
in each micrograph. EE attenuated the occlusion-induced decrease in the 
number of synapses in the hippocampal CA1. Scale bars: 0.5 μm. Data 
are expressed as the mean ± SEM. *P < 0.05, vs. sham group; #P < 0.05, 
vs. EE group (n = 8; one-way analysis of variance followed by Fisher’s 
least significant difference post-hoc test). EE: Environmental enrichment; 
SH: standard housing.

Figure 7 Correlation of cognitive function with the relative expression levels of GAP-43, PSD-95 and SYN.
(A–C) GAP-43, PSD-95 and SYN, respectively. rs: Spearman’s correlation coefficient. P < 0.001 was considered to indicate a significant correlation. 
GAP-43: Growth-associated protein 43; PSD-95: postsynaptic density protein 95; SYN: synaptophysin.
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in the hippocampus. Furthermore, transmission electron 
microscopy showed that environmental enrichment in-
creased the number of synapses in the hippocampal CA1 4 
weeks after pMCAO. Therefore, environmental enrichment 
not only increases the expression of synaptic remodeling-re-
lated proteins, but also increases the number of functional 
synapses in the hippocampus. These findings are novel and 
have not previously been reported. Further study is needed 
to more fully elucidate the cell and molecular mechanisms 
mediating the functional improvement induced by an en-
riched environment. For example the roles of GAP-43, SYN 
and PSD-95 in this process can be examined using transgen-
ic methods and viral vectors to up- or downregulate their 
levels in specific brain regions.
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