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Microglia are brain macrophages that mediate neuroinflammation and contribute to and
protect against neurodegeneration. The terminal sugar residue of all glycoproteins and
glycolipids on the surface of mammalian cells is normally sialic acid, and addition of this
negatively charged residue is known as “sialylation,” whereas removal by sialidases is
known as “desialylation.” High sialylation of the neuronal cell surface inhibits microglial
phagocytosis of such neurons, via: (i) activating sialic acid receptors (Siglecs) on
microglia that inhibit phagocytosis and (ii) inhibiting binding of opsonins C1q, C3,
and galectin-3. Microglial sialylation inhibits inflammatory activation of microglia via: (i)
activating Siglec receptors CD22 and CD33 on microglia that inhibit phagocytosis and (ii)
inhibiting Toll-like receptor 4 (TLR4), complement receptor 3 (CR3), and other microglial
receptors. When activated, microglia release a sialidase activity that desialylates both
microglia and neurons, activating the microglia and rendering the neurons susceptible
to phagocytosis. Activated microglia also release galectin-3 (Gal-3), which: (i) further
activates microglia via binding to TLR4 and TREM2, (ii) binds to desialylated neurons
opsonizing them for phagocytosis via Mer tyrosine kinase, and (iii) promotes Aβ

aggregation and toxicity in vivo. Gal-3 and desialylation may increase in a variety of
brain pathologies. Thus, Gal-3 and sialidases are potential treatment targets to prevent
neuroinflammation and neurodegeneration.
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INTRODUCTION

Microglia are brain macrophages that mediate neuroinflammation and can protect against
neurodegeneration, for example, by removing protein aggregates, phagocytosing debris, and aiding
repair. However, microglia can in some circumstances also contribute to neurodegeneration,
for example, by mediating chronic neuroinflammation, or by excessive phagocytosis of synapses
or neurons. This article reviews the roles of sialylation and galectin-3 (Gal-3) in microglia-
mediated neuroinflammation and neurodegeneration. That means we will be reviewing the
effects of changes in (a) sialylation of brain cells and (b) extracellular Gal-3 on microglial
activation and neurodegeneration. In general, Gal-3 is upregulated and released by microglia
during neuroinflammation and promotes neuroinflammation and phagocytosis (Shin, 2013;
Chen et al., 2014). Conversely, sialylation of microglia and neurons inhibits neuroinflammation
and phagocytosis, in part by blocking Gal-3 binding. Moreover, neuroinflammation can
promote desialylation.
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Microglia constantly survey the brain with their long and
rapidly moving processes, looking for signs of pathogens,
damage, or protein aggregates. If they detect such signs they
become “activated,” i.e., they retract their processes, express
inflammatory genes, produce reactive oxygen species, release
chemokines and pro-inflammatory cytokines, upregulate
phagocytosis, and may migrate toward the pathogens, damage,
or aggregates. All of this helps the microglia phagocytose the
pathogens, damage, or aggregates, and thereby remove the
problem. However, if for whatever reason the pathogens, damage
or aggregates are not effectively removed, then the microglia
may become chronically activated, and this may result in
damage to neurons, due to, for example, excessive cytokine
production, excessive reactive oxygen species production, or
excessive phagocytosis of synapses and neurons. Thus, chronic
neuroinflammation may contribute to neurodegeneration
(Ransohoff, 2016; Nichols et al., 2019).

SIALIC ACID: STRUCTURE, FUNCTION,
AND SIGNALING

The terms sialylation and desialylation refer, respectively,
to the addition and removal of the sugar sialic acid on the
non-reducing termini of oligosaccharide chains attached to
glycoproteins or glycolipids. In vertebrates, sialic acids are
a heterogeneous family of nine-carbon monosaccharides
with core structures consisting of either N-acetylneuraminic
acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc), or
deaminoneuraminic acid (Kdn) (Figure 1A). In the human
brain, the main sialic acid core structure is Neu5Ac, whereas
levels of Neu5Gc and Kdn are very low (Chou et al., 1998;
Inoue and Kitajima, 2006; Davies and Varki, 2015). The sialic
acid core structures may be further modified by methylation,
acetylation, and sulfation at the fourth, seventh, eighth, and
ninth positions, generating more than 50 sialic acid species
(Angata and Varki, 2002). Sialic acids are synthesized de-
novo using the precursor N-acetylmannosamine-6-phosphate
(ManNAc-6-P). ManNAc-6-P is the product of glucosamine
(UDP-N-acetyl)-2-epimerase/N-acetylmannosamine kinase
(GNE), which is the rate-limiting enzyme for sialic acid synthesis
(Keppler et al., 1999). After synthesis, sialic acid is activated
by conversion to CMP-sialic acid by the nuclear enzyme
CMP-sialic acid synthetase (CMAS) and then transported into
the Golgi where it acts as a substrate for sialyl-transferases
(STs; Munster-Kuhnel et al., 2004).

Within the Golgi, sialic acids are attached to the sugars of
glycolipids or glycoproteins (Figure 1B) via ST enzymes. In
humans, 20 different enzymes transfer sialic acids to galactose
(Gal) or N-acetylgalactosamine (GalNAc) acceptor sugars via α-
2,3- or α-2,6-bonds (enzymes: ST3Gal, ST6Gal, ST6GalNAc) or
to other sialic acid moieties via α-2,8 bonds (ST8Sia) (reviewed
by Harduin-Lepers et al., 2001).

A small subset of glycoproteins, including particularly neural
cell adhesion molecule (NCAM) are polysialylated, i.e., carry
linear chains of 50–150 sialic acid residues linked α2,8,
added by polysialyltransferases in the Golgi. Polysialylation

is particularly abundant in the brain, and regulates cell
adhesion, synaptogenesis, memory, and neurogenesis, as well as
binding neurotrophins, growth factors, and neurotransmitters
(Sato and Kitajima, 2013; Colley et al., 2014). In mouse
brain, polysialylation dramatically decreases 2 weeks after
birth, and almost disappears by 8 weeks, except in olfactory
bulb, hippocampus, amygdala, suprachiasmatic nucleus, and
prefrontal cortex (Abe et al., 2019). Polysialylated NCAM is also
present on the surface of microglia, and rapidly decreases in
response to LPS activation as a result of the microglial release of
sialidase, which then desialylates NCAM (Sumida et al., 2015). In
contrast, polysialylated neuropilin-2 is normally present within
the microglial Golgi, but is rapidly released to the surface by LPS
(Werneburg et al., 2015).

Gangliosides are lipids composed of a glycosphingolipid
(ceramide and oligosaccharide) with one or more sialic
acids. About 60 different gangliosides are known, which
differ mainly in the position and number of sialic acid
residues. The most abundant ganglioside in the brain is
GM1, which is neuroprotective in multiple brain pathologies
(Magistretti et al., 2019).

Sialic acid residues are negatively charged and are major
contributors to the charge and hydrophilicity of the cellular
surface, which reduces interactions and adhesion between cells
(Varki, 1997; Byrne et al., 2007). Moreover, the presence of
sialic acid on a glycoprotein or glycolipid may modulate cell
signaling: sialic acids themselves serve as ligands for lectins
such as selectins and sialic acid-binding immunoglobulin-type
lectins (Siglecs). Siglecs form a family of transmembrane proteins
that contain an extracellular carbohydrate recognition domain
(CRD) that can bind sialic acid residues of the same or
different cells, and a cytoplasmic tail that (in most Siglecs)
contains an immunoreceptor tyrosine-based inhibition motif
(ITIM) domain. Upon binding of the CRD to sialyl residues,
the ITIM domain is phosphorylated and recruits and activates
protein tyrosine phosphatases, such as Src homology domain-
containing phosphatase-1 (SHP-1). These phosphatases reverse
the tyrosine phosphorylation of signaling proteins, such as Syk,
induced by activating receptors. Thus, Siglecs and the sialylation
state of self- or target cells’ glycocalyx act as important negative
regulators of cellular activation and phagocytosis (Varki and
Angata, 2006). Siglecs are typically expressed by hematopoietic
cells (Von and Bochner, 2008) and, in the CNS, are mainly
expressed by microglia. Structure, function, and signaling
properties of microglial Siglecs (Siglec-1, Siglec-2/CD22, Siglec-
3/CD33, Siglec-4/MAG, Siglec-11, and Siglec-E/F/H) have been
extensively reviewed elsewhere (Linnartz-Gerlach et al., 2014;
Siddiqui et al., 2019).

Some Siglecs have been subject to rapid evolution, and are
poorly conserved, potentially resulting in divergent functions.
For example, human and mouse CD33 have limited homology in
their intracellular domains, such that human CD33 has an ITIM
and an ITIM-like domain, whereas mouse CD33 only has an
ITIM-like domain (Brinkman-Van der Linden et al., 2003). Thus,
human CD33 has been found to inhibit monocyte and microglial
phagocytosis, whereas mouse CD33 has been reported to have no
effect on phagocytosis (Bhattacherjee et al., 2019).
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FIGURE 1 | (A) Chemical structure of the three core sialic acids, N-acetylneuraminic acid (Neu5Ac), N-glycolylneuraminic acid (Neu5Gc), and deaminoneuraminic
acid (KDN). These core structures may be further modified, e.g., by sulfation or methylation. (B) Sialic acids are transferred onto acceptor glycans via
sialyl-transferase enzymes in the Golgi that use the activated cytidine-5’-monophosphate-sialic acid (CMP-Sia) as a donor molecule. Sialyl residues may be added
terminally to galactose residues in α-2,3 or α-2,6 linkage or to sialic acid residues in α-2,8 linkage. Such glycan chains may be attached to glycoproteins via
asparagine residue (N-glycan) or to serine or threonine residues (O-glycan). Glycosylation of lipids is exemplified here by a ganglioside composed of ceramide (Cer)
to an oligosaccharide chain. Sialic acids may be released via hydrolytic enzymes termed neuraminidases. Gal, galactose; GalNAc, N-acetylgalactosamine; Man,
mannose; Glc, glucose; GlcNAc, N-acetylglucosamine; Fuc, fucose.

Desialylation describes the removal of sialyl-residues from
glycoconjugates, which is generally mediated by hydrolytic
enzymes called sialidases or neuraminidases (Neu) (these terms
are synonymous) (Wei and Wang, 2019). Mammalian cells
express four different sialidases, Neu1-4. Neu1 is found either
in the lysosome or on the surface of plasma membrane and is
one of the main enzymes degrading sialo-glycoproteins. Neu1
has the highest expression of the sialidases in human tissue, and
may cleave sialic acids linked in α-2,3 and—to a lesser degree—
α-2,6 and α-2,8 (Miyagi and Tsuiki, 1984). The cytosolic Neu2
sialidase is expressed at a very low level in humans, and cleaves
sialic acids from glycoproteins and glycolipids with a similar
linkage-specificity to Neu1 (Miyagi and Tsuiki, 1985). Neu3 is
found on the plasma membrane, and has the highest specificity
for sialylated gangliosides, cleaving α-2,3, α-2,6, and α-2,8 linked
sialic acids equally. Neu4 is found on internal membranes, and
has preference for gangliosides (Miyagi and Yamaguchi, 2012;
Pshezhetsky and Ashmarina, 2018). Notably, loss of function
mutations or knock out of sialidase enzymes gives rise to a variety
of brain pathologies in humans and mice. Thus, mutations in
the human neuraminidase 1 gene cause sialidosis characterized
by the accumulation of sialylated glycans in lysosomes. Brain
pathologies associated with this severe lysosomal storage disorder
are ataxia, mental retardation, and seizures (Seyrantepe et al.,
2003). Double knockout of Neu3 and Neu4 in mice caused
accumulation of the GM3 ganglioside inside CNS cells, such as
microglia and neurons, causing neuroinflammation, impairment
of neurite formation, and memory loss (Pan et al., 2017).

Sialidases are important for degradation of glycoproteins and
glycolipids, as well as the recycling of sialic acid. However, the
removal of sialic acid residues from the cell surface by sialidases
may also trigger cell signaling events as this desialylation:
(i) reduces Siglec signaling, (ii) activates other receptors, (iii)
decreases some gangliosides and increases others, and (iv)
changes binding of lectins, opsonins, and complement. Multiple
receptors, such as Toll-like receptor 4 (TLR4), can be activated by
desialylation (Pshezhetsky and Ashmarina, 2013). Some lectins,
such as Gal-3, are released by inflammatory activated microglia
and bind to N-acetyl-lactosamine residues of glycoproteins
only when terminal sialic acid residues are removed (Nomura
et al., 2017). The removal of sialic acids from the neuronal
cell surface encourages binding of the classical complement
cascade proteins C1q and C3, which are important opsonins
tagging cells for phagocytosis (Linnartz et al., 2012). Inhibition of
complement by cell surface sialylation may be mainly mediated
by complement factor H, a serum protein recruited to cells
by binding sialic acid residues. When recruited by cell surface
sialylation, factor H acts as a negative regulator of complement
depositions by promoting degradation of C3 convertase and
already deposited C3b (Blaum et al., 2015). Mutations in the
factor H sialyl-recognition domain can cause atypical hemolytic
uremic syndrome (aHUS), a disorder characterized by increased
C3b deposition and lysis of blood cells (Hyvarinen et al., 2016)
indicating that the factor H-sialic acid interaction is a key
regulator of the alternative pathway of complement activation.
Therefore, desialylation may promote opsonization of cells
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by increased binding and decreased degradation of classical
complement proteins.

In the following sections, we will use the terms “sialylated”
or “desialylated” in a simplified manner to describe the presence
or absence, respectively, of sialyl residues on surface glycans,
irrespective of linkage or modifications.

EFFECTS OF
DESIALYLATION/SIALYLATION IN THE
BRAIN

Sialic acids are particularly abundant in the brain, including
within neuronal gangliosides and as polysialic acid on NCAM
(Finne et al., 1983; Pan et al., 2005). Polysialylation of NCAM
on neurons regulates neurite outgrowth (Landmesser et al.,
1990), axon pathfinding (Tang et al., 1994), synaptogenesis
(Dityatev et al., 2004), and long-term potentiation (LTP) in the
hippocampus (Becker et al., 1996; Muller et al., 1996; Senkov
et al., 2012; Hildebrandt and Dityatev, 2015). Acute stress has
been shown to rapidly decrease polysialylation in olfactory bulb
and prefrontal cortex in mice, apparently due to sialidases
from microglia and astrocytes (Abe et al., 2019). Neural activity
has been shown to rapidly increase neuronal (and astrocytic)
surface sialidase activity, causing neuronal desialylation, which
in turn modifies memory formation (Minami et al., 2016,
2017). Thus, rapid changes in cell-surface sialylation may occur
physiologically, usually as a result of transfer of Neu1 or Neu4 to
the cell surface, and more dramatic changes may occur as a result
of neuroinflammation (see below).

Although sialylation has been found to be dispensable for
germ layer formation and early development of the embryo
(Abeln et al., 2017), several studies have shown the relevance
of sialylation during mammalian development, as demonstrated
by the fact that homozygous knockout of either (1) GNE,
necessary for sialic acid biosynthesis (Schwarzkopf et al., 2002)
or (2) CMAS, necessary for sialic acid activation (Abeln
et al., 2019) is embryonically lethal in mice. Interestingly, the
phenotype exhibited by CMAS knockout mice was rescued by
depleting maternal component C3, indicating that sialylation
protects the embryo against attack by maternal complement
(Abeln et al., 2019).

In contrast to homozygous GNE knockout mice, heterozygous
GNE knockout is not lethal in mice, and reduces sialylation
by roughly 50%, and so can be used to investigate the effects
of reduced sialylation in mice (Klaus et al., 2020). These
mice display microglial activation and neuronal synaptic loss,
followed by a slow increase in age-related and complement-
dependent neuronal loss, indicating a protective role of sialic
acids against microglial phagocytosis and physiological aging
in the mouse brain (Klaus et al., 2020). Interestingly, loss of
synapses precedes neuronal loss in several neurodegenerative
diseases (Fricker et al., 2018; Rajendran and Paolicelli, 2018)
and complement-mediated microglial phagocytosis of synapses
is aberrantly activated and contributes to synaptic loss in mouse
models of Alzheimer’s disease (AD) (Stevens et al., 2007; Schafer
and Stevens, 2010; Hong et al., 2016). However, these studies

did not determine how complement is binding to synapses
during development or neurodegeneration. One intriguing
possibility is that complement is binding to synapses because
they are desialylated (Figure 2). Indeed, it has been shown that
desialylation of neurons facilitates C1q and C3b binding detected
by complement receptor 3 (CR3) on microglia surface, which
leads to phagocytosis of neuronal dendrites (Linnartz et al., 2012).
Thus, there is in vitro and in vivo evidence that desialylation
of neurons or neuronal parts can cause complement-mediated
microglial phagocytosis of those neurons, synapses, or dendrites.

We have recently found that different stimuli, including LPS,
fibrillar amyloid beta (Aβ) and TAU, induced desialylation of
the microglial surface (Allendorf et al., 2020b). This desialylation
of microglia in turn enhanced microglial phagocytosis via
activating CR3, and induced microglia to phagocytose healthy
neurons (Figure 2). Addition of LPS or Aβ to glial-neuronal
cultures induced neuronal loss that could be blocked by
inhibiting sialidases or CR3 (Allendorf et al., 2020b). This
suggests that inflammatory stimuli can induce desialylation of
microglia, which enhances phagocytosis that may contribute to
neurodegeneration. Recent studies suggest that removal of sialyl
residues from the microglial cell surface may also activate TLR-
mediated signaling. Intracerebral injection of microbial sialidase
caused microglial TLR4 and TLR2 activation in vivo (Fernandez-
Arjona et al., 2019) and in vitro (Fernandez-Arjona et al.,
2019; Allendorf et al., 2020a). Moreover, we found in the BV-
2 microglial cell line that LPS causes Neu1 to translocate to
the cell surface, where it desialylates TLR4, which enhances
and prolongs microglial activation (Allendorf et al., 2020a). We
previously reported that LPS-activated BV2 microglia released a
sialidase activity that could desialylate neighboring cells (Nomura
et al., 2017). Similarly, Sumida et al. (2015) reported that in
the Ra2 microglial cell line, LPS caused a rapid and reversible
release of a sialidase activity on exovesicles, which removed
polysialic acids from the microglial surface. These studies suggest
that activated microglia have the potential to desialylate both
themselves and surrounding neurons. In vivo, it was shown that
LPS injection into the corpus callosum of rat pups induced a
dramatic increase in neuraminidase activity (Neu1 and Neu4)
leading to a persistent desialylation of glycoproteins and neurons
(Demina et al., 2018). Although the authors found that the
brain distributions of microglia and neuraminidase activity were
different, this does not rule out that neuraminidase activity is
being released from microglia (or other cells). Importantly, what
this work shows is that neuroinflammation (induced by LPS) can
cause desialylation of the brain.

SIALYLTRANSFERASES IN
NEUROPATHOLOGY

In humans, mutations in the ganglioside-specific sialyltransferase
ST3Gal5 (GM3 synthase) gene cause: infantile-onset epilepsy
syndrome (Simpson et al., 2004) and salt and pepper syndrome,
with severe intellectual disability (Boccuto et al., 2014).
A mutation in another ganglioside-selective biosynthetic
gene, B4GALNT1 (GM2 synthase), result in the presence
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FIGURE 2 | Schematic diagram showing potential mechanisms for complement receptor 3 (CR3)-dependent microglial phagocytosis of neurons, dendrites, and
synapses. Activated microglia (1) desialylate their surface via neuraminidase (Neu) which stimulates microglial phagocytosis of neurons via CR3 (Allendorf et al.,
2020b) and (2) release complement proteins C1q and C3b, which opsonize desialylated neuronal dendrites and (3) synapses, stimulating their phagocytosis via
microglial CR3 (Linnartz et al., 2012). Neuraminidase released from microglia or onto the surface of neurons, desialylates the neuronal surface, and promotes binding
of C1q and C3b, stimulating microglial phagocytosis of neurons, dendrites, and synapses.

of progressive motor neuropathy accompanied also by
cognitive deficits (Harlalka et al., 2013). Consistent with
human studies, mice lacking GM2 synthase have been found
to develop progressive motor deficits (Chiavegatto et al.,
2000). Mutations in the sialyltransferase ST3Gal3 cause: non-
syndromic autosomal recessive intellectual disability (Hu
et al., 2011) or West syndrome, an age-dependent epileptic
encephalopathic syndrome (Edvardson et al., 2013). ST3Gal2/3
double-null mice had decreased myelin, reduced neuronal
marker expression, abnormal dendrites, and exhibited cognitive
and motor coordination deficits (Yoo et al., 2015). Mice lacking
complex gangliosides also exhibited demyelination and axonal
degeneration (Sheikh et al., 1999). Interestingly, neuronal, but
not glial, expression of complex gangliosides was sufficient to
prevent age-dependent degenerative phenotype in mice (Yao
et al., 2014). This all suggests that gangliosides maintain myelin
and axons but is also compatible with the idea of sialylation

preventing microglial activation and microglial phagocytosis of
neurons and synapses (Figure 2).

GWAS and other studies have found a positive association
between polysialyltransferases and schizophrenia (Maziade et al.,
2005; Arai et al., 2006; Tao et al., 2007), psychotic and
mood disorders (McAuley et al., 2012), and autism spectrum
disorders (Zhiling et al., 2008; Anney et al., 2010). Changes in
polysialylation of NCAM1 may also contribute to Parkinson’s
disease and AD (Mikkonen et al., 1999; Oizumi et al.,
2008; Murray et al., 2016, 2018). A variety of mechanisms
by which changes in polysialic acid may contribute to
disease have been suggested, including changes in cell–cell
interactions, ion channels, neurotrophins (BDNF, NT3, and
NGF), neurotransmitters, and growth factors (Sato and Kitajima,
2013). However, the findings are also compatible with the
idea that polysialylation inhibits microglial activation and
microglial phagocytosis of neurons and synapses, and the
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reduced polysialylation seen in these neuropathologies induces
excessive microglial activation and phagocytosis.

SIGLEC RECEPTORS IN PATHOLOGICAL
PROCESSES

Sialic acid-binding Ig-like lectin (Siglec) receptors have been
linked to neurodegenerative and aging processes (extensively
reviewed in Siddiqui et al., 2019; Duan and Paulson, 2020).
Siglec receptors on microglia can be activated by sialic acid
residues present on the neuronal surface, which inhibit microglial
phagocytosis, while desialylation of neurons leads to microglia
phagocytosis of the desialylated neurons or dendrites. One
abundant inhibitory Siglec receptor expressed on microglia of
the human brain is Siglec-11 (Angata et al., 2002) which has
been found to inhibit microglia neurotoxicity upon interaction
with sialic acids on the neuronal glycocalyx (Linnartz et al.,
2010). Siglec-11 expression in microglia suppressed cytokine
release and microglial phagocytosis of polysialylated neurons and
neurites (Wang and Neumann, 2010). Interestingly, although
both microglia and neurons expressed polysialylated NCAM,
only the latter appeared to activate the Siglec-11-mediated
neuroprotection.

In mice, Siglec-E recognizes sialic acid residues on the
neuronal glycocalyx and has been shown to act as a negative
regulator of phagocytosis of neuronal debris and the associated
production of superoxide radicals (Claude et al., 2013).

Human microglia abundantly express another inhibitory
Siglec receptor, Siglec-3, also called CD33. Several GWAS studies
have indicated that CD33 is a risk factor for AD (Bertram et al.,
2008; Hollingworth et al., 2011; Naj et al., 2011; Walker et al.,
2015). The normal, full-length form of CD33 inhibits microglial
phagocytosis of Aβ, while the short form of CD33, lacking exon 2
encoding the sialic acid ligand-binding domain, does not inhibit
phagocytosis of Aβ, and may thereby reduce AD risk (Bradshaw
et al., 2013; Griciuc et al., 2013; Malik et al., 2013; Raj et al.,
2014; Siddiqui et al., 2017; Estus et al., 2019). CD33 is thought
to be activated by sialic acid residues on the same cell rather
than adjacent cells, so desialylation of microglia may activate
microglial phagocytosis in part by removing the CD33 block
on phagocytosis.

Interestingly, Siglec-2, also known as CD22, has also been
identified as a negative regulator of microglial phagocytosis in
the aging brain (Pluvinage et al., 2019). Knockout of CD22 in
BV-2 microglia increased phagocytosis, and microglial sialylation
inhibited phagocytosis partly by activating CD22 (Pluvinage
et al., 2019). Importantly, the authors found that inhibition of
CD22 on aged microglia in vivo facilitates the clearance of myelin
debris, amyloid-β oligomers, and α-synuclein fibrils. Long-
term inhibition of CD22 partially restores the transcriptional
state of aged microglia to a younger homeostatic state and
improves cognitive function in aged mice. Importantly, CD22
is upregulated not only in aging brains but also in brains
of AD (Friedman et al., 2018) amyotrophic lateral sclerosis
(Funikov et al., 2018), and Niemann–Pick type C (Cougnoux
et al., 2018). Thus, CD22, as well as CD33 and Siglec-11, are

potential therapeutic targets to modify neuroinflammation and
neurodegeneration.

Importantly, most human Siglecs have undergone rapid,
recent evolution, such that there are no clear orthologs between
humans and mice, and there are significant differences in
ligand specificity (Linnartz-Gerlach et al., 2014). Moreover, while
the above Siglec receptors (Siglec-11, CD33) are abundantly
expressed on human microglia, mouse microglia abundantly
express others, including CD33-related Siglec-E and CD22
(extensively reviewed in Duan and Paulson, 2020). Thus, using
mouse models to study the roles of Siglec receptors in human
physiology or disease is not always appropriate. Nonetheless,
the above studies confirm the functional role of sialic acids in
the brain and encourage future studies aiming to investigate
the potential of modulating Siglec expression/function on
microglia as new therapeutic strategies to delay or prevent
neurodegeneration and age-dependent cognitive deficits.

GALECTIN-3

Galectin-3 is one of the 14 known mammalian galectins, which
are lectins (sugar-binding proteins) binding to galactose residues.
Gal-3 has a C-terminal carbohydrate-recognition domain that
preferentially binds to N-acetyl-lactosamine (a disaccharide of
galactose and N-acetyl-glucosamine) residues in glycoproteins or
glycolipids (Hirabayashi et al., 2002). Gal-3 is normally a soluble
monomer, but when the C-terminal binds N-acetyl-lactosamine
on glycoproteins or glycolipids, then the N-terminal oligomerizes
with the N-terminal of other Gal-3 units bound to sugars, to form
pentamers cross-linking the glycoproteins or glycolipids (Ahmad
et al., 2004). Oligomerization of Gal-3 appears to be mediated
by liquid-liquid phase separation of aromatic residues in the
N-terminal (Chiu et al., 2020). N-acetyl-lactosamine is found in
the sugar chains of most glycoproteins or glycolipids; however,
binding is normally blocked by a terminal sialic acid residue
α2,6-linked to the galactose residue. Thus, Gal-3 binding to cell
surface glycoproteins, including receptors, is normally blocked by
sialylation of those glycoproteins, and is revealed by desialylation
(Zhuo and Bellis, 2011; Nomura et al., 2017) (Figure 3).

Galectin-3 is highly expressed in myeloid, epithelial and
endothelial cells, and fibroblasts. Within the cell, Gal-3 can
be found in cytoplasm, nucleus, and membranes, and it can
be released from cells following inflammatory stimuli such as
LPS. Within the brain, Gal-3 is expressed by microglia, some
astrocytes, and weakly by some cortical neurons (Yoo et al., 2017).
Gal-3 expression is upregulated in neurodegenerative disease
models (Siew et al., 2019; Boza-Serrano et al., 2019). One variant
of the Gal-3 gene (LGALS3) is associated with Parkinson’s disease
risk at p = 9× 10−15 (Pickrell et al., 2016) and 4× 10−16 (Chang
et al., 2017). Gal-3 gene variants are also weakly associated with
AD (Boza-Serrano et al., 2019).

We and others have shown that LPS-activated microglia
release Gal-3 (Burguillos et al., 2015; Nomura et al., 2017).
Gal-3 lacks an endoplasmic reticulum-targeting sequence, and
therefore does not follow the classical pathway via endoplasmic
reticulum and Golgi out of the cell. The mechanism of Gal-3
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FIGURE 3 | Proposed mechanisms of microglia-induced neurophagy via galectin-3 (Gal-3) and desialylation of microglial and neuronal receptors. Microglia release a
neuraminidase after inflammatory activation (i.e., by lipopolysaccharide) that removes sialyl residues on the microglia and surrounding neurons. Desialylation reduces
binding of sialic acid binding immunoglobuline-like receptors (Siglecs) in cis and trans, thus potentially increasing microglial phagocytosis. Activated microglia release
the soluble lectin Gal-3 which binds to the penultimate sugar on glycan chains, galactose. Gal-3 opsonizes desialylated neurons and induces phagocytosis by
microglia via Mer tyrosine kinase (MerTK).

release from the cytoplasm is unclear, but it appears to be
triggered by a rise in cytosolic calcium (Liu et al., 1995).
We found that inhibition of calcineurin (a calcium-activated
protein phosphatase) blocked LPS-induced Gal-3 release from
microglia, suggesting the possibility that dephosphorylation of
Gal-3 regulates its release (Nomura et al., 2017). Gal-3 can be
phosphorylated on Ser6 and Ser12, which regulates localization
and oligomerization. Extracellular Gal-3 can bind to multiple
components of the extracellular matrix, and mediate interactions
between cells and the extracellular matrix (Dumic et al., 2006).

Extracellular or intracellular Gal-3 levels are elevated in a
variety of pathologies, potentially due to neuroinflammation.
Extracellular Gal-3 levels were higher in CSF of AD patients
(Ashraf and Baeesa, 2018). Amyotrophic lateral sclerosis patients
(Ashraf and Baeesa, 2018) after birth asphyxia in humans
(Savman et al., 2013) and after brain trauma in mice (Yip et al.,
2017). Brain levels of Gal-3 were higher after brain ischemia (Yan
et al., 2009) and in Huntington’s disease patients and a mouse
model of Huntington’s disease (Siew et al., 2019).

Galectin-3 promotes neuroinflammation by multiple
mechanisms (Shin, 2013; Chen et al., 2014). Extracellular Gal-
3 can activate microglia apparently by directly activating

TLR4 (Burguillos et al., 2015) and can thereby induce
neuroinflammation after brain trauma (Yip et al., 2017)
and brain ischemia (Rahimian et al., 2018). Consequently, lack of
Gal-3 attenuates neuroinflammation, for example, in the retina
and optic nerve of diabetic mice (Mendonca et al., 2018). Gal-3
knockout reduced microglial activation in response to brain
ischemia in mice (Lalancette-Hebert et al., 2012). And Gal-3
knockout or inhibition reduced microglial activation in response
to α-synuclein in culture (Boza-Serrano et al., 2019).

Extracellular Gal-3 can act as an opsonin (Nomura et al.,
2017), i.e., it can bind to a cell’s surface and then induce
phagocytes to phagocytose that cell by also binding and activating
a phagocytic receptor on the phagocyte (Figure 3). Gal-3 binds
and activates the phagocytic receptor MerTK (Caberoy et al.,
2012) thereby inducing the phagocytosis of Gal-3 opsonized
cells, debris, and aggregates by MerTK-expressing phagocytes
(Nomura et al., 2017). Moreover, Gal-3 can bind to bacteria and
therefore opsonizes bacteria for phagocytosis by microglia (Abreu
et al., 2017; Cockram et al., 2019). Extracellular Gal-3 binds to
desialylated cells and therefore opsonizes desialylated cells for
phagocytosis (Nomura et al., 2017). Gal-3 is released after brain
trauma in mice, and increases subsequent neuronal loss, so Gal-3
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knockout or anti-Gal-3 antibodies reduce neuronal loss and brain
damage (Yip et al., 2017). Similarly, Gal-3 increases after neonatal
brain ischemia, and Gal-3–knockout mice are protected from
the subsequent neuronal loss (Doverhag et al., 2010). Again, in
optic nerve injury, Gal-3 knockout reduced retinal ganglion cell
loss (Abreu et al., 2017). In each case, extracellular Gal-3 might
promote neuronal loss by opsonizing neurons or by activating
microglia—it is not clear which.

Galectin-3 enhances microglial phagocytosis of myelin,
which may contribute to myelin-debris clearance (Rotshenker
et al., 2008; Rotshenker, 2009). By contrast, extracellular
Gal-3, released from microglia, can promote oligodendrocyte
differentiation, so Gal-3 knockout mice have reduced axon
myelination (Pasquini et al., 2011; Thomas and Pasquini, 2018).
However, Gal-3 promotes neuroinflammation in experimental
autoimmune encephalomyelitis (EAE) mouse models of multiple
sclerosis (MS), so Gal-3 knockout reduces the severity of EAE
(Jiang et al., 2009).

We found that Gal-3 was highly upregulated in the brains
of AD patients and 5xFAD mice, a mouse model of AD, and
this increase was found specifically in the microglia associated
with amyloid plaques (Boza-Serrano et al., 2019). Importantly,
Gal-3 knockout in 5xFAD mice display reduced microglial
expression of pro-inflammatory genes in vivo, decreased amyloid
plaques, and improved cognitive performance (Boza-Serrano
et al., 2019). In agreement with its detrimental role in AD,
co-injection of Gal-3 and Aβ was found to increase amyloid
plaque deposition. Gal-3 associated with microglial TREM2
in vivo and bound to pure TREM2 in vitro (Boza-Serrano
et al., 2019). Tao et al. (2020) found remarkably similar
results: Gal-3 expression was upregulated in the brains of AD
patients and APP/PS1 mice, another mouse model of AD; Gal-3
promoted Aβ oligomerization and fibrilization; Gal-3 knockout

in APP/PS1 mice reduced amyloid plaque formation and
decreased cognitive deficits; and Gal-3 bound microglial TREM2
to induce microglial activation and further Gal-3 expression.
Thus, it appears clear that Gal-3 promotes amyloid pathology by
amyloid aggregation, whether this has anything to do with the
binding to TREM2 is less clear.

CONCLUSION

Overall, these studies indicate that Gal-3 and sialylation/
desialylation are important for neuroinflammation and
potentially neurodegeneration. However, several questions
remain open, and require further research. 1. Does desialylation
of microglia, neurons, or synapses occur in neurodegeneration,
and if so, when, and where? 2. Is complement deposition and
microglial phagocytosis of synapses mediated by desialylation
of synapses? 3. Does inhibition of extracellular sialidases
prevent neurodegeneration? 4. Does inhibition of Gal-3 prevent
neurodegeneration?
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