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Objectives. To investigate whether the presence of peroxisome proliferator-activated receptor gamma (PPARG) gene poly-
morphisms is associated with unexplained mild visual impairment (UMVI) in patients with type 2 diabetes mellitus (T2DM).
Methods. A total of 135 T2DM residents with UMVI and 133 with normal vision (NV; best-corrected visual acuity≥ 20/25 in both
eyes) were enrolled. UMVI was defined as best-corrected visual acuity (BCVA)< 20/25 and ≥ 20/63 in both eyes, with no visual
impairment-causing diseases found. Four PPARG gene single-nucleotide polymorphisms (SNPs) (rs3856806, rs1801282,
rs709158, and rs10865710) were assessed with the HAPLOVIEW 4.0 software to examine the statistical association of PPARG
polymorphisms and UMVI in patients with T2DM. Results. Four SNPs qualified the Hardy–Weinberg equilibrium (p> 0.05).*e
frequency of genotype GC at SNP rs10865710 was significantly higher in the UMVI group than in the NV group (p< 0.001;
GG+GC versus CC) (OR� 8.94, 95% CI: 4.90–16.31), whereas genotype CC decreased the risk (OR� 0.07, 95% CI: 0.03–0.14).
Genotype TT at SNP rs3856806 was strongly associated with UMVI (p< 0.0001, TT+TC versus CC) (OR� 4.74, 95% CI:
2.68–8.54), whereas genotype CC appeared to be protective for UMVI (OR� 0.55, 95% CI: 0.37–0.82). Conclusions. Suscepti-
bilities of PPARG variants may lead to differences in PPARG transcription, result in early function loss of retinal photoreceptor
cells, and eventually cause UMVI.

1. Introduction

Diabetes is a group of metabolic disorders characterized by
hyperglycemia resulting from defects in insulin secretion,
insulin action, or both [1, 2]. *e World Health Organi-
zation (WHO) estimated that by 2025, there would be 300
million people worldwide with diabetes mellitus [3], and
Type 2 diabetes mellitus (T2DM) accounted for 90%–95% of
those with diabetes [1]. Over the last three decades, there had
been a major rise in the prevalence of T2DM globally [4].
T2DM is associated with many complications, among which

ocular complications are common and usually emerging
earlier than other complications [5]. Owing to complications
such as cataracts, diabetic retinopathy (DR), and glaucoma,
the prevalence of visual impairment is much higher in the
T2DM population than the nondiabetic populations. Over
the past decades, measures for prevention of visual im-
pairment focused on moderate to severe visual impairment
and blindness (best-corrected visual acuity (BCVA)< 20/63)
[6]. Accordingly, few health administration members or
ophthalmologists paid attention to mild visual impairment
(BCVA< 20/25 and ≥20/63), [6] which also reduced the
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activities of daily living and life quality of patients with
T2DM [7, 8].

From October 2014 to January 2015, we conducted a
cross-sectional, epidemiological study of eye disease among
2,216 adults with T2DM in the Xinjing community,
Shanghai [9]. Mild visual impairment was found in 1,891
eyes—42.7% of all eyes examined (4,432 eyes in 2,216 pa-
tients). *e primary causes of mild visual impairment in
patients with T2DM were cataract and DR [10]. In addition,
we also identified 420 eyes of 210 patients with unexplained
mild visual impairment (UMVI) in both eyes—21.3% of
cases and 9.1% of all 2,216 participants. We believe that
UMVI occurred because of the early function loss of the
macular photoreceptor cells when no morphological
changes could be detected in the population-based epide-
miological studies in which fundus photography and optical
coherence tomography (OCT) were the major detective
techniques. Given that such a high proportion of patients
with UMVI and the global increase in T2DM [11], the
number of diabetic patients with UMVI is about to increase
rapidly [5]. To date, no published study had addressed the
pathogenesis of UMVI, while patients with UMVI continued
to seek an explanation, because the characterization of the
etiology as “unknown” would indicate a possible rapid
progression to moderate or severe visual loss and imply that
there is no effective prevention or treatment.

*e mechanism of the ocular complications of T2DM is
complex and still not well-demonstrated. Genetic suscep-
tibility, inflammation, oxidative stress, and environmental
influences were all reported to be involved [12–15]. Per-
oxisome proliferator-activated receptor gamma (PPARG) is
a ligand-activated transcription factor that plays an im-
portant role in the control of a variety of physiological
processes such as metabolism, angiogenesis, fibrosis, in-
flammation, and oxidative stress in various blind-causing
diseases, such as DR, age-related macular degeneration, and
optic neuropathy [16–19]. Genetic susceptibility determines
the different responses to factors like inflammation. For
example, the incidence of DR differed in different in-
dividuals with the same blood glucose level. *erefore, we
speculated that the susceptibility of certain genes in the
diabetic population may result in UMVI. In the present
study, peroxisome proliferator-activated receptor gamma
(PPARG) was chosen as a candidate gene, and we in-
vestigated whether the presence of PPARG gene poly-
morphisms was associated with UMVI in a Chinese Han
T2DM population to provide novel insight into the path-
ogenesis of UMVI.

2. Materials and Methods

*is was a population-based case-control study.*e patients
in the UMVI group and NV group were mainly diabetic
residents in the Shanghai Xinjing community [9]. *e study
was approved by the Ethics Committee of the Shanghai
general hospital, Shanghai JiaotongUniversity (2013KY023).
All the procedures were conducted according to the tenets of
the Declaration of Helsinki. Informed consent was obtained

from all subjects after a full explanation of the study
protocol.

3. Patient Selection

*e inclusion criteria were (1) provision of the written informed
consent, (2) diagnosis of T2DM based on the WHO diagnostic
criteria, [20] (3) ability to comply with all the required exam-
inations, (4) BCVA<20/25 and ≥20/63 in both eyes, with no
visual impairment-causing ophthalmic diseases, and (5) age- and
gender-matched patients with BCVA≥ 20/25 in both eyes [6].

*e exclusion criteria were (1) eyelid diseases, strabis-
mus, corneal diseases, lens diseases, and other eye diseases
that may affect the results of OCTA or fundus photograph
examinations; (2) eye diseases, such as glaucoma and
macular degeneration, which may cause other fundus retinal
microvasculopathy; (3) primary systemic diseases, including
those involving the respiratory system, circulatory system,
and urinary system in addition to DM; and (4) a history of
cancer or major surgery.

*e research team consisted of the same fully trained and
experienced routine members as introduced before [9, 21].
First, the baseline characteristics were surveyed using a
questionnaire. Patientsmet the above terms andwent through
a thorough eye examination; 1 ml of fasting whole peripheral
blood was collected from each participant, and DNA ex-
traction was performed according to the kit instructions
(QIAN amp Blood kit Hilden, Germany).

4. SNPs Selection

Four PPARG single-nucleotide polymorphisms (SNPs)
(rs1801282, rs3856806, rs709158, and rs10865710) in pre-
vious studies associated with metabolic disorders captured
in the locus were selected [22–27]. Among them, rs1801282
is a confirmed type 2 diabetes susceptibility locus of PPARG
[28]. rs3856806, rs709158, and rs10865710 are all associated
with loci of lipoprotein metabolism and obesity in the
Chinese Han population [25, 29, 30]. Probe sequences of
four SNPs were shown in Table 1; positions and functional
consequences were also listed.

5. Sequencing Methods

*e sequences, which included both upstream and down-
stream regions of the target SNPs (Supplement 1), were sent
to Fluidigm (http://Assay_Design_Group@fluidigm.com),
and the Fluidigm SNP genotyping markers which was
composed of a specific target amplification (STA) primer, a
locus-specific (LS) primer, and two allele-specific primers
were designed. Genotyping was performed following the
Fluidigm SNP genotyping instructions by the IRRI geno-
typing service laboratory (http://gsl@irri.org) as introduced
by Kim et al. [31]. Briefly, the target region was amplified
with the STA and LS primers under a thermal cycler. *e
diluted PCR products from the 268 samples, four Fluidigm
SNP markers, and PCR reagents were simultaneously mated
in a FR192.24 Dynamic Array by the IFC Controller. *en,
PCR was performed in the FC1™ Cycler, and the
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fluorescence signals from the end PCR products were finally
read under the EP1TM Reader.

6. Statistical Analysis

Student’s t-test and the χ2 test were used to compare con-
tinuous clinical data and categorical variables, respectively.
Allelic and genotypic frequencies between the UMVI and
NV groups were compared by the χ2 test or Fisher’s exact
test. Hardy–Weinberg equilibrium (HWE) for genotype
frequencies of the SNPs was tested by the χ2 test. *e
correction for multiple testing in the haplotype analysis was
performed by permutation testing. Pairwise linkage dis-
equilibrium (LD, D′) analyses between the polymorphisms
and EM-based haplotype association analysis were per-
formed by HAPLOVIEW (ver. 4.0) and SPSS 22.0 software
(IBM Corporation, US). Odds ratios (OR) and 95% confi-
dence intervals (CI) were also calculated. A p< 0.05 was
considered statistically significant.

7. Results

A total of 135 T2DM residents with UMVI were admitted
in the case group of this study. Another 133 normal vision
(NV; BCVA ≥ 20/25 in both eyes) residents with T2DM
were enrolled in the control group of this study.

Basic information for the subjects in the two groups is
shown in Table 2. Except for the difference in the
waistline and hipline, the two groups showed no statistically
significant intergroup differences in gender, age, age at onset
of T2DM, duration of diabetes, hemoglobin A1c levels, fasting
blood glucose levels, and systolic and diastolic blood pressure.
*e UMVI group had a slightly shorter waistline and hipline
than the NV group, but the well-acknowledged indicator of

obesity degree, BMI, did not differ significantly between the
two groups. Logistic regression analysis also did not reveal
any correlation between the waistline, hipline, and target
SNPs.

Out of the 4 SNPs selected, rs709158 had a low geno-
typing call rate (� 51%), while the remaining three had a full
call rate. 4 SNPs tested in the UMVI and NV groups all
qualified the HWE (p> 0.05).*e allelic frequencies for each
of the four sequence variants analyzed (rs3856806,
rs1801282, rs709158, and rs10865710) in all the UMVI, and
control cases are shown in Table 1.

*e observed genotype frequencies of the 4 PPARG
SNPs met the HWE (p> 0.05) in both the UMVI and NV
groups (as shown in Table 3). Statistically significant dif-
ferences were observed between the UMVI subjects and
controls when the genotypic frequencies for each of the 3
SNPs with significantly increased allelic frequency
(rs10865710, rs709158, and rs3856806) were compared. *e
frequency of genotype GC at SNP rs10865710 was signifi-
cantly higher in the UMVI group (p< 0.001; GG+GC
versus CC), conferring an approximately 8.94-fold increased
risk for UMVI (OR� 8.94, 95% CI: 4.90–16.31), whereas
genotype CC decreased the risks (OR� 0.07, 95% CI:
0.03–0.14). Genotype TT at SNP rs3856806 was strongly
associated with UMVI (p< 0.0001, TT+TC versus CC)
conferring a more than 3-fold increased risk (OR� 4.74, 95%
CI: 2.68–8.54), whereas genotype CC appeared to be pro-
tective for UMVI (OR� 0.55, 95% CI: 0.37–0.82).

*e pairwise LD analysis identified one block (39 kb)
(Figure 1), which included 4 SNPs in strong LD, as observed
by the D0 value. *e SNP rs10865710 was in complete LD
with rs1801282 (coefficient of LD [D0]� 1.00). *e fre-
quency of these haplotypes and their associations with
UMVI is shown in Table 4.

Table 1: Probe sequence for four SNPs used for Fluidigm sequencing analysis.

Rs number SNP Ch Functional
consequence Position SNP_SEQ

rs10865710 Intron
C>G 3

Upstream
transcript
variant

12,311,699

AGTTTCATGTAGGTAAGACTGTGTAGAATGTCGGGTCTCGATGTTG
GCGCTATTCAAGCCCTGATGATAAGGCTTTTGGCATTAGATGCTGTT

TTGTCTT[C/G]ATGGAAAATACAGCTATTCTAGGATCCTTGAGCCTTTCA
TAAGAGATAAGGTTGTGAATCCTAAGACCCTAGGACCRTTTACTTA

GATGATCTGCTCTCT

rs1801282 Intron
C>G 3

Missense
variant/
coding
sequence
variant

12,351,626

TTGATCTTTTGCTAGATAGAGACAAAATATCAGTGTGAATTACAGCA
AACCCCTATTCCATGCTGTTATGGGTGAAACTCTGGGAGATTCTCCT
ATTGAC[C/G]CAGAAAGCGATTCCTTCACTGATACACTGTCTGCAAA
CATATCACAAGGTAAAGTTCCTTCCAGATACGGCTATTGGGGACGT

GGGGGCATTTATGTAAG

rs709158 Intron
A>G 3

Genic
downstream
transcript
variant

12,403,176

CTCTGCAGCAGGCAAAAGCTCTTTTTGTTAATTCAAAACAGTTTGG
AATCCATTTCAGTTCTTCCTAAACCTCCAAGATACGGGGGAGGAAA

TTCACTGG[A/G]TTTTACAATATATTTTTCAAGGCAAATTGCCATCGCC
GTCCTAATGACAGAGAAGCTGCCGATATCACTACAACGGCTGCAG

ATGGCAAGTCATCCAGCC

rs3856806 C1341T 3

3 prime UTR
variant/

synonymous
variant

12,415,557

CCCTGGAGCTCCAGCTGAAGCTGAACCACCCTGAGTCCTCACAGCT
GTTTGCCAAGCTGCTCCAGAAAATGACAGACCTCAGACAGATTGTC
ACGGAACA[C/T]GTGCAGCTACTGCAGGTGATCAAGAAGACGGAGA
CAGACATGAGTCTTCACCYGCTCCTGCAGGAGATCTACAAGGACTT

GTACTAGCAGAGAGTCCTGA
Ch: chromosome.
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8. Discussion

A PubMed search indicated that there is no worldwide study
that has investigated the association of PPARG gene poly-
morphisms with UMVI in a T2DMpopulation.*erefore, the
statistically significant relationship between UMVI and the
SNPs rs10865710 and rs3856806 found in our study will be
important for elucidating the gene susceptibility and possible
pathogenesis of UMVI. Haplotype analysis for PPARG SNPs
in the groups UMVI and NV is shown in Table 5.

Visual impairment in patients with T2DM is attributed
primarily to retinal damage. [19, 32]*e outer retina consists of
photoreceptor neurons and Müller cells, which are metaboli-
cally coupled to support the generation of electrochemical
impulses in response to stimulation of light, with nutrients and
oxygen diffusing from choroidal vessels through the pigmented
epithelium layer. *e retina and choroid, as high-energy
consumption targets, are highly prone to hyperglycemia-in-
duced molecular damage. Quite a few published papers have
confirmed that PPARG plays an important role in reactive
oxygen species generation, inflammation, apoptosis, and
antiangiogenesis-induced retinal and choroidal dysfunction
[33–36]. Suppression of PPARG via activation of nuclear factor
kappa B is reported to be involved in the pathogenesis of
experimental DR and oxygen-induced retinopathy [37]. As an
important constituent of mitochondrial reactive oxygen species
imbalance, PPARG was also confirmed to be an initiated and

sustained factor in the general pathways of DR after short-term
stimulation by hyperglycemia and directly mediated the in-
hibitory effect of statins on reactive oxygen species, thus re-
ducing early retinal injury in diabetic eyes [38, 39].

Specific variants rs10865710 (introns) and rs3856806
(synonymous mutation) (Table 1) account for UMVI, do not
change the sequence of amino acids, and mainly affect the
process of PPARG transcription. *erefore, we speculate
that the differences in PPARG gene susceptibility lead to
different levels of PPARG protein, which further result in
differences in the response to oxidative stress in retina/
choroid under the stimulus of hyperglycemia, causing early
function loss of macular photoreceptor cells and eventually
resulting in UMVI.

In that case, PPARG agonists, such as pioglitazone,
may help control UMVI and relieve patient anxiety.
Pioglitazone has been proven to protect retinal and/or
choroidal cells from hyperglycemia-induced injuries in a
PPARG-dependent pathway. It can normalize insulin
signaling in the diabetic rat retina through reduction in
the levels of tumor necrosis factor and suppressor of
cytokine signaling 3, [35] modulate the retinal pigmented
epithelium survival responses to oxidative stress, inhibit
activation of the glial cells, prevent cell apoptosis, and
protect the retina from subsequent cellular damage caused
by retinal ischemia/reperfusion [33, 40]. In previously
clinical studies, pioglitazone has been used to prevent

Table 2: Demographic and clinical characteristics of 135 residents with unexplainedmild visual impairment (UMVI) and 133 residents with
normal vision (NV).

UMVI residents NV residents p value∗

Gender (male) 53 60 0.39
Age (year) 65.34± 5.41 64.82± 8.45 0.59
Age at diabetes onset (years) 58.48± 10.76 57.51± 10.15 0.39
Duration of diabetes (years) 6.86± 5.21 7.30± 5.86 0.52
Hemoglobin A1c (%) 7.24± 1.46 7.09± 1.34 0.36
Fasting blood glucose (mmol/l) 7.21± 2.08 7.17± 1.88 0.87
Body mass index (kg/m2) 25.00± 3.62 25.75± 3.51 0.09
Waistline (cm) 85.68± 9.93 88.27± 9.19 0.03
Hipline (cm) 94.98± 9.84 97.03± 6.77 0.04
Systolic blood pressure (mmHg) 140.02± 20.84 143.77± 19.69 0.14
Diastolic blood pressure (mmHg) 81.03± 11.97 80.74± 11.35 0.84
∗Student’s t-test and χ2 test.

Table 3: PPARG allele frequencies in the 135 residents with unexplained mild visual impairment (UMVI) and 133 residents with normal
vision (NV).

SNP Alleles UMVI residents NV residents
p value∗ MAF OR (95%CI)number (%) number (%)

rs10865710 G 163 (60.4) 14 (5.3) 6.57E − 42 0.33 27.42 (15.18–49.51)C 107 (39.6) 252 (94.7)

rs1801282 G 22 (8.1) 0 (0) 1.99E − 06 0.04 NAC 248 (91.9) 266 (100)

rs709158 G 95 (58.6) 24 (21.4) 1.00E − 09 0.43 5.20 (3.00–9.00)A 67 (41.4) 88 (78.6)

rs3856806 T 88 (32.6) 21 (7.9) 1.22E − 12 0.20 5.64 (3.38–9.42)C 182 (67.4) 245 (92.1)
MAF�minor allele frequency; OR� odds ratio; CI� confidence interval; NA, the odds ratio was not available where the number of individuals with two
copies of the risk allele was zero. ∗χ2 test.
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vascular complications of T2DM, such as stroke and
atherosclerosis [41, 42]. *erefore, we suppose that pio-
glitazone may be used to prevent visual impairment
progression in patients with T2DM.

In summary, the present study confirmed an in-
dependent association between UMVI and PPARG poly-
morphisms in a T2DM population. *e limitations of this
study should not be neglected. First, the study was a single-

Table 4: Genotypic association analysis in 135 residents with unexplained mild visual impairment (UMVI) and 133 residents with normal
vision (NV).

SNP Genotype UMVI residents NV residents HWpval p value∗ OR (95%CI)∗ p value# OR# (95% CI)number number
rs10865710 GG 36 0 0.08 7.17E − 42 NA

GC 91 14 6.40 (3.47–11.80) 1.86E − 41 0.01 (0.00–0.02)
CC 8 119 0.07 (0.03–0.14) (CC:GG+GC)

rs1801282 GG 0 0 1 NA NA
GC 22 0 NA 7.46E − 6 0.46 (0.40, 0.53)
CC 113 133 0.86 (0.61–1.21) (CC:GG+GC)

rs709158 GG 25 4 0.33 3.35E − 09 4.43 (1.46–13.43) 0.41 2.22 (0.67, 7.38)
GA 45 16 1.94 (1.00–3.78) 6.9E − 7 20.46 (5.84, 71.61)
AA 11 36 0.21 (0.10–0.45) 1.39E − 6 0.11 (0.04, 0.26)

rs3856806 TT 16 0 0.10 1.24E − 10 NA
TC 56 21 2.63 (1.51–4.58) 8.92E − 10 0.16 (0.09–0.29)
CC 63 112 0.55 (0.37–0.82) (CC: TT+TC)

p value∗ (chi-square test); OR (95% CI) ∗(chi-square test); OR# (95 % CI); p value# (Bonferroni correction); OR’ (Bonferroni correction); HWpval,
Hardy–Weinberg equilibrium p value. OR� odds ratio; CI� confidence interval; NA, the odds ratio was not available where the number of individuals with
two copies of the risk allele was zero. ∗χ2 test.

Table 5: Haplotype analysis for PPARG SNPs in 135 residents with unexplained mild visual impairment (UMVI) and 133 residents with
normal vision (NV).

rs10865710 rs1801282 UMVI residents NV residents
p value∗ OR (95% CI)haplotype frequency haplotype frequency

C C 0.34 0.95 6.57E − 42 0.04 (0.02–0.07)
G C 0.52 0.05 4.04E − 33 19.67 (10.92–35.45)
G G 0.08 0 1.99E − 06 NA
∗χ2 test.
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Figure 1: PPARG linkage disequilibrium plot of the PPARG single-nucleotide polymorphisms rs3856806, rs1801282, rs709158, and
rs10865710. *e number in the diamond refers to D0 (100 9 D0). *e linkage disequilibrium block was defined according to the standard
confidence intervals. *e strength of linkage disequilibrium is depicted by the intensity of red coloring, which moves from white to light red
as D0 progresses from 0 to 100.
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center study based on the Chinese Han population and
contained a small number of subjects. Second, more SNPs of
PPARG should be sequenced. Further studies are also
necessary.
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