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Cryptococcus neoformans is a ubiquitous environmental yeast and a leading cause

of invasive fungal infection in humans. The most recent estimate of global disease

burden includes over 200,000 cases of cryptococcal meningitis each year.Cryptococcus

neoformans expresses several virulence factors that may have originally evolved to

protect against environmental threats, and human infection may be an unintended

consequence of these acquired defenses. Traditionally, C. neoformans has been viewed

as a purely opportunistic pathogen that targets severely immune compromised hosts;

however, during the past decade the spectrum of susceptible individuals has grown

considerably. In addition, the closely related strain Cryptococcus gattii has recently

emerged in North America and preferentially targets individuals with intact immunity.

In parallel to the changing epidemiology of cryptococcosis, an increasing role for

host immunity in the pathogenesis of severe disease has been elucidated. Initially, the

HIV/AIDS epidemic revealed the capacity of C. neoformans to cause host damage

in the absence of adaptive immunity. Subsequently, the development and clinical

implementation of highly active antiretroviral treatment (HAART) led to recognition of an

immune reconstitution inflammatory syndrome (IRIS) in a subset of HIV+ individuals,

demonstrating the pathological role of host immunity in disease. A post-infectious

inflammatory syndrome (PIIRS) characterized by abnormal T cell-macrophage activation

has also been documented in HIV-negative individuals following antifungal therapy. These

novel clinical conditions illustrate the highly complex host-pathogen relationship that

underlies severe cryptococcal disease and the intricate balance between tolerance and

resistance that is necessary for effective resolution. In this article, we will review current

knowledge of the interactions between cryptococci and mammalian hosts that result in

a tolerant phenotype. Future investigations in this area have potential for translation into

improved therapies for affected individuals.
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INTRODUCTION

The incidence of invasive fungal diseases has increased in
recent decades and is associated with 1.5 million deaths
annually. Much of this increase is attributable to the rising
number of people with weakened or dysfunctional immune
systems who are at high risk for the development of
serious fungal infections (1–3).Major risk factors for invasive
mycoses include HIV infection, stem cell, and solid organ
transplantation, prolonged immunosuppressive therapy, invasive
medical procedures, hematological malignancies, advanced age,
and prematurity (4, 5). More than 90% of all reported fungal-
related deaths result from species that belong to four genera:
Cryptococcus, Candida, Aspergillus, and Pneumocystis (4). In
addition to delays in diagnosis, similarities between eukaryotic
fungi and humans render treatment of fungal infections more
difficult compared to bacterial and viral infections. Relatively
few antifungal drugs are currently available and their efficacy is
limited by toxicity, a narrow spectrum of activity, detrimental
drug interactions, the development of resistance, and, in some
cases, high cost (6, 7).

The genus Cryptococcus contains at least 37 species; however,
C. neoformans and Cryptococcus gattii are the main causes of
human disease (8, 9). Cryptococcus neoformans classically targets
immunosuppressed individuals including those with advanced
HIV-AIDS, various T cell deficiencies, pregnancy, chronic
lung, renal, or liver diseases, cancer, and patients receiving
immunosuppressive therapy, while C. gattii has a predilection
for immunocompetent individuals (10–12). The initial exposure
to cryptococci occurs through inhalation of spores or small
desiccated yeast cells that enter the lower respiratory tract. A
seroprevalence study in New York demonstrated that 70% of
samples from children over the age of 5 years had reactive
antibodies against C. neoformans antigens, suggesting that
exposure is widespread despite a low incidence of disease (13).
Although definitive human studies are lacking, circumstantial
evidence indicates that asymptomatic colonization of the airways
or latent cryptococcal infection of the lungs and associated
structures may also be common (14, 15). For example, autopsy
studies identified C. neoformans infection in subpleural or
parenchymal lung nodules where yeasts were contained inside
macrophages and multinucleated giant cells in association with
a granulomatous response (16–18). On the other hand, the
most devastating clinical consequence of cryptococcal infection
is meningoencephalitis that can occur following a primary
lung infection or by reactivation and dissemination of latent
pulmonary infection upon subsequent immunosuppression (19–
21). The development of severe cryptococcal disease may occur
years or even decades after the initial infection, indicating that
humans are able to tolerate the presence of viable cryptococci for
extended periods of time (22).

A recent study of the global burden of cryptococcal disease
estimated that 278,000 individuals have a positive cryptococcal
antigen test that is indicative of infection and 223,100
patients develop cryptococcal meningitis, with 73% of the cases
occurring in Sub-Saharan Africa (23). Worldwide, cryptococcal
meningitis account for 181,100 deaths annually, including

15% of AIDS-related deaths. These figures indicate that the
proportion of AIDS-related mortality has not changed compared
to the previous estimate in 2008 (24) with cryptococcosis
remaining the second most common cause of AIDS-related
death after tuberculosis (23). Notably, up to 20% of cases of
cryptococcosis occur in phenotypically “normal” or apparently
immunocompetent patients without any known risk factors
for infection susceptibility (25). Almost 50% of patients with
cryptococcal meningitis die in the year after infection mainly
because of unsuccessful therapy (26). A better understanding
of the key mechanisms of host immunity to Cryptococcus will
be important for future development of new and more effective
approaches to preventing and treating cryptococcal diseases. The
mechanisms of host resistance in Cryptococcus infection has been
extensively studied and reviewed elsewhere (20, 21, 27, 28). In
this article, we will discuss the mechanisms of tolerance that
characterize the host-cryptococcal interaction.

OVERVIEW OF TOLERANCE AND
RESISTANCE

The concept of disease tolerance was originally described in
plants and arose from observations of variation in disease severity
at a population level without a direct correlation to pathogen load
(29–31). Compared to resistance, which is defined as the ability
to reduce pathogen burden to preserve homeostasis, tolerance is
the ability to limit the extent of damage and dysfunction to host
tissues during infection. Disease tolerance pathways that attempt
tomaintain host fitness without exerting direct negative effects on
pathogen burden may lead to microbial survival and persistence
(32–34).

Two types of tissue damage may occur during infection; one
is directly caused by the pathogen through toxin production
and virulence factor expression, and can be limited by reduction
of the microbial load through host resistance mechanisms. The
second type of tissue damage is an indirect consequence of
infection that results from a vigorous host immune response
and manifests as immunopathology despite control of pathogen
burden (33). Certain host resistancemechanisms have potentially
damaging effects on host fitness; for example, production of
reactive oxygen species (ROS), proteases, and growth factors by
neutrophils and macrophages may cause cellular destruction,
abnormal collagen deposition, and tissue fibrosis (35). Even if
overt organ damage is not evident, host resistance mechanisms
are usually associated with some degree of subclinical tissue
dysfunction; for example, inflammation that is effective in
combating lung infection can alter both the integrity and
permeability of the pulmonary vascular endothelium and airway
epithelium and may culminate in reduced respiratory function
(31).

In general, disease tolerance is characterized by stress
responses and damage control mechanisms that maintain
homeostasis and functional integrity of host tissues in response to
environmental changes. When physiological parameters change
beyond a certain threshold, stress responses initiate signal
transduction pathways to provide metabolic adaptation in host
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cells (32). Some of the best known signaling mechanisms
involved in the cellular stress responses include transcription
factors such as HIF-1alpha (hypoxia-inducible factor 1 alpha)
triggered by hypoxia, NRF2 (nuclear factor-erythroid 2-
related factor 2) triggered by oxidative stress, and AhR (Aryl
hydrocarbon Receptor) triggered by xenobiotic stress (36–38).
Other stress response mediators include AMPK (AMP-activated
protein kinase) triggered by ATP depletion, and the NLR (Nod-
like receptor) protein family that responds to stress caused by
microbial toxins and endogenous danger signals (33, 38). In a
similar manner, tissue damage control can also occur through
various mechanisms that (1) enforce barrier function of epithelial
cells and prevent pathogen access to host tissue, (2) neutralize
pathogen toxins and virulence factors, (3) regulate the intensity
and duration of the host immune and inflammatory responses
and (4) enhance resistance against inflammatory damage by
promoting parenchymal cell regeneration (32, 33, 39).

Mechanisms of host resistance and disease tolerance function
in a pathogen class-specific manner (33). In some cases, the
pathogen itself may contribute and/or augment the host’s
capacity for tolerance to enhance its own survival and
transmission. If the host can sustain a high level of tolerance
that is sufficient to prevent major disruption of physiological
functions, a state of persistent and/or asymptomatic infection
will be established. Conversely, if host resistance mechanisms
cause significant tissue damage or major alterations of host
physiology, various pathological outcomes of infection will
occur (31). Ultimately, an ideal immune response is defined
by the balance between host resistance and tolerance that
facilitates efficient pathogen clearance with an acceptable degree
of immunopathology Figure 1 (32).

DISEASE TOLERANCE AND THE DAMAGE
RESPONSE FRAMEWORK IN
HOST-CRYPTOCOCCUS INTERACTION

Based on serological and epidemiological studies, natural
exposure to Cryptococcus sp. is common. Yet, despite the
observation that a high percentage of children and healthy
individuals in certain geographic areas develop cryptococcal
antibodies, overt clinical manifestations of disease are rare
(13, 22, 40–42). In an immunocompetent host, infectious
propagules of Cryptococcus sp. are completely cleared from the
respiratory tract or may establish a latent asymptomatic infection
in pulmonary granulomas or thoracic lymph nodes (15, 16).
Following immunosuppression, the fungus can proliferate and
disseminate to other parts of the body, including the central
nervous system. Given the lack of an inflammatory response
during latent infection, symptoms of disease reactivation will not
develop until the fungal cell burden causes tissue dysfunction and
damage to infected organs (8, 22, 43). Depending on host factors,
cryptococci may cause progressive granulomatous inflammation
or form discrete fungal masses (termed cryptococcomas) in
primary target organs such as the lungs and brain. Each of these
vital organ systems has a relatively low tolerance and repair
capacity and is highly susceptible to damage; therefore, severe

and/or progressive infection of the lower respiratory tract or
central nervous system is poorly tolerated and life-threatening
(31, 44). Indeed, latent asymptomatic cryptococcal infection, but
not clearance, may be considered as a host tolerance mechanism
to prevent or limit lung or brain damage (45).

The indispensable role of the host response to the outcome of
microbial pathogenesis is a central tenet of the Damage Response
Framework (DRF) proposed by Pirofski and Casadevall (46, 47).
TheDRF integrates the contribution ofmicrobial and host factors
that may produce a net benefit or cause disease that is reflected
by host damage. Importantly, microbial virulence traits interact
with either a weak or strong immune response to cause disease
that exhibits a parabolic distribution. In addition to disease,
the highly dynamic interaction between microbe and host may
also lead to different disease outcomes including colonization,
latency, and commensalism. From the viewpoint of the DRF,
progressive asymptomatic cryptococcal infection will continue
until the damage resulting from host-pathogen interactions over
time exceeds a threshold amount that is sufficient to create
clinical symptoms (47, 48). Cryptococcus neoformans has been
classified as a class 2 pathogen that causes disease exclusively
in hosts with weak or defective immune responses through
expression of virulence traits. However, the emergence of C.
gattii in apparently healthy individuals in Pacific Northwest
and development of immune reconstitution inflammatory
syndrome (IRIS)-associated cryptococcosis in HIV/AIDS after
antiretroviral therapy, suggests that cryptococci may be class 4
pathogens that cause disease at the extremes of weak and robust
immunity. Thus, the pathogenesis of cryptococcal disease and
associated host damage is attributable to the interaction of fungal
virulence with dysregulated host immune responses (47–49).

As reviewed elsewhere, protection against cryptococcal
infection is mainly associated with secretion of pro-inflammatory
cytokines, generation of effective Th1/Th17 adaptive immune
responses, and classical activation of macrophages that mediate
fungal clearance (20, 21, 27, 28, 50–53). Although resistance
mechanisms are required for sterilizing immunity, excessive
inflammation can be detrimental to the host and culminate in
severe tissue damage and immunopathology. In fact, an ideal
immune response to cryptococcal infection necessitates a tightly
regulated balance between Th1, Th17, and Th2 responses that
control fungal growth while preventing excessive tissue damage
and immunopathology (Figure 1) (19, 21). The pathological
consequences of excessive inflammation during cryptococcal
infection are clearly exemplified by the problem of IRIS.
Development of cryptococcal IRIS is mainly associated with
HIV+ patients, solid organ transplant recipients, and pregnancy
and is caused by recovery of specific immune responses resulting
in exaggerated host inflammation and local organ damage (54).
There are two types of cryptococcal IRIS in HIV+ patients:
(1) Paradoxical cryptococcal IRIS that occurs after starting
ART and presents as a deterioration or recurrence of clinical
symptoms in the same or new site even with successful antifungal
therapy, and (2) Unmasking cryptococcal IRIS that begins shortly
after initiation of ART in patients with no prior diagnosis
of cryptococcosis and may be its first manifestation (55–57).
A paradoxical immune response, known as post-infectious
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FIGURE 1 | Schematic representation of the balance between host resistance and tolerance to cryptococcal infection. Effective control of infection requires a

balanced response between host tolerance and resistance mechanisms while excessive host inflammation or immune regulation leads to tissue damage. Additional

details are provided in the text.

inflammatory response syndrome (PIIRS), can also occur in non-
HIV patients with cryptococcal meningitis following reduction
of immunosuppressive therapy and is associated with severe
neurological disease (58, 59).

In the context of the damage response framework,
cryptococcal meningitis can be classified in 3 groups (44, 55):
(1) In HIV+ patients who have not started highly active
antiretroviral therapy, host damage is mainly pathogen-
mediated and is characterized by a high fungal burden. Even
after initiation of effective antifungal therapy, pathogen virulence
is believed to be a major determinant of mortality. Low levels of
Th1-associated cytokines including IFN-gamma and TNF-alpha
in these patients suggest that immune-associated damage is not a
major factor in disease pathogenesis (60, 61). These observations
are also consistent with a lack of significant improvement in
disease outcomes with adjunctive corticosteroid therapy (62).
(2) In HIV+ patients that develop cryptococcal IRIS after
starting the antiviral therapy, damage is associated with a
vigorous Th1 type host immune response that is characterized
by increased inflammatory cytokines IFN-γ and IL-6, activated
macrophages/monocytes, and recruitment of CD4+ T cells.
Induction of cerebral edema, neurotoxic effects of activated
macrophages, and metabolic programming of neurons by
adjacent inflammatory signals are some of the mechanisms of
immune-mediated damage in the brain (63–65). (3) In non-HIV
patients, tissue damage is mainly associated with a robust
intrathecal Th1 type cellular immune response that is associated
with alternative macrophage activation, high IL-10 and low
TNF-α levels. The discordant activation of lymphocytes and
macrophages results in persistent expression of cryptococcal

antigen that perpetuates local inflammation (44, 55, 59). To
maintain homeostasis and prevent unnecessary tissue damage,
host tolerance mechanisms regulate the degree and duration
of the immune response; therefore, the development of IRIS, a
condition that is characterized by excessive and dysregulated
immunity, could signify a failure of tolerance during cryptococcal
infection (30, 66).

Excessive inflammation and immune-mediated host damage
have also been shown in experimental mouse models of
cryptococcal IRIS. Following CD4+ T cell transfer into RAG−/−

mice on the C57BL/6 or BALB/c genetic background, severe
inflammatory disease was established in lungs, brain, and
liver without affecting fungal clearance. Compared to controls,
heightened systemic inflammation characterized by Th1-type
cytokines and activated CD4+ T cells as well as granulomatous
inflammation of the liver was observed in reconstituted
RAG−/− mice (67). In another model, C57BL/6 mice infected
intravenously with 106 C. neoformans 52D developed lethal
neurological dysfunction 3 to 4 weeks post-infection despite
fungal clearance in the central nervous system. Activated
microglia and antigen-specific IFN-γ producing CD4+ T cells
were identified in the brains of infected mice. Depletion of CD4+

T cells reduced CNS inflammation and prevented mortality,
although fungal clearance was also decreased (68). Interestingly,
despite an extremely high fungal burden at day 7 and 14
post-infection, the presence of central nervous system infection
remained relatively asymptomatic. One explanation for this
observation could be host tolerance to infection that was
ultimately subverted by a vigorous immune response and the
development of extensive tissue damage.
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CRYPTOCOCCUS-ASSOCIATED
MECHANISMS RELATED TO DISEASE
TOLERANCE

Microbial pathogens employ a variety of mechanisms to
trigger host damage including intracellular and/or extracellular
replication, production, and release of toxic substances,
disruption of organ homeostasis, and modulation of host
immune responses (47). Cryptococcus sp. express several
virulence factors that facilitate pathogen survival, proliferation,
and dissemination in mammalian hosts (69–71). The
mechanisms by which C. neoformans mediates host damage
have been extensively reviewed by Casadevall et al. (72). At the
molecular level, C. neoformans produces several degradative
enzymes such as proteases, urease, phospholipase, and nuclease
that degrade host molecules (73–77). Mechanisms of cellular
damage include: (1) interference with phagolysosomematuration
(78), (2) increased permeability of the phagosome membrane
(79, 80), (3) disrupted organelle function; for example, the
ability to impair protein synthesis by mitochondria (81, 82),
(4) cytoskeletal alterations (83), (5) non-lytic exocytosis and
cytoplasmic vacuolation (84–86), and (6) lytic exocytosis
resulting in host cell death (87). In addition, C. neoformans has
several direct and indirect mechanisms that interfere with host
immune cell function and damage endothelial cells in the brain
vasculature (72).

In contrast to the virulence factors and microbial mechanisms
that trigger cell and tissue damage as part of disease pathogenesis,
Cryptococcus sp. has evolved several unique strategies that
facilitate survival and persistence in the host without causing
apparent pathology. Remarkably, the persistence of a chronic,
low-grade C. neoformans infection does not prevent the
generation a protective cell-mediated immune response upon
secondary infection (47, 88). Some of the main strategies that
contribute to latent cyptococcal infection and prevent complete
clearance include acquisition of stress tolerance mechanisms
against high temperature, reactive oxygen species, and reactive
nitrogen species, capacity for facultative intracellular residence,
regulation of host cell expulsion mechanisms, and evasion or
interference with innate and adaptive immunity (19, 45, 89,
90). Below, several important characteristics associated with
long-term or persistent cryptococcal infection are summarized;
additional details may be found in previous reviews (45, 89–
91).

1) Metabolic Adaptation to Physiological Host Conditions

The fact that environmental cryptococci can infect many
vertebrate and invertebrate hosts reflects its capacity to adapt
to a variety of different conditions. Metabolic adaptation is a
major requirement for fungal persistence in the mammalian
host, and many genes and pathways that are essential for stress
resistance and high temperature growth have been identified
(90, 91). For example, the thermotolerant phenotype of
Cryptococcus sp. is mediated by Ras1/Ras2 signaling pathways
(92, 93) and functional calcineurin A, a Ca2+-calmodulin-
regulated protein phosphatase that is activated by stress

responses and stimulates the expression of genes required
for growth and survival at 37◦C as well as during oxidative
stress (43, 89, 91, 94).

2) Evasion and Interference With the Innate Immune

Response

Cryptococcus sp. express several factors that have been
shown to interfere with host immune response (72).
For example, the extracellular capsule is a key virulence
attribute that is composed of glucuronoxylomannan (GXM)
and two minor components, galactoxylomannan (GalXMs),
and mannoprotein (MP). The capsule conceals cell wall
antigens, inhibits antibody binding to the fungal cell wall,
activates and depletes complement, suppresses T lymphocyte
proliferation, modulates cytokine production, and induces
host cell apoptosis (95–97). Capsular enlargement during
infection and formation of giant “Titan cells” that range in size
from 50–100µm is a powerful anti-phagocytic mechanism
used by Cryptococcus sp. (98–100). Release of capsular
GXM causes L-selectin shedding from neutrophils and limits
their migration, adhesion to endothelial cells, and tissue
extravasation (101). Cryptococcal capsular components also
have anti-inflammatory properties that inhibit the maturation
and activation of DCs, macrophages, and neutrophils (102–
104). Capsule-independent mechanisms including the App1
protein and GATA family of transcription factors have also
been implicated in evasion of phagocytosis and immune
recognition (105, 106).
Several studies have shown long term survival of

cryptococci within macrophages and endothelial cells
during asymptomatic infection, suggesting that fungi may

persist without causing tissue damage (72, 89). To survive
within the harsh phagosomal environment, Cryptococcus sp.
express several enzymes involved in nitric oxide detoxification

and oxidative damage repair such as catalases, superoxide

dismutases, glutathione peroxidases, thioredoxin proteins, the
inositol phosphosphingolipid-phospholipase C1 (Isc1) and
the protein kinase C (Pkc1) and utilize host lipid components
for production of cryptococcal eicosanoids (107). Additional
factors that promote intracellular survival and persistence
include melanin, laccase, urease, phospholipase (PLB1) and
heat shock protein 70 homolog Ssa1 (108–110).
The ability to exit the phagocytic cells without killing and
triggering an immediate immune response is one of the
most important mechanisms associated with survival and
long-term persistence of Cryptococcus sp. (10, 89). Non-
lytic escape from phagocytes, also termed vomocytosis or
phagosome extrusion, occurs by merging of the phagosome
and plasma membranes followed by release of the organism
to the surrounding environment or lateral transfer between
host cells. Escape from phagocytes without triggering host
cell death and inflammation is beneficial for latency and
persistence of cryptococcal infection (84, 111). Finally, there
is evidence that Cryptococcus sp. disseminates to the CNS
from the bloodstream within macrophages using a Trojan
Horse mechanism and is subsequently released by non-lytic
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extrusion after it has crossed the BBB (84, 111–114). Taken
together, intracellular survival and non-lytic exocytosis are
beneficial adaptations for both host and pathogen in the
context of tolerance hypothesis (45).

3) Interference With the Adaptive Immune Response

In addition to subversion of innate immunity, interference
with the adaptive immune response is also essential
for cryptococcal persistence and latent infection (89).
Cryptococcus sp. use various mechanisms to regulate T-cell
proliferation, differentiation, and survival (20, 115, 116).
For example, expression of cryptococcal urease induces a
non-protective Th2 immune response through recruitment
of immature DCs to the lung-associated lymph nodes (117).
Cleavage of fungal chitin by host chiotriosidase also initiates
Th2 cell differentiation by CD11b+ conventional dendritic
cells in pulmonary cryptococcal infection (118). Production of
PGE2 by C. neoformans specifically inhibits IL-17 expression
during Th17 cell differentiation in an IRF4-dependent manner
(119). Inhibition of the Th17 response has been implicated
as a potential mechanism that facilitates latent infection (89).
Finally, persistent pulmonary C. neoformans infection also
interferes with humoral immunity by selectively reducing
antibody responses to exogenous cryptococcal polysaccharide
(120).

HOST IMMUNE RESPONSE ASSOCIATED
WITH DISEASE TOLERANCE IN
CRYPTOCOCCAL INFECTION

Host resistance during cryptococcal infection is characterized
by the expression of pro-inflammatory cytokines, recruitment
of inflammatory DCs, and generation of Th1/Th17 immune
responses that is followed by classical activation of macrophages
(50, 51, 119, 121–126). However, excessive inflammation and
robust Th1/Th17 responses that provide sterilizing immunity
can induce severe pathology and damage to the host (59, 127–
133). It has been proposed that a tightly regulated combination
of pro-inflammatory and anti-inflammatory stimuli is crucial
for effective control of fungal infection (134–136). In fact,
immunoregulatory mechanisms that control the intensity and
duration of the host response are one of the main strategies
that may provide tolerance to infection and maintain host fitness
and homeostasis (32, 33, 39). Below we describe cellular and
molecular mechanisms that could mediate host tolerance during
infection with Cryptococcus sp.

T-regulatory cells (Treg): Mutations in the Treg-associated
transcription factor forkhead box protein P3 (FOXP3) are
associated with development of severe immunopathology in
both mice and humans, indicating that Tregs control tissue
damage and contribute to disease tolerance (32). During fungal
infection, activation of Treg cells is one of the critical mechanisms
for reducing collateral damage to host tissues and restoring
a homeostatic environment (66). Treg function is associated
with production of the anti-inflammatory cytokines IL-10
and TGF-β that suppress the immune response (66, 135).
In BALB/c mice, pulmonary CD4+ FoxP3+ Tregs increased

during the first 4 weeks of infection with C. neoformans 1841.
Conditional depletion of Tregs during the second week of
infection, while both Th1 and Th2 responses were in progress,
enhanced the Th2 response and suggested that Tregs limit
Th2 cell proliferation and function in this model of infection
(137). Another study demonstrated that the accumulation of
antigen-specific Tregs in the Cryptococcus-infected lungs and
their co-localization with Th2 effector cells occurs through
expression of CCR5 and IFN regulatory factor 4 (IRF4) (138).
In both reports, the immunoregulatory function of Tregs
during acute cryptococcal infection was associated with reduced
pathological Th2 responses; however, the possibility that long-
term persistence of cryptococcal infection is also associated with
an increase in Treg function remains to be investigated (66, 89).

IL-10 signaling: IL-10 is an anti-inflammatory cytokine
expressed by Tregs and DCs that prevents excessive
inflammation by limiting the production of IL-1, IL-6, IL-
23, IFN-γ, and TNF-α during fungal infections (66, 135, 139).
Early and sustained IL-10 production by lung leukocytes
was demonstrated in a mouse model of persistent lung
infection with C. neoformans 52D (140). C57BL/6 mice with
genetically engineered IL-10 deficiency that were infected
with C. neoformans demonstrated improved fungal clearance
from the lung in association with reduced tissue eosinophilia,
decreased expression of Th2 (IL-4, IL-5, and IL-13) and increased
expression of Th1 (IL-12 and TNF-alpha) cytokines by lung
leukocytes (141). Early or late interruption of IL-10 signaling
after establishment of cryptococcal infection reduced fungal
burden and dissemination to the brain and was associated with
enhanced Th1/Th17 responses and increased activation and
recruitment of CD11b+ DCs and exudate macrophages (140).
In HIV+ patients with C. neoformans infection, a high level
of IL-10 in the peripheral blood correlated with fungemia and
dissemination (142). Therefore, the development of persistent
or progressive cryptococcal infection appears to correlate with
excessive IL-10 production while experimental IL-10 deficiency
results in an enhanced inflammatory response (66).

DCs: Dendritic Cells (DCs) are the most efficient lineage
for presentation of cryptococcal antigen to T cells and their
activation is critical for activation of adaptive immunity that
confers host protection. The role of DCs during cryptococcal
infection has been recently reviewed (143, 144). The recruitment
and maturation of DCs, as well as their ability to activate
T cells, is affected by fungal characteristics as well as the
local cytokine, chemokine, and scavenger receptor expression.
Several soluble mediators including IL-4, IL-10, IL-17, and GM-
CSF have been implicated in the recruitment, differentiation,
and activation of DCs in different models of cryptococcal
infection. Protection against C. neoformans is associated with
recruitment and classical activation of monocyte-derived DCs
(moDCs) resulting in secretion of pro-inflammatory cytokines
and effective Th1/Th17 immune responses (145). Yet, moDCS
are highly adaptable cells that can display inflammatory or
immunoregulatory functions depending on the local cytokine
microenvironment within infected tissues (66). For example,
immunomodulatory or “tolerogenic” DCs can play an important
role in regulation of inflammation and immunopathology
through secretion of anti-inflammatory cytokines, induction of
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hyporesponsiveness, and promotion of peripheral or induced
Treg cells (146). Human and murine monocytes and DCs that
were stimulated in vitro with C. neoformans antigen produced
a significant amount of the immunomodulatory cytokine IL-10
(102, 147). In addition, development of immunomodulatory DCs
in a murine model of persistent C. neoformans infection was
associated with Th1 and Th17 suppression, reduced macrophage
activation, and impaired fungal clearance (66, 140, 141).

Tryptophan pathway: Indoleamine 2,3-dioxygenase (IDO),
a metabolic enzyme involved in tryptophan degradation and
production of kynurenines, plays an important role in the balance
between Tregs and Th1/Th17 cells (148, 149). Expression of IDO
by DCs results in a tolerogenic phenotype that is associated with
immune homeostasis, suppression of inflammation and effector
T cells, induction of Tregs, and enhanced tolerance to fungal
infection at mucosal surfaces (134, 135, 150, 151). The expression
of IDO by host cells following cryptococcal infection has not been
reported and could be a potential mechanism of disease tolerance.

Fas-associated death domain (FADD) and receptor interacting
protein kinase 3 (RIPK3): The FADD protein is a key mediator
of death receptor-triggered extrinsic apoptosis, which plays a
crucial immune regulatory role at the site of infection and
prevents excessive inflammation (127). Deletion of RIPK3 in
combination with FADD led to a robust Th1-biased response
with M1-biased macrophage activation, yet this host response
was deleterious in a mouse model of cryptococcal infection.
The excessive mortality in RIPK3 or RIPK3/FADD knockout
mice was associated with significant pulmonary damage due to
neutrophil-dominant infiltration with marked upregulation of
pro-inflammatory cytokines. These findings demonstrate the role
of both molecules in protection of the host by limiting excessive
inflammation and conferring tolerance during cryptococcal
infection (127).

T cell exhaustion: The loss of proliferation and limited
effector function of T cells during states of chronic infection
could be viewed as a tolerance-associated mechanism (152).
Multiple pathways may mediate a state of T cell exhaustion;
for example, binding of Cytotoxic T Lymphocyte-Associated
Protein 4 (CTLA4) to co-stimulatory molecules CD80 and
CD86 blocks CD28-mediated T cell co-stimulation and inhibits
T cell activation and function (151). C. neoformans has been
shown to rapidly induce CTLA-4 upregulation on murine
CD4+ T cells (153). Blockade of CTLA-4 on C. neoformans-
stimulated CD4+ T cells resulted in enhanced proliferation
and IL-2/IFN-γ cytokine production. In addition, differential
CTLA-4 upregulation was observed when cells were stimulated
with an encapsulated strain of C. neoformans. In another study
CTLA-4 blockade enhanced fungal control and survival of
mice that were subsequently infected with highly virulent C.
neoformans (154). These results indicate that the induction
of CTLA-4 could be a mechanism used by cryptococci to
diminish the immune response and facilitate persistent infection
(66). Similarly, the contribution of the programmed cell death
protein-1 (PD-1) during cryptococcal infection in C57BL/6
mice has been investigated (155). The results demonstrated
an association between persistent infection and increased and
sustained expression of PD-1 on CD4+ T cells as well as

upregulation of PD-1 ligands on specific subsets of resident and
recruited DCs and macrophages. Furthermore, PD-1 blockade
significantly improved pulmonary fungal clearance. Based on
current data, the role of CTLA-4 and PD-1 as potential mediators
of disease tolerance could be further studied, for example, in the
context of cryptococcal IRIS. In conclusion, protective tolerance
during persistent cryptococcal infection has been associated with
the development of immunomodulatory/tolerogenic DCs and
expression of IL-10, IDO, CTL4 and PD-1 (66).

CONCLUSION AND FUTURE DIRECTIONS

In states of persistent cryptococcal infection, a tightly-regulated
balance between resistance and tolerance mechanisms is required
to maintain host fitness and homeostasis. Several lines of
evidence indicate that C. neoformans plays an important role
in maintaining host tolerance to favor their own survival. The
ability to survive within mammalian cells and to subvert or
evade the host immune response without causing damage may
be the inadvertent consequences of a long evolutionary path
taken by this free environmental yeast to adapt to ecological
selection pressures. Within the context of the damage response
framework, infection of the host by a microbe is not a major
concern in the absence of significant damage. Therefore, in latent
cryptococcal infection one might postulate that the fungus is no
longer considered to be a pathogen by the host immune system
(47, 66).

Morbidity and mortality in cryptococcal infection can
result from defective host resistance in advanced states of
immunodeficiency, or a failure of tolerance mechanisms
as observed during cIRIS. As the spectrum of hosts with
cryptococcal disease expands, the ability to understand
and distinguish tolerance-associated mechanisms from
failures of host resistance will have important therapeutic
implications. For example, bolstering immunity to further
reduce pathogen burden may be unsuccessful in cases of
defective tolerance with significant tissue and/or organ damage,
while immunomodulation may be beneficial (31, 52, 156). Thus,
a comprehensive therapeutic strategy that takes host resistance
and tolerance mechanisms into account could have potential to
significantly improve disease outcomes (157–159).
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